Submitted: April 23th, 2020 – Accepted: June 26th, 2020 – Published online: June 28th, 2020

To link and cite this article:

doi: 10.5710/AMGH.26.06.2020.3354

1 (, , NANHERMANNIDAE) FROM THE EOCENE

2 OF PATAGONIA: FIRST SOUTHERN HEMISPHERE FOSSIL RECORD IN

3 MARINE SEDIMENTS

4 ÁCAROS (ACARI, ORIBATIDA, NANHERMANNIDAE) DEL EOCENO DE

5 PATAGONIA: PRIMER REGISTRO FÓSIL DEL HEMISFERIO SUR EN

6 SEDIMENTOS MARINOS

7

8 DAMIÁN A. FERNÁNDEZ1, PABLO A. MARTÍNEZ2, LUIS PALAZZESI3,

9 VIVIANA D. BARREDA3.

10 1 Laboratorio de Geomorfología y Cuaternario, CADIC-CONICET, Bernardo Houssay

11 200, V9410 Ushuaia, Argentina. [email protected]

12 2 Departamento de Biología, Facultad de Ciencias Exactas y Naturales, Universidad

13 Nacional de Mar del Plata, Deán Funes 3350, B7602AYL Mar del Plata, Argentina.

14 [email protected]

15 3 Sección Paleopalinología, División Paleobotánica, MACN-CONICET, Av. Ángel

16 Gallardo 470, C1405DJR Buenos Aires, Argentina. [email protected];

17 [email protected]

18

19 14 pag. (text + references); 2 figs.

20

21 FERNÁNDEZ ET AL.: FOSSIL MITES FROM SW PATAGONIA

22 First record of a pre-Pleistocene fossil (Acari, Oribatida, Nanhermannidae) from

23 the Southern Hemisphere in marine sediments.

24

25 Corresponding author: Damián A. Fernández, [email protected] 1

26 Key words. Mites. Oribatida. Middle/Late Eocene.. Patagonia. Argentina.

27 Palabras clave. Ácaros. Oribatida. Eoceno Medio/Superior. Patagonia. Argentina.

28

2

29 COSMOPOLITAN, ABUNDANT, AND ADAPTED to nearly all terrestrial environments

30 today, mites are, however, uncommon in the fossil record. Extant diversity of mites

31 is second only to that of insects. With some 50,000 species described, of which

32 nearly 25% are oribatids, their past diversity is not well reflected in the fossil record

33 because of their rarity as fossils, especially in marine deposits and older strata

34 (Selden et al., 2008). Mites are more abundant in Quaternaries sites (e.g. Woolley,

35 1969; Elias, 1994; Heyne & Coetzee, 2001) and are being used in biostratigraphic

36 and palaeoclimatic studies of that period (e.g. Erickson, 1988; Schelvis, 1990;

37 Erickson et al., 2003; Krivolutsky & Sidorchuk, 2003; Mauquoy & van Geel, 2007;

38 Demske et al., 2013). A few are known from Cenozoic ambers (e.g. Selden et al.,

39 2008 and references there in; Dunlop et al., 2013; Khaustov, 2014; Sidorchuk et al.,

40 2019; Klimov et al., 2019; Poinar, 2019; Stilwell et al., 2020). Mites from

41 Cretaceous ambers are far fewer in number (e.g., Selden et al., 2008 and references

42 there in; Judson & Mąąkol, 2009; Sidorchuk et al., 2015b; Sidorchuk & Behan-

43 Pelletier, 2017; Arillo et al., 2018 and references there in). The only record from

44 South America until now is a large parasitengonid mite (Acari, Erythraeoidea) from

45 the continental Early Cretaceous Crato Formation of Brazil (Dunlop, 2007). There

46 are known three oribatids from the Jurassic (Krivolutsky & Krassilov, 1977; Sivhed

47 & Wallwork 1978; Selden et al., 2008), and only two species from Triassic amber,

48 north-eastern Italy (Sidorchuk et al., 2015a). The oldest known mite fossils come

49 from the Devonian localities of Gilboa, USA (Norton et al., 1988; Kethley et al.,

50 1989) and Rhynie, Scotland (Hirst, 1923).

