Hypercholesterolemia.Af

Total Page:16

File Type:pdf, Size:1020Kb

Hypercholesterolemia.Af Technology Assessment Report commissioned by the NHS R&D HTA Programme on behalf of the National Institute for Health and Clinical Excellence Reference No. 05/22 11th Final version: 5th June 2006 1. Title of the project: Ezetimibe for the treatment of hypercholesterolaemia 2. TAR team School of Health and Related Research (ScHARR) Technology Assessment Group, The University of Sheffield. Lead: Roberta Ara, Operational Research Analyst ScHARR, University of Sheffield, 30 Regent Court, Sheffield S1 4DA Tel: 0114 222 0788 Fax: 0114 272 4095 E-mail: [email protected] 3. Plain English Summary The UK population has one of the highest average serum cholesterol levels in the world,[1] with about 27% and 70% of people having a serum cholesterol level ≥ 6.5 mmol/L and ≥ 5.0 mmol/L, respectively.[2] High levels of cholesterol in the blood (hypercholesterolaemia) are associated with an increased risk of coronary heart disease (CHD) and stroke.[3] Serum cholesterol is an important determinant of cardiovascular risk. The increased risk is due mainly to raised low-density lipoprotein cholesterol (LDL-C). Lowering concentration of total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C), and raising high-density lipoprotein cholesterol (HDL-C) can reduce the risk of cardiovascular events, and in high risk patients, the cardiovascular morbidity and mortality. More importantly, the absolute risk for an individual also depends on other cardiovascular risk factors such as smoking, diabetes and hypertension, and treatment decisions are generally based on overall risk. Primary hypercholesterolaemia is associated with an underlying genetic defect; this can be due to a single genetic defect, or, much more commonly, to the interaction of a number of genes with dietary and other factors.[4] Secondary hypercholesterolaemia is caused by another disease state or by drug therapy. The majority of people with hypercholesterolaemia have plasma-cholesterol concentrations that are only mildly or moderately elevated, and they exhibit no clinical symptoms. At the other end of the spectrum, severe hypercholesterolaemia can cause xanthomas (lesions on the skin containing cholesterol and fats) and arcus corneae (cholesterol deposits in the eyes). In people with very severe forms of the condition, such as heterozygous familial hypercholesterolaemia (affects about one in every 500 people.), onset of CHD is not uncommon during the second and third decade of life. Men are at greater risk than women, and if untreated, 50-75% will have a heart attack (myocardial infarction) by the age of 60 years.[1] Factors which influence the degree of disease in people with hypercholesterolaemia include diet, obesity, smoking and lack of physical activity. Dietary and lifestyle changes are therefore important components in the management of the condition. Lipid regulating drugs may also be indicated and statins are the first choice drugs.[5] However, lipid goals are frequently not achieved due to the initiation of low doses of lipid-lowering medications, inadequate response to therapy, non-adherence to drug treatment and adverse effects.[6;7] Ezetimibe is a novel, orally active selective inhibitor of intestinal absorption of cholesterol and related plant sterols. Its mechanism of action differs from that of other classes of cholesterol lowering drugs in that ezetimibe selectively inhibits the absorption of dietary and biliary cholesterol and related plant sterols. It does not affect the absorption of fat soluble vitamins or triglycerides in the intestine.