Bauhinia Forficata L. and Bauhinia Monandra Kurz
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
1 Spatial Interactions in Novel
Tropical and Subtropical Agroecosystems 23 (2020): #72 Jacinto-Padilla et al., 2020 SPATIAL INTERACTIONS IN NOVEL HOST-PLANTS OF THE BLUE MORPHO IN MEXICO † [INTERACCIONES ESPACIALES EN NUEVAS PLANTAS HOSPEDERAS DE LA MORPHO AZUL EN MÉXICO] Jazmin Jacinto-Padilla, Jose Lopez-Collado*, Monica de la Cruz Vargas-Mendoza and Catalino Jorge Lopez-Collado Research Unit in Planning and Sustainable Management of Natural Resources in the Tropics. Colegio de Postgraduados, Campus Veracruz, Carretera federal Xalapa- Veracruz km 88.5, Código Postal 91690, Veracruz, México. Tel. +52 555 8045900 extension 3014. E-mail: [email protected]. [email protected], [email protected], [email protected], [email protected]. *Corresponding author SUMMARY Background. Plants in the neotropical region provide different ecological services and sustain entomofauna biodiversity. The butterfly, Morpho helenor montezuma, has high economic value worldwide, derived from recreational activities. To enhance its sustainable use, it is important to know the spatial relationship of this species with its host-plants. Objective. To estimate the potential geographical areas in Mexico of three host-plants: Bauhinia divaricata, Andira inermis and Pterocarpus rohrii and their spatial relationship with M. helenor montezuma. Methodology. Distribution models of the species were generated using MaxEnt, employing predictive variables based on temperature and precipitation, and records of presence data. Subsequently, a joint analysis of layers was performed to determine the overlap in the distributions. Results. The models were appropriate as the area under the curve ranged from 0.86 to 0.96. The broadest potential host-plant distribution was for B. divaricata (30%), followed by A. inermis (21%) and P. -
Phylogeny, Ecology and Plant Features in Tropical and Mediterranean Communities
Research Interspecific variation across angiosperms in global DNA methylation: phylogeny, ecology and plant features in tropical and Mediterranean communities Conchita Alonso1 ,Monica Medrano1 , Ricardo Perez2, Azucena Canto3 ,Vıctor Parra-Tabla4 and Carlos M. Herrera1 1Estacion Biologica de Donana,~ CSIC, Avenida Americo Vespucio 26, 41092, Sevilla, Spain; 2Instituto de Investigaciones Quımicas, Centro de Investigaciones Cientıficas Isla de La Cartuja, CSIC-US, Avenida Americo Vespucio 49, 41092, Sevilla, Spain; 3Centro de Investigacion Cientıfica de Yucatan, A.C., Calle 43 No. 130 x 32 y 34, Chuburna de Hidalgo, 97205, Merida, Yucatan, Mexico; 4Departamento de Ecologıa Tropical, Universidad Autonoma de Yucatan, Campus de Ciencias Biologicas y Agropecuarias, Km. 15.5 Carretera Merida-Xtmakui, 97000, Merida, Yucatan, Mexico Summary Author for correspondence: The interspecific range of epigenetic variation and the degree to which differences between Conchita Alonso angiosperm species are related to geography, evolutionary history, ecological settings or Tel: +34 954 466 700 species-specific traits, remain essentially unexplored. Genome-wide global DNA cytosine Email: [email protected] methylation is a tractable ‘epiphenotypic’ feature suitable for exploring these relationships. Received: 16 April 2019 Global cytosine methylation was estimated in 279 species from two distant, ecologically dis- Accepted: 28 June 2019 parate geographical regions: Mediterranean Spain and tropical Mexico. At each region, four distinct plant communities were analyzed. New Phytologist (2019) Global methylation spanned a 10-fold range among species (4.8–42.2%). Interspecific dif- doi: 10.1111/nph.16046 ferences were related to evolutionary trajectories, as denoted by a strong phylogenetic signal. Genomes of tropical species were on average less methylated than those of Mediterranean Key words: DNA methylation, epigenetics, ones. -
Comparison of Seed and Ovule Development in Representative Taxa of the Tribe Cercideae (Caesalpinioideae, Leguminosae) Seanna Reilly Rugenstein Iowa State University
Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1983 Comparison of seed and ovule development in representative taxa of the tribe Cercideae (Caesalpinioideae, Leguminosae) Seanna Reilly Rugenstein Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Botany Commons Recommended Citation Rugenstein, Seanna Reilly, "Comparison of seed and ovule development in representative taxa of the tribe Cercideae (Caesalpinioideae, Leguminosae) " (1983). Retrospective Theses and Dissertations. 8435. https://lib.dr.iastate.edu/rtd/8435 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This reproduction was made from a copy of a document sent to us for microfilming. While the most advanced technology has been used to photograph and reproduce this document, the quality of the reproduction is heavily dependent upon the quality of the material submitted. The following explanation of techniques is provided to help clarify markings or notations which may appear on this reproduction. 1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure complete continuity. 2. -
Cayman Islands Mini-Woodlands Plants Scientific
5/4/2007 Cayman Islands MINI-WOODLAND TREES and SHRUBS 1 Cayman Mini-Woodlands - Trees, Shrubs, some Vines & Ground Covers © P. Ann van B. Stafford Grand Cayman's birds suffered very badly as a result of Hurricane Ivan (11-12 Sept. 2004) & its aftermath, when there was little food or shelter. The preservation & re-planting of Cayman's indigenous (& a few that have become naturalized & grow in the wild) trees & shrubs, in clusters, rather than singly, will create a network of mini-woodlands to aid the re-establishment of bird populations. Listed are different species that provide suitable roosts & nesting sites & a year-round supply of fruits for BIRDS. Legend: endemic* grows only in the Cayman Islands & nowhere else in the world Salt-tolerance, drought tolerance and WIND-tolerance taken into account. Plants that are deep-rooted & slender-trunked offer less resistance to high winds & survive storms better than shallow-rooted, top heavy trees. Slow-growing trees are usually more wind-tolerant than fast growing trees. Some may be culturally significant or invasive, or both, eg Logwood Monoecious plants have separate male and female flowers on the same plant, eg Narrow-Leaf Ironwood. Dioecious plants have separate male and female flowers on different plants, eg Bitter Plum, Cabbage Tree, Fustic, Rosemary. No - Some plants are on the list that are NOT recommended for planting because they are very common and don't need human help, or invasive or harmful to people, exacerbate beach erosion or are hazardous in storms. Beware! (poisonous or spiny) DO NOT TOUCH - bold type lfp - Butterfly larval food plants (lfp) fr - fruit - could be a berry (many seeds), drupe (one central stony seed), capsule (eg Mahogany), pod, etc. -
Ecological Interactions in Epiphytic Orchids in the Archaeological Zone “El Tajín”, Papantla, Veracruz
Modern Environmental Science and Engineering (ISSN 2333-2581) September 2019, Volume 5, No. 9, pp. 860-866 Doi: 10.15341/mese(2333-2581)/09.05.2019/010 Academic Star Publishing Company, 2019 www.academicstar.us Ecological Interactions in Epiphytic Orchids in the Archaeological Zone “El Tajín”, Papantla, Veracruz Guadalupe Deniss Ortiz de Angel1, José Luis Alanís Méndez2, José G. García Franco3, and Juan Manuel Pech 2 Canché 1. Faculty of Biological and Agricultural Sciences, Universidad Veracruzana, Mexico 2. Faculty of Biological and Agricultural Sciences, Universidad Veracruzana, Mexico 3. Ecología Funcional Lab, Institute of Ecology, A. C., Xalapa, Veracruz, Mexico Abstract: Protected natural areas, as well as archeological zones are reservoirs of a region’s biodiversity, and the latter represent a legacy of local culture. In this sense, knowledge of the species present is essential to highlight their importance and ensure their conservation. We studied the diversity and ecological interactions of orchids (Orchidaceae) epiphytes in the archaeological zone “El Tajín”, municipality of Papantla, Veracruz, Mexico. From January 2015 to February 2016, the orchids species present their floral visitors, their phorophytes (hosts) as well as their vertical location in the trees were recorded. There were 202 colonies of Lophiaris cosymbephorum, 25 of Oncidium sphacelatum and eight of Catasetum integerrimum, distributed in 11 species of phorophytes. L. cosymbephorum was distributed in the five vertical strata, although with greater abundance in the outer part of the crown, on the contrary, Catasetum integerrium was more frequent in the basal part of the trunk. Floral visitors were: crickets (Gryllidae), beetles (Curculionidae: Baridinae) and ants (Formicidae: Lasius niger), the latter with the highest number of visits. -