51 In this note we report the finding of a fossil remain belonging to an oribatid mite. It

52 is a leg, morphologically assignable to the family Nanhermannidae. It is the first

53 record of a pre-Pleistocene fossil mite from the Southern Hemisphere in marine

3

54 sediments. The specimen comes from the Río Turbio Formation (RTF), SW of Santa

55 Cruz province, Patagonia, Argentina (Fig. 1). The RTF represents sedimentation in a

56 transitional environment during the Middle Eocene, period when a global climate

57 event called Middle Eocene Climatic Optimum (MECO) is recorded (González

58 Estebenet et al., 2015). This finding supports the presence of these mites in the

59 southernmost tip of South America during the Eocene. Also provides a new record,

60 important from the phylogenetic and paleoecological point of view.

61 Institutional abbreviations. CADIC, Centro Austral de Investigaciones Científicas,

62 Ushuaia, Argentina; CONICET, Consejo Nacional de Investigaciones Cinetíficas y

63 Técnicas, Buenos Aires, Argentina; MACN, Museo Argentino de Ciencias Naturales

64 “Bernardino Rivadavia”, Buenos Aires, Argentina.

65 Anatomical abbreviations. Fe, femur; Ge, genu; Ta, tarsus; Ti, tibia; Tr,

66 trochanter.

67 MATERIALS AND METHODS

68 The fossil specimen was recognized from the analysis of palynological slides

69 deposited in the Museo Regional Provincial Padre Manuel Jesús Molina (Río

70 Gallegos, Santa Cruz), under the acronym MPM-PB, and catalog number 21662. The

71 sample analyzed corresponds to a dark shale that comes from an outcrop in the

72 surroundings of Río Turbio city (Fig. 1) and belongs to the upper member of the RTF

73 (Romero, 1977). The techniques for palynological processing comes from Wood et

74 al. (1996). The specimen was studied using a Leica DM2500 light microscope and

75 photographed using a Leica DFC450 C camera. The coordinate of the specimen

76 corresponds to the England Finder ruler. The morphological description follows the

77 terminology of Norton & Behan-Pelletier (2009). The fossil was drawn to obtain a

78 morphological detail by a compound microscope Olympus CX 31 with drawing

4

79 tube. For fossil identification Fujikawa (1990) and Ermilov (2009) were consulted.

80 SYSTEMATIC PALEONTOLOGY

81 Class ARACHNIDA Lamark, 1801

82 Subclass ACARI Leach, 1817

83 Order Reuter, 1909

84 Suborder ORIBATIDA van der Hammen, 1968

85 Family NANHERMANNIDAE Sellnick, 1928

86 Referred material. Palynological slide MPM-PB 21662, O47–3. Museo Regional

87 Provincial Padre Manuel Jesús Molina, Río Gallegos, Santa Cruz, Argentina.

88 Geographic occurrence. Surroundings of Río Turbio city, 5 km northeast of the city,

89 beside National Route 40, Santa Cruz Province, Patagonia, Argentina (51° 30' 37.00" S

90 72° 15' 33.00" W) (Fig. 1).

91 Stratigraphic occurrence. Río Turbio Formation (Middle/Late Eocene, Priabonian, ca.

92 40 Myr) (González Estebenet et al., 2015).

93 Description. Tarsus almost complete, part of the genu, and complete femur and

94 trochanter. Tibia, in this group similar in size to the genu, covered by organic remains.

95 Length of each segment: Ta = 43 µm, Ti + Ge = 28 µm (where Ti is equal to or slightly

96 greater than Ge), Fe = 33 µm, Tr = 18 µm. In the tarsus, claw and numerous phaneres

97 are observed, but common setae and solenidia are indistinguishable. Some setae overlap

98 with their pair. Dorsal setae united in groups of two or more. Anterior ventral seta

99 stands out (probably s seta), apparent “holes” observed inside, possible eupathidium

100 (fanera that, unlike a normal seta that has a dense core of chitin, has a channel along its

101 axis). Two dorsal phaneres distinguished in the visible part of the genu, which would

102 correspond to a seta and a solenidium, and a ventral one. Dorsal and a lateral seta seen

103 on the femur. Small circles, possible insertions of phaneres or taphonomic artifacts.