[8] The aim of this review is to systematically evaluate and appraise the clinical and cost effectiveness of ezetimibe (in its licensed indication) as combination therapy or monotherapy for the treatment of primary hypercholesterolaemia in the UK. 4. Decision problem 4.1. Purpose of the assessment The assessment will address the question “What is the clinical and cost effectiveness of ezetimibe (in its licensed indications) as combination therapy or monotherapy for the treatment of primary hypercholesterolaemia in adults”. 4.2. Clear definition of the interventions Ezetimibe is a unique cholesterol absorption inhibitor that blocks the intestinal absorption of dietary and biliary cholesterol and related plant sterols without affecting the uptake of triglycerides or fat soluble vitamins. Ezetimibe monotherapy (Ezetrol, MSD-Schering-Plough Ltd) is licensed as an adjunctive therapy to diet for: Primary (heterozygous familial and non-familial) hypercholesterolaemia in patients in whom a statin is considered inappropriate or is not tolerated Primary (heterozygous familial and non-familial) hypercholesterolaemia, co- administered with a statin, in patients who are not appropriately controlled with a statin alone Homozygous familial hypercholesterolaemia, co-administered with a statin. Patients may also receive adjunctive treatments such as LDL-C apheresis) Homozygous familial sitosterolaemia A fixed dose combination tablet containing ezetimibe and simvastatin (Inegy, MSD- Schering-Plough Ltd) is also licensed as an adjunctive therapy to diet for use in: Primary (heterozygous familial and non-familial) hypercholesterolaemia or mixed hyperlipidaemia where use of a combination product is appropriate: patients not appropriately controlled with a statin alone or patients already treated with a statin and ezetimibe Homozygous familial hypercholesterolaemia. Patients may also receive adjunctive treatments such as LDL-C apheresis 4.3. Place of intervention in the treatment pathway The review will focus on the use of ezetimibe (in its licensed indication) as combination therapy or monotherapy in adults for the treatment of primary hypercholesterolaemia in the UK. The National Service Framework for CHD[9] recommends that patients with clinical evidence of CHD or those with a 10 year risk greater than 30% should be prescribed lipid lowering therapy (combined with advice on diet and lifestyle) with the aim of reducing serum TC to less than 5 mmol/L (or a reduction of 20-25% if that produces a lower concentration) and LDL-C to below 3 mmol/L (or a reduction of about 30% if that produces a lower concentration). More recent guidance from six joint British Societies[3] advocate lower treatment thresholds (e.g. TC less than 4.0 mmol/L and LDL-C below 2.0 mmol/L in all people with CVD or at high risk of CVD, defined as a total CVD risk ≥ 20% over 10 years). The recent technology appraisal on statins for the prevention of cardiovascular events recommends initiation of statin treatment in patients with 20% or greater 10 year CVD risk.[10] Statins are the most effective drug for lowering LDL-C, in comparison to other classes of drugs, and reduce coronary events, all cardiovascular events and total mortality.[5] However, lipid goals are frequently not achieved due to the initiation of low doses of lipid-lowering medications, inadequate response to therapy, non- adherence to drug therapy and adverse effects.[6;7] The current review will not consider the use of ezetimibe in people with homozygous familial hypercholesterolaemia or homozygous sitosterolaemia. 