What Is Mathematics: Gödel's Theorem and Around Hyper-Textbook for Students

Total Page:16

File Type:pdf, Size:1020Kb

What Is Mathematics: Gödel's Theorem and Around Hyper-Textbook for Students 1 What is Mathematics: Gödel's Theorem and Around Hyper-textbook for students by Karlis Podnieks, Professor University of Latvia Institute of Mathematics and Computer Science An extended translation of the 2nd edition of my book "Around Gödel's theorem" published in 1992 in Russian (online copy). Diploma, 2000 Diploma, 1999 This work is licensed under a Creative Commons License and is copyrighted © 1997-2013 by me, Karlis Podnieks. This hyper-textbook contains many links to: Wikipedia, the free encyclopedia; MacTutor History of Mathematics archive of the University of St Andrews; MathWorld of Wolfram Research. Are you a platonist? Test yourself. Tuesday, August 26, 1930: Chronology of a turning point in the human intellectua l history... Visiting Gödel in Vienna... An explanation of “The Incomprehensible Effectiveness of Mathematics in the Natural Sciences" (as put by Eugene Wigner). 2 Table of Contents References..........................................................................................................4 1. Platonism, intuition and the nature of mathematics.......................................6 1.1. Platonism – the Philosophy of Working Mathematicians ......................6 1.2. Investigation of Stable Self-contained Models – the True Nature of the Mathematical Method..................................................................................15 1.3. Intuition and Axioms............................................................................20 1.4. Formal Theories....................................................................................27 1.5. Hilbert's Program..................................................................................30 1.6. Some Replies to Critics.........................................................................32 2. Axiomatic Set Theory...................................................................................36 2.1. The Origin of Cantor's Set Theory........................................................36 2.2 Formalization of Cantor's Inconsistent Set Theory................................42 2.3. Zermelo-Fraenkel Axioms....................................................................48 2.4. Around the Continuum Problem...........................................................65 2.4.1. Counting Infinite Sets........................................................................65 2.4.2. Axiom of Constructibility..................................................................74 2.4.3. Axiom of Determinacy.......................................................................77 2.4.4. Ackermann's Set Theory (Church's Thesis for Set Theory?).............80 2.4.5. Large Cardinal Axioms......................................................................83 3. First Order Arithmetic..................................................................................91 3.1. From Peano Axioms to First Order Arithmetic.....................................91 3.2. How to Find Arithmetic in Other Formal Theories............................104 3.3. Representation Theorem.....................................................................107 4. Hilbert's Tenth Problem..............................................................................120 4.1. History of the Problem. Story of the Solution....................................120 4.2. Plan of the Proof.................................................................................133 4.3. Investigation of Fermat's Equation.....................................................136 4.4. Diophantine Representation of Solutions of Fermat's Equation.........142 4.5. Diophantine Representation of the Exponential Function..................146 4.6. Diophantine Representation of Binomial Coefficients and the Factorial Function.....................................................................................................148 4.7. Elimination of Restricted Universal Quantifiers................................151 4.8. 