5

104 Ventrolateral seta in the trochanter (Fig. 2).

105 Remarks. The leg has been completely preserved. The different segments can be

106 distinguished. In some areas there are overlapped organic matter remains. While the

107 cuticle of the leg has been altered becoming almost transparent (probably due to the

108 palynological processing), the setae remain in their position and are brown. Tarsus setae

109 are the darkest and more rigid part. Towards the base of the leg, they appear lighter and

110 somewhat collapsed (Fig. 2).

111 DISCUSSION AND CONCLUSIONS

112 The morphology and arrangement of the setae allow us to assign the mite remain here

113 described to the Nanhermannidae family. Although the description of the legs is not

114 frequent in representatives of Nanhermannidae, widened setae like those of the leg

115 described here are typical of Nanhermannia species (e.g. Fujikawa, 1990 Figs. 3, 4;

116 Ermilov, 2009 Fig. 4). This finding confirms the presence of mites related to that family

117 in the southern tip of South America during the Middle/Late Eocene. The most closely

118 related living clades to the RTF specimen are currently distributed in South America,

119 mainly in Venezuela, Ecuador, Peru, Chile, Brazil, Bolivia, Uruguay and Argentina. In

120 Patagonia, extant species have been cited for El Bolsón (Balogh & Csiszar, 1963),

121 Punta Bandera (Hammer, 1962b), Grand Malvina Island (Starý & Block, 1996)

122 (Argentina), Puerto Montt (Hammer, 1962a ), Punta Arenas and Puerto Natales

123 (Ermilov, 2016) (Chile).

124 Two main hypotheses can be raised about the living environment of the fossil mite: 1)

125 mite lived in a littoral environment 2) mite lived in leaf litter.

126 Hypothesis 1 is supported by the fact that the fossil bearing sediments were deposited in

127 a shallow marine environment according to sedimentological (Rodríguez Raising, 2015)

128 and paleontological studies (González Estebenet et al., 2012). While extant family

6

129 records mentioned above were made in terrestrial biotopes, Colloff (1983) cited the

130 presence of a species of Nanhermannia Berlese, 1913 in coastal lichens in the Islands of

131 the Clyde, Scotland. The leg shows signs of alteration as a result of the palynological

132 processing (see Remarks). The non-preserved mite body remains could have been lost

133 due to this process (and not due to transport). The leg is articulated and very well

134 preserved with the occurrence of delicate structures, hence we could assume that it has

135 not been transported far from the original habitat.

136 A continental origin of the fossil mite (Hypotheses 2) is supported by the fact that most

137 of the extant Nanhermannidae species live in leaf litter (Norton & Behan-Pelletier,

138 2009). In that case, the fossil leg may have been transported by water with the pollen

139 and spores also found in the sample.

140 In the RTF we also found an important number of claws (180 in 53 studied samples,

141 maximum peak =18) similar to that of the specimen here studied. According to

142 numerous studies on oribatid ecology (Erickson, 1988; Labandeira et al., 1997;

143 Erickson et al., 2003) they have an important potential as paleoenvironmental indicators

144 of energy of the depositional environment. Future works on these claws would help to

145 better understand their importance as paleoenvironmental indicators.

146 This finding and the associated claws assigned to the family Nanhermannidae in

147 paleopalynological slides adds an important taxon to the group of non-sporopollinic

148 palynomorphs.

149 ACKNOWLEDGMENTS

150 The authors wish to express their thanks to: Amalia González for the stratigraphic

151 column; Orlando Cárdenas for technical work; Pamela Alli for helping with samples;

152 Dr. Adolfina Savoretti for helping with writing; Dr. Roy Norton for his comments and

153 suggestions; and four anonymous reviewers who significantly improved the quality of

7

154 our manuscript. Financial support was provided by Consejo Nacional de Investigaciones

155 Científicas y Técnicas (PIP 2014–0259) and Agencia Nacional de Investigaciones

156 Científicas y Técnicas (PICT 2017–0671).

157 REFERENCES

158 Arillo, A., Blagoderov, V., & Peñalver, E. (2018). Early Cretaceous parasitism in amber: A

159 new species of Burmazelmira fly (Diptera: Archizelmiridae) parasitized by a Leptus sp.

