Topological Band Theory and the Z2 Invariant
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Invariant Theory of Matrices
UNIVERSITY LECTURE SERIES VOLUME 69 The Invariant Theory of Matrices Corrado De Concini Claudio Procesi American Mathematical Society The Invariant Theory of Matrices 10.1090/ulect/069 UNIVERSITY LECTURE SERIES VOLUME 69 The Invariant Theory of Matrices Corrado De Concini Claudio Procesi American Mathematical Society Providence, Rhode Island EDITORIAL COMMITTEE Jordan S. Ellenberg Robert Guralnick William P. Minicozzi II (Chair) Tatiana Toro 2010 Mathematics Subject Classification. Primary 15A72, 14L99, 20G20, 20G05. For additional information and updates on this book, visit www.ams.org/bookpages/ulect-69 Library of Congress Cataloging-in-Publication Data Names: De Concini, Corrado, author. | Procesi, Claudio, author. Title: The invariant theory of matrices / Corrado De Concini, Claudio Procesi. Description: Providence, Rhode Island : American Mathematical Society, [2017] | Series: Univer- sity lecture series ; volume 69 | Includes bibliographical references and index. Identifiers: LCCN 2017041943 | ISBN 9781470441876 (alk. paper) Subjects: LCSH: Matrices. | Invariants. | AMS: Linear and multilinear algebra; matrix theory – Basic linear algebra – Vector and tensor algebra, theory of invariants. msc | Algebraic geometry – Algebraic groups – None of the above, but in this section. msc | Group theory and generalizations – Linear algebraic groups and related topics – Linear algebraic groups over the reals, the complexes, the quaternions. msc | Group theory and generalizations – Linear algebraic groups and related topics – Representation theory. msc Classification: LCC QA188 .D425 2017 | DDC 512.9/434–dc23 LC record available at https://lccn. loc.gov/2017041943 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy select pages for use in teaching or research. -
Algebraic Geometry, Moduli Spaces, and Invariant Theory
Algebraic Geometry, Moduli Spaces, and Invariant Theory Han-Bom Moon Department of Mathematics Fordham University May, 2016 Han-Bom Moon Algebraic Geometry, Moduli Spaces, and Invariant Theory Part I Algebraic Geometry Han-Bom Moon Algebraic Geometry, Moduli Spaces, and Invariant Theory Algebraic geometry From wikipedia: Algebraic geometry is a branch of mathematics, classically studying zeros of multivariate polynomials. Han-Bom Moon Algebraic Geometry, Moduli Spaces, and Invariant Theory Algebraic geometry in highschool The zero set of a two-variable polynomial provides a plane curve. Example: 2 2 2 f(x; y) = x + y 1 Z(f) := (x; y) R f(x; y) = 0 − , f 2 j g a unit circle ··· Han-Bom Moon Algebraic Geometry, Moduli Spaces, and Invariant Theory Algebraic geometry in college calculus The zero set of a three-variable polynomial give a surface. Examples: 2 2 2 3 f(x; y; z) = x + y z 1 Z(f) := (x; y; z) R f(x; y; z) = 0 − − , f 2 j g 2 2 2 3 g(x; y; z) = x + y z Z(g) := (x; y; z) R g(x; y; z) = 0 − , f 2 j g Han-Bom Moon Algebraic Geometry, Moduli Spaces, and Invariant Theory Algebraic geometry in college calculus The common zero set of two three-variable polynomials gives a space curve. Example: f(x; y; z) = x2 + y2 + z2 1; g(x; y; z) = x + y + z − Z(f; g) := (x; y; z) R3 f(x; y; z) = g(x; y; z) = 0 , f 2 j g Definition An algebraic variety is a common zero set of some polynomials. -
Edge States in Topological Magnon Insulators
PHYSICAL REVIEW B 90, 024412 (2014) Edge states in topological magnon insulators Alexander Mook,1 Jurgen¨ Henk,2 and Ingrid Mertig1,2 1Max-Planck-Institut fur¨ Mikrostrukturphysik, D-06120 Halle (Saale), Germany 2Institut fur¨ Physik, Martin-Luther-Universitat¨ Halle-Wittenberg, D-06099 Halle (Saale), Germany (Received 15 May 2014; revised manuscript received 27 June 2014; published 18 July 2014) For magnons, the Dzyaloshinskii-Moriya interaction accounts for spin-orbit interaction and causes a nontrivial topology that allows for topological magnon insulators. In this theoretical investigation we present the bulk- boundary correspondence for magnonic kagome lattices by studying the edge magnons calculated by a Green function renormalization technique. Our analysis explains the sign of the transverse thermal conductivity of the magnon Hall effect in terms of topological edge modes and their propagation direction. The hybridization of topologically trivial with nontrivial edge modes enlarges the period in reciprocal space of the latter, which is explained by the topology of the involved modes. DOI: 10.1103/PhysRevB.90.024412 PACS number(s): 66.70.