4.4. Relevant comparators For patients whose condition is not adequately controlled with a statin alone (defined as failure to achieve a target lipid level) the relevant comparator is: Optimal statin therapy Treatment with a statin in combination with other lipid regulating drugs, such as nicotinic acid/acipimox, bile acid resins and fibrates For patients in whom a statin is considered inappropriate, or is not tolerated, the relevant comparators are: Other lipid regulating drugs, such as nicotinic acid/acipimox, bile acid resins and fibrates 4.5. Population and relevant subgroups The population for the assessment will include adults (aged 18 years and over) with primary (heterozygous familial and non-familial) hypercholesterolaemia who are candidates for treatment with statins on the basis of their CVD status or risk and whose condition is not appropriately controlled with a statin alone, or in whom a statin is considered inappropriate or is not tolerated. The identification of subgroups of patients for whom ezetimibe is particularly appropriate or inappropriate will be governed by the available evidence. However, on a priori grounds, information will be sought for people with or without existing ischaemic heart disease or other vascular disease, people with or without diabetes and different ethnic groups. 4.6. Key factors to be addressed The review will aim to evaluate the following objectives: Evaluate the clinical effectiveness of ezetimibe as combination therapy or monotherapy in terms of mortality and cardiovascular morbidity. Surrogate end-points (such as total, LDL and HDL cholesterol) will be utilised where information on clinical endpoints is unavailable Evaluate the adverse effect profile and toxicity Evaluate the cost-effectiveness of ezetimibe in terms of incremental cost per quality-adjusted life years Advise on the patient groups for whom ezetimibe might be particularly appropriate Estimate the possible overall cost in England and Wales 5. Report methods for synthesis of evidence of clinical effectiveness A review of the evidence for clinical effectiveness will be undertaken systematically following the general principles recommended in the QUOROM statement.[11] 5.1. Population 5.1.1. Inclusion criteria Adults (defined as > 18 years of age) with primary (heterozygous familial and non- familial) hypercholesterolaemia 5.1.2. Exclusion criteria Adults with homozygous
Recommended publications
  • No Name of Drug Branded/Generic Drug Class 1 Acipimox Capsule 250Mg Olbetam Nicotinic Acid 1.50 2.14 2 Atorvastatin Calcium 10Mg
    MEDICATIONS FOR TREATMENT OF HIGH BLOOD LIPIDS (HYPERLIPIDEMIA) PRICE RANGE (S$) PER NO NAME OF DRUG BRANDED/GENERIC DRUG CLASS TABLET/ CAPSULE/ SACHET 1 ACIPIMOX CAPSULE 250MG OLBETAM NICOTINIC ACID 1.50 - 2.14 STATIN & CALCIUM 4.40 - 4.90 2 ATORVASTATIN CALCIUM 10MG AMLODIPINE BESYLATE 10MG TABLET CADUET CHANNEL BLOCKERS STATIN & CALCIUM 3.88 - 4.00 3 ATORVASTATIN CALCIUM 10MG AMLODIPINE BESYLATE 5MG TABLET CADUET CHANNEL BLOCKERS STATIN & CALCIUM 4.33 - 4.90 4 ATORVASTATIN CALCIUM 20MG AMLODIPINE BESYLATE 10MG TABLET CADUET CHANNEL BLOCKERS STATIN & CALCIUM 4.05 - 4.80 5 ATORVASTATIN CALCIUM 20MG AMLODIPINE BESYLATE 5MG TABLET CADUET CHANNEL BLOCKERS 6 ATORVASTATIN CALCIUM 10MG LIPITOR STATIN 2.60 - 2.60 7 ATORVASTATIN CALCIUM 20MG LIPITOR STATIN 2.99 - 3.00 8 ATORVASTATIN CALCIUM 40MG LIPITOR STATIN 4.10 - 8.20 9 ATORVASTATIN CALCIUM 80MG LIPITOR STATIN 8.45 - 8.95 10 BEZAFIBRATE SR TABLET 400MG BEZALIP FIBRATES 0.00 - 0.00 11 CHOLESTYRAMINE 4G/SACHET GENERIC FIBRATES 1.35 - 2.25 12 CIPROFIBRATE TABLET 100MG MODALIM FIBRATES 1.60 - 1.75 13 FENOFIBRATE CAPSULE 200MG APO-FENO-MICRO FIBRATES 0.71 - 1.07 14 FENOFIBRATE CAPSULE 200MG LIPANTHYL FIBRATES 1.45 - 1.45 15 FENOFIBRATE CAPSULE 145MG LIPANTHYL PENTA 145 FIBRATES 1.75 - 2.05 16 FENOFIBRATE TABLET 160MG LIPANTHYL SUPRA 160 FIBRATES 1.45 - 1.45 17 FLUVASTATIN SODIUM CAPSULE 20MG LESCOL STATIN 1.85 - 1.86 18 FLUVASTATIN SODIUM CAPSULE 40MG LESCOL STATIN 3.29 - 3.39 19 FLUVASTATIN SODIUM CAPSULE 80MG LESCOL XL STATIN 3.60 - 3.93 20 GEMFIBROZIL CAPSULES 300MG GENERIC-IPOLIPID FIBRATES
    [Show full text]
  • Lipid Lowering Drugs and Inflammatory Changes: an Impact on Cardiovascular Outcomes?