160 mite (Acari, Erythraeidae). Cretaceous Research, 86, 24–32.

161 Balogh, J., & Csiszar, J. (1963). The zoological results of Gy. Topal's Collectings in South

162 Argentina. 5. Oribatei (Acarina). Annales historico-naturales Musei nationalis

163 hungarici, 55, 463–485.

164 Berlese, A. (1913). Acari nuovi manipoli VII–VIII. Redia, 9, 77–111.

165 Colloff, M. J. (1983). Oribatid mites associated with marine and maritime lichens on the island

166 of Great Cumbrae. The Glasgow Naturalist, 20, 347–359.

167 Demske, D., Tarasov, P. E., & Nakagawa, T. (2013). Atlas of pollen, spores and further non-

168 pollen palynomorphs recorded in the glacial–interglacial late Quaternary sediments of

169 Lake Suigetsu, central Japan. Quaternary International, 290, 164–238.

170 Dunlop, J. A. (2007). A large parasitengonid mite (Acari, Erythraeoidea) from the early

171 Cretaceous Crato Formation of Brazil. Fossil Record, 10(2), 91–98.

172 Dunlop, J. A., Kontschán, J., & Zwanzig, M. (2013). Fossil mesostigmatid mites

173 (: Gamasina, Microgyniina, Uropodina), associated with longhorn beetles

174 (Coleoptera: Cerambycidae) in Baltic amber. Naturwissenschaften, 100(4), 337–344.

175 Elias, S. A. (1994). Quaternary insects and their environments. Smithsonian Institution Press.

8

176 Erickson, J. M. (1988). Fossil oribatid mites as tools for Quaternary paleoecologists:

177 Preservation quality, quantities, and taphonomy. Bulletin of the Buffalo Society of

178 Natural Sciences, 33, 207–226.

179 Erickson, J. M., Platt Jr, R. B., & Jennings, D. H. (2003). Holocene fossil oribatid mite

180 biofacies as proxies of palaeohabitat at the Hiscock site, Byron, New York. Bulletin of

181 the Buffalo Society of Natural Sciences, 37, 176–189.

182 Ermilov, S. G. (2009). Ontogeny of oribatid mite Nanhermannia coronata (Acari, Oribatida,

183 Nanhermanniidae). Zoological Journal, 88(4), 429–437. [in Russian]

184 Ermilov, S. G. (2016). Additions to the oribatid mite fauna (Acari: Oribatida) of Chile, results

185 of the Russian Biological Expedition (2014). Systematic & Applied Acarology, 21(7),

186 967–977.

187 Fujikawa, T. (1990). Oribatid Mites from Picea glehni Forest at Mo-Ashoro, Hokkaido (3)

188 Two New Species of the Family Nanhermannidae. Edaphologia, 43, 5–15.

189 González Estebenet, M. S., Espinosa, M. A., Guerstein, G. R., & Raising, M. R. (2012).

190 Diatomeas de la Formación Río Turbio (Eoceno Medio), Sudoeste de Santa Cruz,

191 Argentina. Ameghiniana, 49(3), 389–394.

192 González Estebenet, M. S., Guerstein, G. R., & Casadio, S. A. (2015). Estudio bioestratigráfico

193 y paleoambiental de la Formación Río Turbio (Eoceno Medio a Superior) en el sudoeste

194 de Patagonia (Argentina) basado en quistes de dinoflagelados. Revista Brasileira de

195 Paleontologia, 18(3), 429–442.

196 Hammen, L. van der (1968). The gnathosoma of Hermanniaconvexa (C. L. Koch) (Acarida

197 Oribatina) and comparative remarks on its morphology in other mites. Zool. Verh., 94,

198 1–45.

9

199 Hammer, M. (1962a). Investigations on the oribatid fauna of the Andes Mountains. III. Chile.

200 Det Kongelige Danske Videnskabernes Selskab, 12, 1–96.

201 Hammer, M. (1962b). Investigations on the oribatid fauna of the Andes Mountains. IV.

202 Patagonia. Det Kongelige Danske Videnskabernes Selskab, 13, 1–37.

203 Heyne, H., & Coetzee, L. (2001). First report of a parasitic mite,

204 (Hypotrombidium) subquadratum (Lawrence) (Acari: Trombiculidae, Trombiculinae),

205 from dogs and children in the Bloemfontein area, South Africa: case report. Journal of

206 the South African Veterinary Association, 72(2), 105–106.