Reorganization of the Cercideae (Fabaceae: Caesalpinioideae)
Wunderlin, R.P. 2010. Reorganization of the Cercideae (Fabaceae: Caesalpinioideae). Phytoneuron 2010-48: 1–5. Mailed 3 Nov 2010. REORGANIZATION OF THE CERCIDEAE (FABACEAE: CAESALPINIOIDEAE) RICHARD P. WUNDERLIN Institute for Systematic Botany Department of Cell Biology, Microbiology, and Molecular Biology University of South Florida 4202 E. Fowler Avenue, BSF 218, Tampa, FL 33620-5150, U.S.A [email protected] ABSTRACT The tribe Cercideae is reorganized into 12 genera placed in two subtribes, Cercidinae (A denolobus , Cercis , Griffonia ) and Bauhiniinae ( Bauhinia , Barklya , Brenierea , Gigasiphon , Lysiphyllum , Phanera , Piliostigma , Schnella , Tylosema ). A key to the subtribes and genera is provided. KEY WORDS : Adenolobus , Barklya , Bauhinia , Brenierea , Cercis , Gigasiphon , Griffonia , Lysiphyllum , Phanera , Piliostigma , Schnella , Tylosema The Cercideae has been subject to much reorganization since its establishment by Bonn (1822). Recently, Wunderlin et al. (1987) recognized five genera in two subtribes: Adenolobus (Harvey ex Bentham & Hook. f.) Torre & Hillcoat, Cercis Linnaeus, and Griffonia Baillon in subtribe Cercidinae; Bauhinia Linnaeus and Brenierea Humbert in subtribe Bauhiniinae. Within the large genus Bauhinia (300–350 species), an infrageneric system was presented that recognized four subgenera, 22 sections, and 30 series. Molecular studies in the Cercideae have revised our thinking about the classification of the tribe. Using ITS sequences of nuclear ribosomal DNA, Hao et al. (2003) concluded that extensive reorganization is warranted in the Cercideae if monophyletic groups are to be maintained. Based on molecular data, Lewis and Forest (2005) proposed that twelve genera should be recognized: Adenolobus , Barklya F. von Mueller, Bauhinia , Brenierea , Cercis , Gigasiphon Drake del Castillo, Griffonia , Lasiobema (Korthals) Miquel, Lysiphyllum (Bentham) de Wit, Phanera Loureiro, Pilostigma Hochstetter, and Tylosema (Schweinfurth) Torre & Hillcoat. -
Handbook of the Bruchidae of the United States and Canada Introduction to the Acrobat Pdf Edition
Handbook of the Bruchidae of the United States and Canada Introduction to the Acrobat pdf edition The Acrobat pdf version of this publication, though identical in content to the print version, differs slightly in format from the print version. Also, in volume 2 the items on the errata list for the print version have been corrected. [THIS PAGE INTENTIONALLY BLANK] United States Department of Agriculture Handbook of the Agricultural Research Bruchidae of the United Service Technical States and Canada Bulletin Number 1912 November 2004 (Insecta, Coleoptera) Volume I I II United States Department of Agriculture Handbook of the Agricultural Research Bruchidae of the United Service Technical States and Canada Bulletin Number 1912 November 2004 (Insecta, Coleoptera) John M. Kingsolver Volume I Kingsolver was research entomologist, Systematic Entomology Laboratory, PSI, Agricultural Research Service, U.S. Department of Agriculture. He is presently research associate with the Florida State Collection of Arthropods. III Abstract Hemisphere. It provides the means to identify these insects for taxonomists, students, museum curators, biodiver- Kingsolver, John M. 2004. Handbook of sity workers, port identifiers, and ecolo- the Bruchidae of the United States and gists conducting studies in rangeland, Canada (Insecta, Coleoptera). U.S. Depart- pasture, and forest management in the ment of Agriculture, Technical Bulletin United States and Canada. 1912, 2 vol., 636 pp. Mention of commercial products in this Distinguishing characteristics and diag- publication is solely for the purpose of nostic keys are given for the 5 subfami- providing specific information and does lies, 24 genera, and 156 species of the not imply recommendation or endorse- seed beetle family Bruchidae of the Unit- ment by the U.S. -