    Annals of Medicine ISSN: 0785-3890 (Print) 1365-2060 (Online) Journal homepage: http://www.tandfonline.com/loi/iann20 Lipid Lowering Drugs and Inflammatory Changes: an Impact on Cardiovascular Outcomes? M. Ruscica, N. Ferri, C. Macchi, A. Corsini & C. R. Sirtori To cite this article: M. Ruscica, N. Ferri, C. Macchi, A. Corsini & C. R. Sirtori (2018): Lipid Lowering Drugs and Inflammatory Changes: an Impact on Cardiovascular Outcomes?, Annals of Medicine, DOI: 10.1080/07853890.2018.1498118 To link to this article: https://doi.org/10.1080/07853890.2018.1498118 Accepted author version posted online: 06 Jul 2018. Submit your article to this journal View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=iann20 LIPID LOWERING DRUGS AND INFLAMMATORY CHANGES: AN IMPACT ON CARDIOVASCULAR OUTCOMES? M. Ruscica1*, N. Ferri2*, C. Macchi1, A. Corsini1 and C. R. Sirtori3 1Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy; 2Dipartimento di Scienze del Farmaco, Università degli Studi di Padova, Padova, Italy; 3Centro Dislipidemie, A.S.S.T. Grande Ospedale Metropolitano Niguarda, Milan, Italy *Both authors contributed equally to this work Corresponding Author: Cesare R. Sirtori [email protected] Abstract Inflammatory changes are responsible for maintenance of the atherosclerotic process and may underlie some of the most feared vascular complications. Among the multiple mechanisms of inflammation, the arterial deposition of lipids and particularly of cholesterol crystals is the one responsible for activation of inflammasome NLRP3, followed by the rise of circulating markers, mainly C-reactive protein (CRP). Elevation of lipoproteins, LDL but also VLDL and remnants, associates with increased inflammatory changes and coronary risk.
    [Show full text]
  • PHARMACEUTICAL APPENDIX to the TARIFF SCHEDULE 2 Table 1
    Harmonized Tariff Schedule of the United States (2020) Revision 19 Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE HARMONIZED TARIFF SCHEDULE Harmonized Tariff Schedule of the United States (2020) Revision 19 Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE TARIFF SCHEDULE 2 Table 1. This table enumerates products described by International Non-proprietary Names INN which shall be entered free of duty under general note 13 to the tariff schedule. The Chemical Abstracts Service CAS registry numbers also set forth in this table are included to assist in the identification of the products concerned. For purposes of the tariff schedule, any references to a product enumerated in this table includes such product by whatever name known.
    [Show full text]
  • PRAC Recommends Using Acipimox Only As Additional Or Alternative Treatment to Lower High Triglyceride Levels Licensed Uses Should Be Refined to Optimise Benefit-Risk
    08 November 2013 EMA/618574/2013 PRAC recommends using acipimox only as additional or alternative treatment to lower high triglyceride levels Licensed uses should be refined to optimise benefit-risk The European Medicines Agency’s Pharmacovigilance Risk Assessment Committee (PRAC) has recommended that medicines containing acipimox should have their marketing authorisations amended to ensure that they are used across the European Union only as an additional or alternative treatment in type IIb and type IV hyperlipoproteinaemia. These are conditions involving hypertriglyceridaemia (high levels of triglycerides, a type of fat, in the blood), with or without increased cholesterol. Acipimox-containing medicines should be used when changes in lifestyle, including diet and exercise, and treatment with other medicines are not adequate. The available evidence does not support wider use in lipid disorders (abnormal levels of fats in the blood). The original reason for the review of acipimox was HPS2-THRIVE, a large study which looked at the long-term effect of the combination of nicotinic acid (a substance related to acipimox) and another medicine, laropiprant, in treating lipid disorders. The study showed that this combination taken together with statins (another class of medicines used to treat lipid disorders) did not lead to additional benefits in reducing the risk of major vascular events such as heart attack and stroke, but did result in a higher frequency of non-fatal but serious side effects. As a result, the European Medicines Agency recommended the suspension of medicines containing the combination of nicotinic acid and laropiprant across the EU.1 Because acipimox was the only other medicine containing nicotinic acid or a related substance that was currently marketed for lipid disorders in the EU, its benefit-risk balance was reviewed in the light of the latest evidence.