−f, 75.30.−m, 75.47.−m, 85.75.−d I. INTRODUCTION modes causes a doubling of the period of the latter in reciprocal space. Understanding the physics of electronic topological in- The paper is organized as follows. In Sec. II we sketch the sulators has developed enormously over the past 30 years: quantum-mechanical description of magnons in kagome lat- spin-orbit interaction induces band inversions and, thus, yields tices (Sec. II A), Berry curvature and Chern number (Sec. II B), nonzero topological invariants as well as edge states that are and the Green function renormalization method for calculating protected by symmetry [1–3]. -
Reflection Invariant and Symmetry Detection
1 Reflection Invariant and Symmetry Detection Erbo Li and Hua Li Abstract—Symmetry detection and discrimination are of fundamental meaning in science, technology, and engineering. This paper introduces reflection invariants and defines the directional moments(DMs) to detect symmetry for shape analysis and object recognition. And it demonstrates that detection of reflection symmetry can be done in a simple way by solving a trigonometric system derived from the DMs, and discrimination of reflection symmetry can be achieved by application of the reflection invariants in 2D and 3D. Rotation symmetry can also be determined based on that. Also, if none of reflection invariants is equal to zero, then there is no symmetry. And the experiments in 2D and 3D show that all the reflection lines or planes can be deterministically found using DMs up to order six. This result can be used to simplify the efforts of symmetry detection in research areas,such as protein structure, model retrieval, reverse engineering, and machine vision etc. Index Terms—symmetry detection, shape analysis, object recognition, directional moment, moment invariant, isometry, congruent, reflection, chirality, rotation F 1 INTRODUCTION Kazhdan et al. [1] developed a continuous measure and dis- The essence of geometric symmetry is self-evident, which cussed the properties of the reflective symmetry descriptor, can be found everywhere in nature and social lives, as which was expanded to 3D by [2] and was augmented in shown in Figure 1. It is true that we are living in a spatial distribution of the objects asymmetry by [3] . For symmetric world. Pursuing the explanation of symmetry symmetry discrimination [4] defined a symmetry distance will provide better understanding to the surrounding world of shapes. -
Topological Insulators Physicsworld.Com Topological Insulators This Newly Discovered Phase of Matter Has Become One of the Hottest Topics in Condensed-Matter Physics
Feature: Topological insulators physicsworld.com Topological insulators This newly discovered phase of matter has become one of the hottest topics in condensed-matter physics. It is hard to understand – there is no denying it – but take a deep breath, as Charles Kane and Joel Moore are here to explain what all the fuss is about Charles Kane is a As anyone with a healthy fear of sticking their fingers celebrated by the 2010 Nobel prize – that inspired these professor of physics into a plug socket will know, the behaviour of electrons new ideas about topology. at the University of in different materials varies dramatically. The first But only when topological insulators were discov- Pennsylvania. “electronic phases” of matter to be defined were the ered experimentally in 2007 did the attention of the Joel Moore is an electrical conductor and insulator, and then came the condensed-matter-physics community become firmly associate professor semiconductor, the magnet and more exotic phases focused on this new class of materials. A related topo- of physics at University of such as the superconductor. Recent work has, how- logical property known as the quantum Hall effect had California, Berkeley ever, now uncovered a new electronic phase called a already been found in 2D ribbons in the early 1980s, and a faculty scientist topological insulator. Putting the name to one side for but the discovery of the first example of a 3D topologi- at the Lawrence now, the meaning of which will become clear later, cal phase reignited that earlier interest. Given that the Berkeley National what is really getting everyone excited is the behaviour 3D topological insulators are fairly standard bulk semi- Laboratory, of materials in this phase. -