30 Ans Apres.......................................................................................156 5. Incompleteness Theorems..........................................................................158 5.1. Liar's Paradox.....................................................................................158 5.2. Arithmetization and Self-Reference Lemma......................................160 5.3. Gödel's Incompleteness Theorem.......................................................164 5.4. Gödel's Second Incompleteness Theorem..........................................176 6. Around Gödel's Theorem............................................................................186 6.1. Methodological Consequences...........................................................186 6.2. Double Incompleteness Theorem.......................................................191 6.3. Is Mathematics "Creative"?................................................................195 3 6.4. On the Size of Proofs..........................................................................199 6.5. Diophantine Incompleteness Theorem: Natural Number System Evolving?...................................................................................................203 6.6. Löb's Theorem....................................................................................205 6.7. Consistent Universal Statements Are Provable..................................207 6.8. Berry's Paradox and Incompleteness. Chaitin's Theorem...................212 Appendix 1. About Model Theory..................................................................220 Appendix 2. Around Ramsey's Theorem........................................................228 4 References Barwise J. (1942-2000) [1977] Handbook of Mathematical Logic, Elsevier Science Ltd., 1977, 1166 pp. (Russian translation available) Brouwer L. E. J. [1912] Intuitionism and formalism. Inaugural address at the University of Amsterdam (October, 14, 1912). Published in Bull. Amer. Math. Soc., 1913, vol. 20, pp.81-96 (online copy). van Dantzig D. [1955] Is 10**10**10 a finite number? "Dialectica", 1955, vol.9, N 3/4, pp. 273-278 Detlovs V., Podnieks K. [2000] Introduction to Mathematical Logic. Hyper-textbook for students, 2000-2013. Available online. Devlin K. J. [1977] The axiom of constructibility. A guide for the mathematician. "Lecture notes in mathematics", vol. 617, Springer-Verlag, Berlin – Heidelberg – New York, 1977, 96 pp. Feferman S., Friedman H. M., Maddy P., Steel J. R. [2000] Does mathematics need new axioms? "The Bulletin of Symbolic Logic", 2000, vol.6, N 4, pp. 401-446 (see online copy at www.math.ucla.edu/~asl/bsl/0604/0604-001.ps). Hadamard J. [1945] An essay on the psychology of invention in the mathematical field. Princeton, 1945, 143 pp. (Russian translation available) Heijenoort van J. [1967] From Frege to Gödel: A Source Book in Mathematical Logic, 1879-1931. Harvard University Press, 1967, 680 pp. Hersh R. [1979] Some Proposals for Reviving the Philosophy of Mathematics. "Advances in Mathematics", 1979, vol. 31, pp. 31-50. Jech T. Lectures in set theory with particular emphasis on the method of 5 forcing. "Lecture Notes in Mathematics", vol. 217, Springer-Verlag, Berlin – Heidelberg – New York, 1971 (Russian translation available) Keldysh L. V. [1974] The ideas of N.N.Luzin in descriptive set theory. "Russian Mathematical Surveys", 1974, vol. 29, N 5, pp. 179-193 (Russian original: "Uspekhi matematicheskih nauk", 1974, vol. 29, N 5, pp. 183-196). Mendelson E. [1997] Introduction to Mathematical Logic. Fourth Edition. International Thomson Publishing, 1997, 440 pp. (Russian translation available) Parikh R. [1971] Existence and Feasibility in Arithmetic. JSL, 1971, Vol.36, N 3, pp.494-508. Podnieks K. M. [1975] The double-incompleteness theorem. Scientific Proceedings of Latvia State University, 1975, Vol.233, pp. 191-200 (in Russian, online copy: HTML). Podnieks K. M. [1976] The double-incompleteness theorem. Proceedings of Fourth All-Union Conference on Mathematical Logic, 1976, Kishinev, p.118 (in Russian, online copy: HTML, online English translation: HTML). Podnieks K. M. [1988a] Platonism, Intuition and the Nature of Mathematics. "Heyting'88. Summer School & Conference on Mathematical Logic. Chaika, Bulgaria, September 1988. Abstracts.", Sofia, Bulgarian Academy of Sciences, 1988, pp.50-51. Podnieks K. M. [1988b] Platonism, Intuition and the Nature of Mathematics. Riga, Latvian State University, 1988, 23 pp. (in Russian). Podnieks K. M. [1981, 1992] Around Gödel's theorem. Latvian State University Press, Riga, 1981, 105 pp. (in Russian). 