    [Show full text]
  • Quasi-Experimental Health Policy Research: Evaluation of Universal Health Insurance and Methods for Comparative Effectiveness Research
    Quasi-Experimental Health Policy Research: Evaluation of Universal Health Insurance and Methods for Comparative Effectiveness Research The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Garabedian, Laura Faden. 2013. Quasi-Experimental Health Policy Research: Evaluation of Universal Health Insurance and Methods for Comparative Effectiveness Research. Doctoral dissertation, Harvard University. Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:11156786 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Quasi-Experimental Health Policy Research: Evaluation of Universal Health Insurance and Methods for Comparative Effectiveness Research A dissertation presented by Laura Faden Garabedian to The Committee on Higher Degrees in Health Policy in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the subject of Health Policy Harvard University Cambridge, Massachusetts March 2013 © 2013 – Laura Faden Garabedian All rights reserved. Professor Stephen Soumerai Laura Faden Garabedian Quasi-Experimental Health Policy Research: Evaluation of Universal Health Insurance and Methods for Comparative Effectiveness Research Abstract This dissertation consists of two empirical papers and one methods paper. The first two papers use quasi-experimental methods to evaluate the impact of universal health insurance reform in Massachusetts (MA) and Thailand and the third paper evaluates the validity of a quasi- experimental method used in comparative effectiveness research (CER). My first paper uses interrupted time series with data from IMS Health to evaluate the impact of Thailand’s universal health insurance and physician payment reform on utilization of medicines for three non-communicable diseases: cancer, cardiovascular disease and diabetes.
    [Show full text]
  • Reassessment of Reimbursement Status for Lipid-Lowering Medicines, ATC Group C10 Introduction by the End of 20041, the Danish Pa
    Reassessment of reimbursement status for lipid-lowering medicines, ATC Group C10 March, 16 2007 Introduction Journal no: 1 By the end of 2004 , the Danish Parliament decided that decisions on 5315-8 general reimbursement for medicinal products should be subject to periodic Our ref: Lipid Reassessment. reassessment. Decision.b.160307 The reassessment aims at assessing whether the assumptions underlying the original decision on granting or not granting general, including restricted, reimbursement, are still valid. The Danish Medicines Agency is currently reassessing the reimbursement status of all medicinal products over a period of five years, and the below decisions will conclude the reassessment of the reimbursement status of lipid-lowering medicines (ATC Group C10). The decisions and accompanying justifications are directed towards companies with medicinal products in the indicated ATC groups with marketing authorisations in Denmark on 15 March 2007. We enclose an appendix with a list of the medicinal products from your company which the decision concerns. The decisions entail an overall relaxation of the reimbursement status of lipid-lowering medicines and will support treatment with lipid-lowering medicines when the patient suffers from hyperlipidemia requiring medication therapy and will encourage the use of the cheaper statins which are eligible for general reimbursement, where possible, alone or in combination with one of the other lipid-lowering substances. 1 In connection with the adoption of Act no. 1431 of 22 December 2004 on Amendment of the Act on National Health Insurance. The amendment entered into force on 1 January 2005. The Act on National Health Insurance was replaced by the Danish Health Care Act; Act no.