A New Invariant Under Congruence of Nonsingular Matrices
A new invariant under congruence of nonsingular matrices Kiyoshi Shirayanagi and Yuji Kobayashi Abstract For a nonsingular matrix A, we propose the form Tr(tAA−1), the trace of the product of its transpose and inverse, as a new invariant under congruence of nonsingular matrices. 1 Introduction Let K be a field. We denote the set of all n n matrices over K by M(n,K), and the set of all n n nonsingular matrices× over K by GL(n,K). For A, B M(n,K), A is similar× to B if there exists P GL(n,K) such that P −1AP = B∈, and A is congruent to B if there exists P ∈ GL(n,K) such that tP AP = B, where tP is the transpose of P . A map f∈ : M(n,K) K is an invariant under similarity of matrices if for any A M(n,K), f(P→−1AP ) = f(A) holds for all P GL(n,K). Also, a map g : M∈ (n,K) K is an invariant under congruence∈ of matrices if for any A M(n,K), g(→tP AP ) = g(A) holds for all P GL(n,K), and h : GL(n,K) ∈ K is an invariant under congruence of nonsingular∈ matrices if for any A →GL(n,K), h(tP AP ) = h(A) holds for all P GL(n,K). ∈ ∈As is well known, there are many invariants under similarity of matrices, such as trace, determinant and other coefficients of the minimal polynomial. In arXiv:1904.04397v1 [math.RA] 8 Apr 2019 case the characteristic is zero, rank is also an example. -
On the Topological Immunity of Corner States in Two-Dimensional Crystalline Insulators ✉ Guido Van Miert1 and Carmine Ortix 1,2
www.nature.com/npjquantmats ARTICLE OPEN On the topological immunity of corner states in two-dimensional crystalline insulators ✉ Guido van Miert1 and Carmine Ortix 1,2 A higher-order topological insulator (HOTI) in two dimensions is an insulator without metallic edge states but with robust zero- dimensional topological boundary modes localized at its corners. Yet, these corner modes do not carry a clear signature of their topology as they lack the anomalous nature of helical or chiral boundary states. Here, we demonstrate using immunity tests that the corner modes found in the breathing kagome lattice represent a prime example of a mistaken identity. Contrary to previous theoretical and experimental claims, we show that these corner modes are inherently fragile: the kagome lattice does not realize a higher-order topological insulator. We support this finding by introducing a criterion based on a corner charge-mode correspondence for the presence of topological midgap corner modes in n-fold rotational symmetric chiral insulators that explicitly precludes the existence of a HOTI protected by a threefold rotational symmetry. npj Quantum Materials (2020) 5:63 ; https://doi.org/10.1038/s41535-020-00265-7 INTRODUCTION a manifestation of the crystalline topology of the D − 1 edge 1234567890():,; Topology and geometry find many applications in contemporary rather than of the bulk: the corresponding insulating phases have physics, ranging from anomalies in gauge theories to string been recently dubbed as boundary-obstructed topological 38 theory. In condensed matter physics, topology is used to classify phases and do not represent genuine (higher-order) topological defects in nematic crystals, characterize magnetic skyrmions, and phases. -
Moduli Spaces and Invariant Theory