207 Hirst, S. (1923). On some remains from the Old Red Sandstone (Rhynie Chert bed,

208 Aberdeenshire). Annals and Magazine of Natural History, 12(70), 455–474.

209 Judson, M. L., & Mąąkol, J. (2009). A mite of the family Tanaupodidae (Arachnida, Acari,

210 Parasitengona) from the Lower Cretaceous of France. Geodiversitas, 31(1), 41–47.

211 Kethley, J. B., Norton, R. A., Bonamo, P. M., & Shear, W. A. (1989). A terrestrial alicorhagiid

212 mite (Acari: ) from the Devonian of New York. Micropaleontology, 35,

213 367–373.

214 Khaustov, A. A. (2014). New species and new records of mites of the genus Stigmaeus (Acari:

215 : Stigmaeidae) from Crimea. Zootaxa, 3794(2), 237–253.

216 Klimov, P. B., Khaustov, A. A., Vorontsov, D. D., Perkovsky, E. E., Pepato, A. R., &

217 Sidorchuk, E. A. (2019). Two new species of fossil Paratydeidae (Acari:

218 ) from the late Eocene amber highlight ultraslow morphological

219 evolution in a soil-inhabiting lineage. Journal of Systematic Palaeontology,

220 18(7), 607–629.

10

221 Krivolutsky, D. A., & Krassilov, V. A. (1977). Oribatid mites from Upper Jurassic, USSR. In

222 O.A. Skarlato & S. Balashov (Eds.). Morphology and diagnostics of mites (pp. 16–24).

223 Academy of Sciences of the USSR. [in Russian]

224 Krivolutsky, D. A., & Sidorchuk, E. A. (2003). Subfossil oribatid mites in the Holocene

225 deposits of the Arkhangel’sk Oblast. Doklady Biological Sciences, 392, 428–431.

226 Labandeira, C. C., Phillips, T. L., & Norton, R. A. (1997). Oribatid mites and the

227 decomposition of plant tissues in Paleozoic coal-swamp forests. Palaios, 12(4), 319–

228 353.

229 Lamark, J. B. (1801). Systeme des animaux sans veriebres. Libr. Deterville.

230 Leach, W. E. (1817). The Zoology Miscellany; being descriptions of new or interesting

231 . E. Nodder & Son.

232 Mauquoy, D., & van Geel, B. (2007). Plant macrofossil methods and studies, mire and peat

233 macros. In S. A. Elias (Ed.). Encyclopedia of quaternary science (pp. 2315–2336).

234 Elsevier Science.

235 Norton, R. A., & Behan-Pelletier, V. (2009). Chapter 15, Oribatida. In G. W. Krantz & D. E.

236 Walter (Eds.). A Manual of Acarology 3rd Edition (pp. 421–564). Texas Tech.

237 University Press.

238 Norton, R. A., Bonamo, P. M., Grierson, J. D., & Shear, W. A. (1988). Oribatid mite fossils

239 from a Devonian deposit near Gilboa, New York. Journal of Paleontology, 62(2), 259–

240 269.

241 Poinar, G. (2019). Associations between Fossil Beetles and Other Organisms. Geosciences,

242 9(4), 184.

11

243 Reuter, E. R. (1909). Zur Morphologie und Ontogenie der acariden (Vol. 34). Druckerei der

244 Finnischen literaturgesellschaft.

245 Rodríguez Raising, M. E. (2015). Estratigrafía secuencial de los depósitos marinos y

246 continentales del Eoceno – Oligoceno temprano de la cuenca Austral, sudoeste de la

247 provincia de Santa Cruz. (Tesis Doctoral, Programa de Post-grado en Geología,

248 Universidad Nacional del Sur, Bahía Blanca). Available from

249 http://repositoriodigital.uns.edu.ar/handle/123456789/2164

250 Romero, E. J. (1977). Polen de gimnospermas y fagáceas de la Formación Río Turbio

251 (Eoceno), Santa Cruz, Argentina. Fundación para la Educación, la Ciencia y la Cultura.