    [Show full text]
  • Effect of Acipimox on Plasma Lipids and Glucose/Insulin in Pregnant Rats
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by PubMed Central Int. Jnl. Experimental Diab. Res., 3:233–239, 2002 Copyright c 2002 Taylor & Francis 1560-4284/02 $12.00 + .00 DOI: 10.1080/15604280290013973 Effect of Acipimox on Plasma Lipids and Glucose/Insulin in Pregnant Rats I. S´anchez-Vera,1 B. Bonet,1,2 M. Viana,1 E. Herrera,1 and A. Indart1 1Facultad de Ciencias Experimentales y de la Salud, Universidad San Pablo–CEU, Madrid, Spain 2Departamento de Pediatr´ıa y Neonatolog´ıa, Fundacion´ Hospital Alcorcon,´ Madrid, Spain Keywords Acipimox; Fetal Weight; Lipolysis; Pregnancy; To determine how a reduction in maternal hypertriglyceridemia Triglycerides during late pregnancy may affect glucose/insulin relationships, pregnant and virgin rats were orally treated with acipimox, a potent antilipolytic agent. In 20-day pregnant rats receiving 80 mg of acip- imox, plasma triglycerides (TG), free fatty acids (FFA), and glyc- erol decreased more than in virgin rats shortly after the drug (up to The enhanced lipolytic activity present during late gestation 7 hours), when compared with animals treated with distilled water, gives rise to an elevation in plasma free fatty acids (FFA) and whereas plasma glucose level was unaffected by the treatment in triglycerides (TG), both in women and rats [1–3]. Some tissues either group of rats. When acipimox was given every 12 hours from day 17 to day 20 of pregnancy, plasma TG, FFA, and glycerol levels use fatty acids as fuel, sparing glucose for the fast-growing fetus progressively increased, whereas they either decreased or did not and those maternal tissues that can only use glucose as fuel change in virgin rats receiving the same treatment, with no effect in energy [4].
    [Show full text]
  • Anatomical Classification Guidelines V2021 EPHMRA ANATOMICAL CLASSIFICATION GUIDELINES 2021
    EPHMRA ANATOMICAL CLASSIFICATION GUIDELINES 2021 Anatomical Classification Guidelines V2021 "The Anatomical Classification of Pharmaceutical Products has been developed and maintained by the European Pharmaceutical Marketing Research Association (EphMRA) and is therefore the intellectual property of this Association. EphMRA's Classification Committee prepares the guidelines for this classification system and takes care for new entries, changes and improvements in consultation with the product's manufacturer. The contents of the Anatomical Classification of Pharmaceutical Products remain the copyright to EphMRA. Permission for use need not be sought and no fee is required. We would appreciate, however, the acknowledgement of EphMRA Copyright in publications etc. Users of this classification system should keep in mind that Pharmaceutical markets can be segmented according to numerous criteria." © EphMRA 2021 Anatomical Classification Guidelines V2021 CONTENTS PAGE INTRODUCTION A ALIMENTARY TRACT AND METABOLISM 1 B BLOOD AND BLOOD FORMING ORGANS 28 C CARDIOVASCULAR SYSTEM 36 D DERMATOLOGICALS 51 G GENITO-URINARY SYSTEM AND SEX HORMONES 58 H SYSTEMIC HORMONAL PREPARATIONS (EXCLUDING SEX HORMONES) 68 J GENERAL ANTI-INFECTIVES SYSTEMIC 72 K HOSPITAL SOLUTIONS 88 L ANTINEOPLASTIC AND IMMUNOMODULATING AGENTS 96 M MUSCULO-SKELETAL SYSTEM 106 N NERVOUS SYSTEM 111 P PARASITOLOGY 122 R RESPIRATORY SYSTEM 124 S SENSORY ORGANS 136 T DIAGNOSTIC AGENTS 143 V VARIOUS 145 Anatomical Classification Guidelines V2021 INTRODUCTION The Anatomical Classification was initiated in 1971 by EphMRA. It has been developed jointly by Intellus/PBIRG and EphMRA. It is a subjective method of grouping certain pharmaceutical products and does not represent any particular market, as would be the case with any other classification system.