MODULI SPACES AND INVARIANT THEORY JENIA TEVELEV CONTENTS §1. Syllabus 3 §1.1. Prerequisites 3 §1.2. Course description 3 §1.3. Course grading and expectations 4 §1.4. Tentative topics 4 §1.5. Textbooks 4 References 4 §2. Geometry of lines 5 §2.1. Grassmannian as a complex manifold. 5 §2.2. Moduli space or a parameter space? 7 §2.3. Stiefel coordinates. 8 §2.4. Complete system of (semi-)invariants. 8 §2.5. Plücker coordinates. 9 §2.6. First Fundamental Theorem 10 §2.7. Equations of the Grassmannian 11 §2.8. Homogeneous ideal 13 §2.9. Hilbert polynomial 15 §2.10. Enumerative geometry 17 §2.11. Transversality. 19 §2.12. Homework 1 21 §3. Fine moduli spaces 23 §3.1. Categories 23 §3.2. Functors 25 §3.3. Equivalence of Categories 26 §3.4. Representable Functors 28 §3.5. Natural Transformations 28 §3.6. Yoneda’s Lemma 29 §3.7. Grassmannian as a fine moduli space 31 §4. Algebraic curves and Riemann surfaces 37 §4.1. Elliptic and Abelian integrals 37 §4.2. Finitely generated fields of transcendence degree 1 38 §4.3. Analytic approach 40 §4.4. Genus and meromorphic forms 41 §4.5. Divisors and linear equivalence 42 §4.6. Branched covers and Riemann–Hurwitz formula 43 §4.7. Riemann–Roch formula 45 §4.8. Linear systems 45 §5. Moduli of elliptic curves 47 1 2 JENIA TEVELEV §5.1. Curves of genus 1. 47 §5.2. J-invariant 50 §5.3. Monstrous Moonshine 52 §5.4. Families of elliptic curves 53 §5.5. The j-line is a coarse moduli space 54 §5.6. -
Topological Insulators: Electronic Structure, Material Systems and Its Applications
Network for Computational Nanotechnology UC Berkeley, Univ. of Illinois, Norfolk(NCN) State, Northwestern, Purdue, UTEP Topological Insulators: Electronic structure, material systems and its applications Parijat Sengupta Network for Computational Nanotechnology Electrical and Computer Engineering Purdue University Complete set of slides from my final PhD defense Advisor : Prof. Gerhard Klimeck A new addition to the metal-insulator classification Nature, Vol. 464, 11 March, 2010 Surface states Metal Trivial Insulator Topological Insulator 2 2 Tracing the roots of topological insulator The Hall effect of 1869 is a start point How does the Hall resistance behave for a 2D set-up under low temperature and high magnetic field (The Quantum Hall Effect) ? 3 The Quantum Hall Plateau ne2 = σ xy h h = 26kΩ e2 Hall Conductance is quantized B Cyclotron motion Landau Levels eB E = ω (n + 1 ), ω = , n = 0,1,2,... n c 2 c mc 4 Plateau and the edge states Ext. B field Landau Levels Skipping orbits along the edge Skipping orbits induce a gapless edge mode along the sample boundary Question: Are edge states possible without external B field ? 5 Is there a crystal attribute that can substitute an external B field Spin orbit Interaction : Internal B field 1. Momentum dependent force, analogous to B field 2. Opposite force for opposite spins 3. Energy ± µ B depends on electronic spin 4. Spin-orbit strongly enhanced for atoms of large atomic number Fundamental difference lies under a Time Reversal Symmetric Operation Time Reversal Symmetry Violation 1. Quantum -
A Topological Insulator Surface Under Strong Coulomb, Magnetic and Disorder Perturbations
LETTERS PUBLISHED ONLINE: 12 DECEMBER 2010 | DOI: 10.1038/NPHYS1838 A topological insulator surface under strong Coulomb, magnetic and disorder perturbations L. Andrew Wray1,2,3, Su-Yang Xu1, Yuqi Xia1, David Hsieh1, Alexei V. Fedorov3, Yew San Hor4, Robert J. Cava4, Arun Bansil5, Hsin Lin5 and M. Zahid Hasan1,2,6* Topological insulators embody a state of bulk matter contact with large-moment ferromagnets and superconductors for characterized by spin-momentum-locked surface states that device applications11–17. The focus of this letter is the exploration span the bulk bandgap1–7. This highly unusual surface spin of topological insulator surface electron dynamics in the presence environment provides a rich ground for uncovering new of magnetic, charge and disorder perturbations from deposited phenomena4–24. Understanding the response of a topological iron on the surface. surface to strong Coulomb perturbations represents a frontier Bismuth selenide cleaves on the (111) selenium surface plane, in discovering the interacting and emergent many-body physics providing a homogeneous environment for deposited atoms. Iron of topological surfaces. Here we present the first controlled deposited on a Se2− surface is expected to form a mild chemical study of topological insulator surfaces under Coulomb and bond, occupying a large ionization state between 2C and 3C 25 magnetic perturbations. We have used time-resolved depo- with roughly 4 µB magnetic moment . As seen in Fig. 1d the sition of iron, with a large Coulomb charge and significant surface electronic structure after heavy iron deposition is greatly magnetic moment, to systematically modify the topological altered, showing that a significant change in the surface electronic spin structure of the Bi2Se3 surface. -