252 Schelvis, J. (1990). The reconstruction of local environments on the basis of remains of oribatid

253 mites (Acari; Oribatida). Journal of Archaeological Science, 17(5), 559–571.

254 Selden, P. A., Baker, A. S., & Phipps, K. J. (2008). An oribatid mite (Arachnida: Acari) from

255 the Oxford Clay (Jurassic: Upper Callovian) of South Cave Station Quarry, Yorkshire,

256 UK. Palaeontology, 51(3), 623–633.

257 Sellnick, M. (1928). Formenkreis: Hornmilben, Oribatei. Die Tierwelt Mitteleuropas, 3, 1–42.

258 Sidorchuk, E. A., & Behan–Pelletier, V. M. (2017). Megeremaeus cretaceous new species

259 (Acari: Oribatida), the first oribatid mite from Canadian amber. The Canadian

260 Entomologist, 149(3), 277–290.

261 Sidorchuk, E. A., Bochkov, A.V., Weiterschan, T., & Chernova, O. F. (2019). A case of mite-

262 on-mammal ectoparasitism from Eocene Baltic amber (Acari: Prostigmata, Myobiidae

263 and Mammalia: Erinaceomorpha). Journal of Systematic Palaeontology, 17(4), 331–

264 347.

12

265 Sidorchuk, E. A., Perrichot, V., & Lindquist, E. E. (2015b). A new fossil mite from French

266 Cretaceous amber (Acari: Heterostigmata: Nasutiacaroidea superfam. nov.), testing

267 evolutionary concepts within the Eleutherengona (Acariformes). Journal of Systematic

268 Palaeontology, 14(4), 297–317.

269 Sidorchuk, E. A., Schmidt, A. R., Ragazzi, E., Roghi, G., & Lindquist, E.E. (2015a). Plant-

270 feeding mite diversity in Triassic amber (Acari: Tetrapodili). Journal of Systematic

271 Palaeontology, 13(2), 129–151.

272 Sivhed, U., & Wallwork, J. A. (1978). An early Jurassic oribatid mite from southern Sweden.

273 Geologiska Föreningens I Stockholm Förhandlingar, 100(1), 65–70.

274 Starý, J., & Block, W. (1996). Oribatid mites (Acari: Oribatida) of the Falkland Islands, South

275 Atlantic and their zoogeographical relationships. Journal of Natural History, 30(4),

276 523–535.

277 Stilwell, J. D., Langendam, A., Mays, C., Sutherland, L. J., Arillo, A., Bickel, D. J., De Silva,

278 W. T., Pentland, A. H., Roghi, G., Price, G. D., Cantrill, D. J., Quinney, A., & Peñalver,

279 E. (2020). Amber from the Triassic to Paleogene of and New Zealand as

280 exceptional preservation of poorly known terrestrial ecosystems. Scientific reports,

281 10(1), 1–11.

282 Wood, G. D., Gabriel, A. M., & Lawson, J. C. (1996). Palynological techniques-Processing and

283 microscopy. In J. Jansonius & D. C. McGregor (Eds.). Palynology, Principles and

284 applications (pp. 29–50). American Association of Stratigraphic Palynologists

285 Foundation.

13

286 Woolley, T. A. (1969). Two new species of Hydrozetes, extant and fossil (Acari:

287 Cryptostigmata: Hydrozetidae). Journal of the New York Entomological Society, 250–

288 256.

289 Figure captions

290 Figure. 1. Localization and geologic details of the sample studied.

291 Figure. 2. 1, Light microscope image; 2, Tube drawing of the specimen. Fa, fanera; Cl,

292 claw; Fe, femur; Ge, genu; Se, seta; Ti, tibia; Tr, trochanter; Ta, tarsus; (a), antelateral

293 setae; (u), unguinal setae; s, subunguinal seta; p, proral seta; (tc), tectal setae; (pv),

294 primiventral setae; v, ventral seta; l, lateral seta; d, dorsal seta; ω, tarsal solenidium; δ,

295 genual solenidium. Parentheses indicate setal pair. Scale bars equals 20 µm.

296 Fig. 1 in page 4 and fig. 2 in page 5

297

14