    [Show full text]
  • Anatomical Classification Guidelines V2020 EPHMRA ANATOMICAL
    EPHMRA ANATOMICAL CLASSIFICATION GUIDELINES 2020 Anatomical Classification Guidelines V2020 "The Anatomical Classification of Pharmaceutical Products has been developed and maintained by the European Pharmaceutical Marketing Research Association (EphMRA) and is therefore the intellectual property of this Association. EphMRA's Classification Committee prepares the guidelines for this classification system and takes care for new entries, changes and improvements in consultation with the product's manufacturer. The contents of the Anatomical Classification of Pharmaceutical Products remain the copyright to EphMRA. Permission for use need not be sought and no fee is required. We would appreciate, however, the acknowledgement of EphMRA Copyright in publications etc. Users of this classification system should keep in mind that Pharmaceutical markets can be segmented according to numerous criteria." © EphMRA 2020 Anatomical Classification Guidelines V2020 CONTENTS PAGE INTRODUCTION A ALIMENTARY TRACT AND METABOLISM 1 B BLOOD AND BLOOD FORMING ORGANS 28 C CARDIOVASCULAR SYSTEM 35 D DERMATOLOGICALS 50 G GENITO-URINARY SYSTEM AND SEX HORMONES 57 H SYSTEMIC HORMONAL PREPARATIONS (EXCLUDING SEX HORMONES) 65 J GENERAL ANTI-INFECTIVES SYSTEMIC 69 K HOSPITAL SOLUTIONS 84 L ANTINEOPLASTIC AND IMMUNOMODULATING AGENTS 92 M MUSCULO-SKELETAL SYSTEM 102 N NERVOUS SYSTEM 107 P PARASITOLOGY 118 R RESPIRATORY SYSTEM 120 S SENSORY ORGANS 132 T DIAGNOSTIC AGENTS 139 V VARIOUS 141 Anatomical Classification Guidelines V2020 INTRODUCTION The Anatomical Classification was initiated in 1971 by EphMRA. It has been developed jointly by Intellus/PBIRG and EphMRA. It is a subjective method of grouping certain pharmaceutical products and does not represent any particular market, as would be the case with any other classification system.
    [Show full text]
  • Rosuvastatin Zinc Salt Rosuvastatin-Zinksalz Sel De Zinc De Rosuvastatine
    (19) TZZ Z_¥__T (11) EP 2 013 188 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: C07D 239/42 (2006.01) A61K 31/505 (2006.01) 07.09.2016 Bulletin 2016/36 A61P 3/06 (2006.01) (21) Application number: 07733847.3 (86) International application number: PCT/HU2007/000030 (22) Date of filing: 12.04.2007 (87) International publication number: WO 2007/119085 (25.10.2007 Gazette 2007/43) (54) ROSUVASTATIN ZINC SALT ROSUVASTATIN-ZINKSALZ SEL DE ZINC DE ROSUVASTATINE (84) Designated Contracting States: • TÁPAI, Sándorné AT BE BG CH CY CZ DE DK EE ES FI FR GB GR 2230 Gyömrö (HU) HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR (74) Representative: Stolmár & Partner Designated Extension States: Patentanwälte PartG mbB et al AL BA HR MK RS Blumenstraße 17 80331 München (DE) (30) Priority: 13.04.2006 HU 0600293 (56) References cited: (43) Date of publication of application: EP-A- 1 336 405 WO-A-01/60804 14.01.2009 Bulletin 2009/03 WO-A-03/068739 WO-A-2004/108691 WO-A-2006/017698 (73) Proprietor: Egis Gyógyszergyár Nyilvánosan Múködö • DATABASE WPI Derwent Publications Ltd., Részvénytársaság London, GB; AN 2006-089591 XP002448430 1106 Budapest (HU) ZHAO ZHIQUAN [CN]: "An Anti-hyperlipemia Composition" & WO 2005/123082 A (LUNAN (72) Inventors: PHARMACEUTICAL COMPANY L [CN];) 2005 • VÁGÓ, Pál • GRAUL A ET AL: "ATORVASTATIN CALCIUM" 1173 Budapest (HU) DRUGS OF THE FUTURE, BARCELONA, ES, vol. • SIMIG, Gyula 22, no.