Small Trees for Miami-Dade Landscapes
Small Trees for Miami-Dade Landscapes John McLaughlin, Carlos Balerdi and Marguerite Beckford1 The current trend toward smaller yards (e.g., zero lot lines) signifies the need for adjustments in the way we use and landscape our yards. For nonpermanent items such as flowering annuals and vegetables this could mean greater use of raised beds (e.g., French intensive or square foot for vegetables), containers and decorative stone planters. The latter are especially useful for many perennial plants. W hen it comes to choosing shrubs and especially trees, greater care needs to be exercised in the items selected and where they are placed. W hat seemed to be an ideal choice in the nursery may quickly grow and become out of scale for a small yard, if not an expensive liability. One solution is to choose those shrubs and small trees (including fruit trees) that can be grown in large tubs, and this is an option especially suited to houses with large patios. Indeed given the alkaline nature of much of Miami-Dade’s soil, this is a useful alternative for plants such as camellias and dwarf magnolias (e.g., ‘Little Gem’) irrespective of yard size. It is possible however, to include trees as part of your permanent in-ground landscaping even where there is limited space for planting. There are many different types of trees that can be safely planted in a small yard and provide shade and/or ornamental appeal. In addition a number of shrubs, such as hibiscus and oleander, are available as standards (usually grafted and grown with a single approximately 5’ bare trunk), and these can substitute for a small tree. -
Molecular Characterization and Dna Barcoding of Arid-Land Species of Family Fabaceae in Nigeria
MOLECULAR CHARACTERIZATION AND DNA BARCODING OF ARID-LAND SPECIES OF FAMILY FABACEAE IN NIGERIA By OSHINGBOYE, ARAMIDE DOLAPO B.Sc. (Hons.) Microbiology (2008); M.Sc. Botany, UNILAG (2012) Matric No: 030807064 A thesis submitted in partial fulfilment of the requirements for the award of a Doctor of Philosophy (Ph.D.) degree in Botany to the School of Postgraduate Studies, University of Lagos, Lagos Nigeria March, 2017 i | P a g e SCHOOL OF POSTGRADUATE STUDIES UNIVERSITY OF LAGOS CERTIFICATION This is to certify that the thesis “Molecular Characterization and DNA Barcoding of Arid- Land Species of Family Fabaceae in Nigeria” Submitted to the School of Postgraduate Studies, University of Lagos For the award of the degree of DOCTOR OF PHILOSOPHY (Ph.D.) is a record of original research carried out By Oshingboye, Aramide Dolapo In the Department of Botany -------------------------------- ------------------------ -------------- AUTHOR’S NAME SIGNATURE DATE ----------------------------------- ------------------------ -------------- 1ST SUPERVISOR’S NAME SIGNATURE DATE ----------------------------------- ------------------------ -------------- 2ND SUPERVISOR’S NAME SIGNATURE DATE ----------------------------------- ------------------------ --------------- 3RD SUPERVISOR’S NAME SIGNATURE DATE ----------------------------------- ------------------------ --------------- 1ST INTERNAL EXAMINER SIGNATURE DATE ----------------------------------- ------------------------ --------------- 2ND INTERNAL EXAMINER SIGNATURE DATE ----------------------------------- -
WUCOLS List S Abelia Chinensis Chinese Abelia M ? ? M / / Copyright © UC Regents, Davis Campus
Ba Bu G Gc P Pm S Su T V N Botanical Name Common Name 1 2 3 4 5 6 Symbol Vegetation Used in Type WUCOLS List S Abelia chinensis Chinese abelia M ? ? M / / Copyright © UC Regents, Davis campus. All rights reserved. bamboo Ba S Abelia floribunda Mexican abelia M ? M M / / S Abelia mosanensis 'Fragrant Abelia' fragrant abelia ? ? ? ? ? ? bulb Bu S Abelia parvifolia (A. longituba) Schuman abelia ? ? ? M ? ? grass G groundcover GC Gc S Abelia x grandiflora and cvs. glossy abelia M M M M M / perennial* P S Abeliophyllum distichum forsythia M M ? ? ? ? palm and cycad Pm S Abelmoschus manihot (Hibiscus manihot) sunset muskmallow ? ? ? L ? ? T Abies pinsapo Spanish fir L L L / / / shrub S succulent Su T N Abies spp. (CA