2nd edition: "Zinatne", Riga, 1992, 191 pp. (in Russian). Poincare H. [1908] Science et methode. Paris, 1908, 311 pp. (Russian translation available) Rashevsky P. K. [1973] (translated also as Rashevskii) On the dogma of natural numbers. "Uspekhi matematicheskih nauk", 1973, vol.28, N 4, pp.243-246 (in Russian). See also "Russian Mathematical Surveys", 1973, vol.28, N4, 143-148 (online copy). 6 1. Platonism, intuition and the nature of mathematics This chapter presents an extended the translation of the paper: K. Podnieks. Platonism, intuition and the nature of mathematics. In: Semiotika i informatika, Moscow, VINITI, 1990, Vol. 31, pp. 150-180 (in Russian). It was included also as the first chapter into my book "Around Gödel's theorem" published in 1992 in Russian. View copy of the Russian original. History. The 1st edition of the book was published in 1981 in Russian (view copy of Chapter 1). In English, its concepts were
Recommended publications
  • Paradox Philosophy
    Paradox Philosophy Course at Akita International University Philipp Blum, University of Lucerne, [email protected] https://philipp.philosophie.ch/teaching/paradoxes20.html Summary of the course, version of February 17, 2020 Contents 1 Administrative info 2 2 What is a paradox? 3 3 Mathematical Paradoxes 4 3.1 Things and their groupings .............................. 4 3.2 Cantor and modern set theory ............................ 4 3.3 Frege’s definition of number and Russell’s paradox ................. 6 4 Physical Paradoxes 7 4.1 Zeno’s paradoxes .................................... 7 4.2 Not easily solved by the modern calculus ....................... 9 4.3 Whitehead’s lesson: becoming is not continuous ................... 9 4.4 Russell’s lesson: the at-at theory of motion ..................... 10 4.5 Black’s lesson: the problem of hypertasks ...................... 11 4.6 Background 1: the line and the points ........................ 11 4.7 Background 2: the metaphysics of persistence and the problem of change . 12 5 Semantic Paradoxes 13 5.1 Truth and Falsity .................................... 13 5.2 The Liar ......................................... 14 5.3 The Strengthened Liar ................................. 15 5.4 A Spicy Curry ..................................... 15 5.5 Having fun with liars and curries ........................... 16 5.6 The Sorites paradox .................................. 17 6 Paradoxes of Rationality 18 6.1 Surprise Exam ..................................... 18 6.2 Prisoners’ Dilemma ..................................
    [Show full text]
  • Arxiv:2011.02915V1 [Math.LO] 3 Nov 2020 the Otniy Ucin Pnst Tctr)Ue Nti Ae R T Are Paper (C 1.1
    REVERSE MATHEMATICS OF THE UNCOUNTABILITY OF R: BAIRE CLASSES, METRIC SPACES, AND UNORDERED SUMS SAM SANDERS Abstract. Dag Normann and the author have recently initiated the study of the logical and computational properties of the uncountability of R formalised as the statement NIN (resp. NBI) that there is no injection (resp. bijection) from [0, 1] to N. On one hand, these principles are hard to prove relative to the usual scale based on comprehension and discontinuous functionals. On the other hand, these principles are among the weakest principles on a new com- plimentary scale based on (classically valid) continuity axioms from Brouwer’s intuitionistic mathematics. We continue the study of NIN and NBI relative to the latter scale, connecting these principles with theorems about Baire classes, metric spaces, and unordered sums. The importance of the first two topics re- quires no explanation, while the final topic’s main theorem, i.e. that when they exist, unordered sums are (countable) series, has the rather unique property of implying NIN formulated with the Cauchy criterion, and (only) NBI when formulated with limits. This study is undertaken within Ulrich Kohlenbach’s framework of higher-order Reverse Mathematics. 1. Introduction The uncountability of R deals with arbitrary mappings with domain R, and is therefore best studied in a language that has such objects as first-class citizens. Obviousness, much more than beauty, is however in the eye of the beholder. Lest we be misunderstood, we formulate a blanket caveat: all notions (computation, continuity, function, open set, et cetera) used in this paper are to be interpreted via their higher-order definitions, also listed below, unless explicitly stated otherwise.