Topological Insulator Interfaced with Ferromagnetic Insulators: ${\Rm{B}}
PHYSICAL REVIEW MATERIALS 4, 064202 (2020) Topological insulator interfaced with ferromagnetic insulators: Bi2Te3 thin films on magnetite and iron garnets V. M. Pereira ,1 S. G. Altendorf,1 C. E. Liu,1 S. C. Liao,1 A. C. Komarek,1 M. Guo,2 H.-J. Lin,3 C. T. Chen,3 M. Hong,4 J. Kwo ,2 L. H. Tjeng ,1 and C. N. Wu 1,2,* 1Max Planck Institute for Chemical Physics of Solids, 01187 Dresden, Germany 2Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan 3National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan 4Graduate Institute of Applied Physics and Department of Physics, National Taiwan University, Taipei 10617, Taiwan (Received 28 November 2019; revised manuscript received 17 March 2020; accepted 22 April 2020; published 3 June 2020) We report our study about the growth and characterization of Bi2Te3 thin films on top of Y3Fe5O12(111), Tm3Fe5O12(111), Fe3O4(111), and Fe3O4(100) single-crystal substrates. Using molecular-beam epitaxy, we were able to prepare the topological insulator/ferromagnetic insulator heterostructures with no or minimal chemical reaction at the interface. We observed the anomalous Hall effect on these heterostructures and also a suppression of the weak antilocalization in the magnetoresistance, indicating a topological surface-state gap opening induced by the magnetic proximity effect. However, we did not observe any obvious x-ray magnetic circular dichroism (XMCD) on the Te M45 edges. The results suggest that the ferromagnetism induced by the magnetic proximity effect via van der Waals bonding in Bi2Te3 is too weak to be detected by XMCD, but still can be observed by electrical transport measurements. -
Topological Insulator Materials for Advanced Optoelectronic Devices
Book Chapter for <<Advanced Topological Insulators>> Topological insulator materials for advanced optoelectronic devices Zengji Yue1,2*, Xiaolin Wang1,2 and Min Gu3 1Institute for Superconducting and Electronic Materials, University of Wollongong, North Wollongong, New South Wales 2500, Australia 2ARC Centre for Future Low-Energy Electronics Technologies, Australia 3Laboratory of Artificial-Intelligence Nanophotonics, School of Science, RMIT University, Melbourne, Victoria 3001, Australia *Corresponding email: [email protected] Abstract Topological insulators are quantum materials that have an insulating bulk state and a topologically protected metallic surface state with spin and momentum helical locking and a Dirac-like band structure.(1-3) Unique and fascinating electronic properties, such as the quantum spin Hall effect, topological magnetoelectric effects, magnetic monopole image, and Majorana fermions, are expected from topological insulator materials.(4, 5) Thus topological insulator materials have great potential applications in spintronics and quantum information processing, as well as magnetoelectric devices with higher efficiency.(6, 7) Three-dimensional (3D) topological insulators are associated with gapless surface states, and two-dimensional (2D) topological insulators with gapless edge states.(8) The topological surface (edge) states have been mainly investigated by first-principle theoretical calculation, electronic transport, angle- resolved photoemission spectroscopy (ARPES), and scanning tunneling microscopy (STM).(9) A variety of compounds have been identified as 2D or 3D topological insulators, including HgTe/CdTe, Bi2Se3, Bi2Te3, Sb2Te3, SmB6, BiTeCl, Bi1.5Sb0.5Te1.8Se1.2, and so on.(9-12) On the other hand, topological insulator materials also exhibit a number of excellent optical properties, including Kerr and Faraday rotation, ultrahigh bulk refractive index, near-infrared frequency transparency, unusual electromagnetic scattering and ultra-broadband surface plasmon resonances.