native and non-native) fir M M M M / / P N Abronia latifolia yellow sand verbena VL VL VL / ? ? tree T P N Abronia maritima sand verbena VL VL VL / ? ? vine V California N native S N Abutilon palmeri Indian mallow L L L L M M S Abutilon pictum thompsonii variegated Chinese lantern M H M M ? ? Sunset WUCOLS CIMIS ET Representative Number climate 0 Region zones** Cities zones* S Abutilon vitifolium flowering maple M M M / ? ? Healdsburg, Napa, North- San Jose, Salinas, Central 14, 15, 16, 17 1, 2, 3, 4, 6, 8 San Francisco, Coastal San Luis Obispo S Abutilon x hybridum & cvs. flowering maple M H M M / / 1 Auburn, Central Bakersfield, Chico, 8, 9, 14 12, 14, 15, 16 Valley Fresno, Modesto, Sacramento S T Acacia abyssinica Abyssinian acacia / ? / ? / L 2 Irvine, Los South Angeles, Santa 22, 23, 24 1, 2, 4, 6 Coastal Barbara, Ventura, -
A New Subfamily Classification of The
LPWG Phylogeny and classification of the Leguminosae TAXON 66 (1) • February 2017: 44–77 A new subfamily classification of the Leguminosae based on a taxonomically comprehensive phylogeny The Legume Phylogeny Working Group (LPWG) Recommended citation: LPWG (2017) This paper is a product of the Legume Phylogeny Working Group, who discussed, debated and agreed on the classification of the Leguminosae presented here, and are listed in alphabetical order. The text, keys and descriptions were written and compiled by a subset of authors indicated by §. Newly generated matK sequences were provided by a subset of authors indicated by *. All listed authors commented on and approved the final manuscript. Nasim Azani,1 Marielle Babineau,2* C. Donovan Bailey,3* Hannah Banks,4 Ariane R. Barbosa,5* Rafael Barbosa Pinto,6* James S. Boatwright,7* Leonardo M. Borges,8* Gillian K. Brown,9* Anne Bruneau,2§* Elisa Candido,6* Domingos Cardoso,10§* Kuo-Fang Chung,11* Ruth P. Clark,4 Adilva de S. Conceição,12* Michael Crisp,13* Paloma Cubas,14* Alfonso Delgado-Salinas,15 Kyle G. Dexter,16* Jeff J. Doyle,17 Jérôme Duminil,18* Ashley N. Egan,19* Manuel de la Estrella,4§* Marcus J. Falcão,20 Dmitry A. Filatov,21* Ana Paula Fortuna-Perez,22* Renée H. Fortunato,23 Edeline Gagnon,2* Peter Gasson,4 Juliana Gastaldello Rando,24* Ana Maria Goulart de Azevedo Tozzi,6 Bee Gunn,13* David Harris,25 Elspeth Haston,25 Julie A. Hawkins,26* Patrick S. Herendeen,27§ Colin E. Hughes,28§* João R.V. Iganci,29* Firouzeh Javadi,30* Sheku Alfred Kanu,31 Shahrokh Kazempour-Osaloo,32* Geoffrey C. -
BIOSYSTEMATICS of the NORTH and CENTRAL AMERICAN SPECIES of GIBBOBRUCHUS (COLEOPTERA: BRUCHIDAE: BRUCHINAE) in a Previous Paper
BIOSYSTEMATICS OF THE NORTH AND CENTRAL AMERICAN SPECIES OF GIBBOBRUCHUS (COLEOPTERA: BRUCHIDAE: BRUCHINAE) BY DONALD R. WIUTEHEAD 1 AND JOHN M. KINGSOLVER 2 INTRODUCTION In a previous paper (Kingsolver and Whitehead 1974) we dis cussed the biosystematics of Caryedes, one of a series of closely related New World tropical seed beetle genera whose larvae feed on seeds of leguminous plants. We now proceed to a related genus, Gibbobruchus, to supply data needed in ecological studies by D. H. Janzen and in systematic studies of the caesalpiniaceous genus Bauhinia by R. P. Wunderlin. In the New World, the genus Bauhinia includes all known host species for all but one species of Gibbobruchus, and for members of the stenocephalus Group of Caryedes, but for no other bruchids. The only other known host genus for Gibbobruchus is Cercis, which is attacked by G. mimus in temperate North America. We distinguish six species groups within Gibbobruchus. Four groups are South American, though one is represented in Panama by one species. Our taxonomie treatment for the South American groups includes a diagnosis of each group and notes on included species. Our treatment of the two Middle American groups, which form a convenient biogeographie unit, is more detailed. One group is monobasic, while the other includes :five known species. The latter group in eludes one N earctic species, whose principal host is Cercis rather than Bauhinia, and another species which extends from Middle America to the West Indies and into northwestern South America. Our respective contributions to the study are as in our Caryedes paper, except that the non-genital drawings were prepared by K.