    [Show full text]
  • Acipimox (Olbetam®)
    PATIENT INFORMATION Medicine To Treat: C ardiac Diseases Lipid-Lowering Medicines ❏ Statins ❏ Fibrates ❏ Fat Binding Agents ❏ Nicotinic Acid Group ABOUT YOUR MEDICINE Your doctor has just prescribed for you: Medicine Group Examples of Medicine in the Group Statins • Lovastatin •Pravastatin (Pravachol®) • Simvastatin (Zocor®) •Atorvastatin (Lipitor®) • Fluvastatin (Lescol®) Fibrate • Gemfibrozil (Lopid®) •Bezafibrate (Bezalip®, Bezalip Retard®) • Ciprofibrate (Modalim®) • Clofibrate (Atromid-S®) •Fenofibrate (Lipanthyl®, Lipanthyl Micro®) Fat-Binding Agents • Cholestyramine (Questran Light®) Nicotinic Acid Group • Nicotinic Acid • Acipimox (Olbetam®) WHAT ARE LIPID-LOWERING MEDICINES USED FOR? This group of medicine helps to improve the blood lipid profile and may reduce your risk for heart attack and stroke as well as the need for procedures to improve blood flow to the heart, such as balloon angioplasty or heart bypass surgery. Depending on your health status and lipid level, your doctor will decide when to start treatment. Keep all medication out of reach of children. The medicines lower your blood cholesterol levels by reducing the amount of ‘bad cholesterol’ (low density lipoprotein or LDL-cholesterol) and ‘fat’ (triglyceride) and also raise the amount of ‘good cholesterol’ (high density lipoprotein or HDL-cholesterol). High cholesterol levels can cause coronary heart disease by gradually clogging up the blood vessels that supply the heart muscle. This process, called atherosclerosis, can eventually lead to chest pain (angina), heart attack or stroke. Lastly, the medicines may also help to prolong life. HOW SHOULD I TAKE THE MEDICINE? Except for cholestyramine, the other medicines in this group come in the form of tablets or capsules. They should be taken by mouth with a drink of water.
    [Show full text]
  • ICCB-L Plate (10 Mm / 3.33 Mm) ICCB-L Well Vendor ID Chemical Name
    ICCB-L Plate ICCB-L Therapeutic Absorption Protein FDA Additional info Additional info Vendor_ID Chemical_Name CAS number Therapeutic class Target type Target names (10 mM / 3.33 mM) Well effect tissue binding approved type detail Pharmacological 3712 / 3716 A03 Prestw-1 Azaguanine-8 134-58-7 Oncology Antineoplastic tool 3712 / 3716 A05 Prestw-2 Allantoin 97-59-6 Dermatology Antipsoriatic Carbonic 3712 / 3716 A07 Prestw-3 Acetazolamide 59-66-5 Metabolism Anticonvulsant Enzyme Carbonic anhydrase GI tract Yes anhydrase Potential Plasmatic New therapeutic 3712 / 3716 A09 Prestw-4 Metformin hydrochloride 1115-70-4 Endocrinology Anorectic GI tract Yes anticancer proteins use agent Chemical Plasmatic classification Quaternary 3712 / 3716 A11 Prestw-5 Atracurium besylate 64228-81-5 Neuromuscular Curarizing Yes proteins (according ATC ammonium code) 3712 / 3716 A13 Prestw-6 Isoflupredone acetate 338-98-7 Endocrinology Anti-inflammatory Therapeutic Amiloride-sensitive classification Potassium- 3712 / 3716 A15 Prestw-7 Amiloride hydrochloride dihydrate 17440-83-4 Metabolism Antihypertensive LGIC GI tract Yes sodium channel, ENaC (according ATC sparing agent code) 3712 / 3716 A17 Prestw-8 Amprolium hydrochloride 137-88-2 Infectiology Anticoccidial Veterinary use Poultry Therapeutic Solute carrier family 12 Plasmatic classification Low-ceiling 3712 / 3716 A19 Prestw-9 Hydrochlorothiazide 58-93-5 Metabolism Antihypertensive Carrier GI tract Yes member 3 proteins (according ATC diuretic code) Chemical classification 3712 / 3716 A21 Prestw-10 Sulfaguanidine
    [Show full text]