Topological Insulators in 2D and 3D

I. Introduction - Graphene - Time reversal symmetry and Kramers‟ theorem II. 2D quantum spin Hall

- Z2 topological invariant - Edge states - HgCdTe quantum wells, expts III. Topological Insulators in 3D - Weak vs strong - Topological invariants from band structure IV. The surface of a topological insulator - Dirac Fermions - Absence of backscattering and localization - Quantum - q term and topological magnetoelectric effect Energy gaps in graphene:

 ~ sublattice z HvF  p + V 2  z ~ valley 2 2 2 sz ~ spin E( p )  vF p +  1. Staggered Sublattice Potential (e.g. BN)

z Broken Inversion Symmetry V CDW

2. Periodic Magnetic Field with no net flux (Haldane PRL ‟88)

+- +- +- + zzBroken Time Reversal Symmetry B +- +- + e2 +- +- +- + V Haldane Quantized Hall Effect  sgn xy h 3. Intrinsic Spin Orbit Potential z z z Respects ALL symmetries VsSO Quantum Spin-Hall Effect Quantum in Graphene

The intrinsic spin orbit interaction leads to a small (~10mK-1K) energy gap

Simplest model: H 0 H 0 J↑ J↓ |Haldane|2 H  Haldane (conserves S ) * z 0 H 0 HHaldane E Bulk energy gap, but gapless edge states “Spin Filtered” or “helical” edge states Edge band structure ↓ ↑ ↓ ↑ QSH Insulator

0 p/a k Edge states form a unique 1D electronic conductor • HALF an ordinary 1D electron • Protected by Time Reversal Symmetry Time Reversal Symmetry : [H , ] 0

y Anti Unitary time reversal operator : eiSp / *

  *  2 Spin ½ :       -1   - * 

Kramers‟ Theorem: for spin ½ all eigenstates are at least 2 fold degenerate

c Proof : for a non degenerate eigenstate 22 |c |  - 1 22||c Consequences for edge states :

States at “time reversal invariant momenta” k*=0 and k*=p/a (=-p/a) are degenerate. 1D “Dirac point” The crossing of the edge states is protected, k* even if spin conservation is volated. Absence of backscattering, even for strong  disorder. No Anderson localization in r=0 T invariant disorder |t|=1 Time Reversal Invariant 2 Topological Insulator

2D Bloch Hamiltonians subject to the T constraint HHkk -1 () - 2 with  -1 are classified by a 2 topological invariant (n = 0,1)

Understand via Bulk-Boundary correspondence : Edge States for 0

n=0 : Conventional Insulator n=1 : Topological Insulator

Kramers degenerate at time reversal invariant momenta k* = -k* + G

k*=0 k*=p/a k*=0 k*=p/a Even number of bands Odd number of bands crossing Fermi energy crossing Fermi energy Physical Meaning of 2 Invariant Sensitivity to boundary conditions in a multiply connected geometry

n=N IQHE on cylinder: Laughlin Argument

F  f0 = h/e Q = N e

Flux f0  Quantized change in Electron Number at the end. on cylinder

F  f0 / 2

Kramers Degeneracy Flux f0 /2  Change in Electron Number Parity No Kramers at the end, signaling change Degeneracy in Kramers degeneracy. Formula for the 2 invariant

(N occupied bands) • Bloch wavefunctions : un ()k

• T - Reversal Matrix : wmn()()()()k u m k  u n - k  U N

• Antisymmetry property : 2  -1  ww (kk )  -T ( - )

T • T - invariant momenta : k  a  - a  ww (  a )  - (  a )

2 0 z ky 2 • Pfaffian : det[ww (aa )]  Pf[ (  )] e.g. det  z -0z 4 3 kx Pf[w (a )] • Fixed point parity :  (a )    1 1 2 det[w (a )]

• Gauge dependent product : ()()ab e “time reversal polarization” analogous to A() k dk Bulk 2D Brillouin Zone 2p  4 • Z invariant : n 2 (- 1)  ( a )   1 a1 Gauge invariant, but requires continuous gauge n is easier to determine if there is extra symmetry:

1. Sz conserved : independent spin Chern integers : (due to time reversal) nn-

J↑ J↓ Quantum spin Hall Effect : n  n mod 2 E ,

2. Inversion (P) Symmetry : determined by Parity of occupied 2D Bloch states

P ( )   (  )  (  ) n a n a n a 4  ( )   1  na (- 1) 2na (  ) an1 In a special gauge: ()()a  n  a n Allows a straightforward determination of n from band structure calculations. Quantum Spin Hall Effect in HgTe quantum wells

Theory: Bernevig, Hughes and Zhang, Science „06

HgTe HgxCd1-xTe d HgxCd1-xTe

d < 6.3 nm : Normal band order d > 6.3 nm : Inverted band order E E

G6 ~ s k G8 ~ p k

G8 ~ p G6 ~ s Egap~10 meV Band inversion transition: Switch parity at k=0

Quantum spin Hall Insulator Conventional Insulator with topological edge states  ( )  + 1  2na 2na( )  - 1 Experiments on HgCdTe quantum wells

Expt: Konig, Wiedmann, Brune, Roth, Buhmann, Molenkamp, Qi, Zhang Science 2007

d< 6.3 nm Landauer Conductance G=2e2/h normal band order conventional insulator ↑ ↓ V I 0 ↓ ↑ d> 6.3nm G=2e2/h inverted band order QSH insulator

2 Measured conductance 2e /h independent of W for short samples (L

kx Related to layered 2D QSHI ; (n1n2n3) ~ Miller indices Fermi surface encloses even number of Dirac points

n0 = 1 : Strong Topological Insulator ky EF Fermi circle encloses odd number of Dirac points Topological Metal : kx 1/4 graphene Berry‟s phase p Robust to disorder: impossible to localize Topological Invariants in 3D

1. 2D → 3D : Time reversal invariant planes

The 2D invariant kz p/a a 4 Pf[w ( )] n  () a (- 1)  ( a ) a a1 det[w (a )]

ky Each of the time reversal invariant planes in the 3D Brillouin zone is characterized by a 2D invariant. p/a p/a k Weak Topological Invariants (vector): x Gn 4 2p (- 1)ni  (  ) G  n,, n n  a ki=0 n  1 2 3  a1 plane a “mod 2” reciprocal lattice vector indexes lattice planes for layered 2D QSHI Strong Topological Invariant (scalar) 8 no (- 1)  ( a ) a1 Topological Invariants in 3D

2. 4D → 3D : Dimensional Reduction

Add an extra parameter, k4, that smoothly connects the topological insulator to a trivial insulator (while breaking time reversal symmetry)

H(k,k ) is characterized by its second Chern number 4 HH(k ,1)  0 (Trivial insulator)

1 4 k HH(kk ,0) ( ) n d kTr[]FF 4 2  8p -1 H(,)(,)kk- k44   H k 

n depends on how H(k) is connected to H0, but due to time reversal, the difference must be even.

n 0  n mod 2 Express in terms of Chern Simons 3-form : Tr[]FFdQ3 1 2 n  d3kQ (k ) mod 2 Qd()[]kTr A  A + A  A  A 034p 2  3 3 Gauge invariant up to an even integer. Bi1-xSbx Pure Alloy : .09

EF L EF Ls a La Egap La Ls Ls E EF

T L T L T L k 8 0 Inversion symmetry  (- 1) 2ni ( G ) in1

Predict Bi1-xSbx is a strong topological insulator: (1 ; 111). Theory: Predict Bi1-xSbx is a topological insulator by exploiting Bi1-xSbx inversion symmetry of pure Bi, Sb (Fu,Kane PRL‟07) Experiment: ARPES (Hsieh et al. Nature ‟08)

• Bi1-x Sbx is a Strong Topological Insulator n0;(n1,n2,n3) = 1;(111)

• 5 surface state bands cross EF between G and M

ARPES Experiment : Y. Xia et al., Nature Phys. (2009). Bi2 Se3 Band Theory : H. Zhang et. al, Nature Phys. (2009).

• n0;(n1,n2,n3) = 1;(000) : Band inversion at G • Energy gap:  ~ .3 eV : A room temperature topological insulator

EF • Simple surface state structure : Similar to graphene, except Control EF on surface by only a single Dirac point exposing to NO2 Unique Properties of Topological Insulator

“Half” an ordinary 2DEG ; ¼ Graphene EF Spin polarized Fermi surface • Charge Current ~ Spin Density • Spin Current ~ Charge Density p Berry‟s phase • Robust to disorder • Weak Antilocalization • Impossible to localize, Klein paradox Exotic States when broken symmetry leads to surface energy gap: • Quantum Hall state, topological magnetoelectric effect Fu, Kane ‟07; Qi, Hughes, Zhang ‟08, Essin, Moore, Vanderbilt „09 • Superconducting state Fu, Kane „08 Surface

Orbital QHE : E=0 Landau Level for Dirac fermions. “Fractional” IQHE

2 2 e  xy  1 2h B 2 0 e 1  xy +n -1 h 2 -2 e2   n=1 chiral edge state xy 2h

Anomalous QHE : Induce a surface gap by depositing magnetic material

† 2 2 Hi0 ( - v   -  + M z )  e e + - Mass due to Exchange field 2h 2h M↑ M↓ e2  sgn( ) xy M TI EF 2h Egap = 2|M| Chiral Edge State at Domain Wall : M ↔ -M Topological Magnetoelectric Effect Qi, Hughes, Zhang ‟08; Essin, Moore, Vanderbilt „09

Consider a cylinder of TI with a magnetically gapped surface

M 2 e 1 J xy E  n + E  M h 2 J Magnetoelectric Polarizability topological “q term” 2 L EB  E e 1 ME  +n e2 h 2 q 2p h

TR sym. : q 02 or p mod p The fractional part of the magnetoelectric polarizability is determined by the bulk, and independent of the surface (provided there is a gap) Analogous to the electric polarization, P, in 1D.

L formula “uncertainty quantum” e d=1 : Polarization P PE Tr[]A e (extra end electron) 2p BZ 2 d=3 : Magnetoelectric e 2 eh2 / (extra surface EB 2 Tr[]AAAAAd +   poliarizability  43p h BZ quantum Hall layer)