    [Show full text]
  • On the Reverse Mathematics of General Topology Phd Dissertation, August 2005
    The Pennsylvania State University The Graduate School Department of Mathematics ON THE REVERSE MATHEMATICS OF GENERAL TOPOLOGY A Thesis in Mathematics by Carl Mummert Copyright 2005 Carl Mummert Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy August 2005 The thesis of Carl Mummert was reviewed and approved* by the following: Stephen G. Simpson Professor of Mathematics Thesis Advisor Chair of Committee Dmitri Burago Professor of Mathematics John D. Clemens Assistant Professor of Mathematics Martin F¨urer Associate Professor of Computer Science Alexander Nabutovsky Professor of Mathematics Nigel Higson Professor of Mathematics Chair of the Mathematics Department *Signatures are on file in the Graduate School. Abstract This thesis presents a formalization of general topology in second-order arithmetic. Topological spaces are represented as spaces of filters on par- tially ordered sets. If P is a poset, let MF(P ) be the set of maximal fil- ters on P . Let UF(P ) be the set of unbounded filters on P . If X is MF(P ) or UF(P ), the topology on X has a basis {Np | p ∈ P }, where Np = {F ∈ X | p ∈ F }. Spaces of the form MF(P ) are called MF spaces; spaces of the form UF(P ) are called UF spaces. A poset space is either an MF space or a UF space; a poset space formed from a countable poset is said to be countably based. The class of countably based poset spaces in- cludes all complete separable metric spaces and many nonmetrizable spaces including the Gandy–Harrington space. All poset spaces have the strong Choquet property.
    [Show full text]
  • Arxiv:1804.02439V1
    DATHEMATICS: A META-ISOMORPHIC VERSION OF ‘STANDARD’ MATHEMATICS BASED ON PROPER CLASSES DANNY ARLEN DE JESUS´ GOMEZ-RAM´ ´IREZ ABSTRACT. We show that the (typical) quantitative considerations about proper (as too big) and small classes are just tangential facts regarding the consistency of Zermelo-Fraenkel Set Theory with Choice. Effectively, we will construct a first-order logic theory D-ZFC (Dual theory of ZFC) strictly based on (a particular sub-collection of) proper classes with a corresponding spe- cial membership relation, such that ZFC and D-ZFC are meta-isomorphic frameworks (together with a more general dualization theorem). More specifically, for any standard formal definition, axiom and theorem that can be described and deduced in ZFC, there exists a corresponding ‘dual’ ver- sion in D-ZFC and vice versa. Finally, we prove the meta-fact that (classic) mathematics (i.e. theories grounded on ZFC) and dathematics (i.e. dual theories grounded on D-ZFC) are meta-isomorphic. This shows that proper classes are as suitable (primitive notions) as sets for building a foundational framework for mathematics. Mathematical Subject Classification (2010): 03B10, 03E99 Keywords: proper classes, NBG Set Theory, equiconsistency, meta-isomorphism. INTRODUCTION At the beginning of the twentieth century there was a particular interest among mathematicians and logicians in finding a general, coherent and con- sistent formal framework for mathematics. One of the main reasons for this was the discovery of paradoxes in Cantor’s Naive Set Theory and related sys- tems, e.g., Russell’s, Cantor’s, Burati-Forti’s, Richard’s, Berry’s and Grelling’s paradoxes [12], [4], [14], [3], [6] and [11].
    [Show full text]
  • Arxiv:1504.04798V1 [Math.LO] 19 Apr 2015 of Principia Squarely in an Empiricist Framework
    HEINRICH BEHMANN'S 1921 LECTURE ON THE DECISION PROBLEM AND THE ALGEBRA OF LOGIC PAOLO MANCOSU AND RICHARD ZACH Abstract. Heinrich Behmann (1891{1970) obtained his Habilitation under David Hilbert in G¨ottingenin 1921 with a thesis on the decision problem. In his thesis, he solved|independently of L¨owenheim and Skolem's earlier work|the decision prob- lem for monadic second-order logic in a framework that combined elements of the algebra of logic and the newer axiomatic approach to logic then being developed in G¨ottingen. In a talk given in 1921, he outlined this solution, but also presented important programmatic remarks on the significance of the decision problem and of decision procedures more generally. The text of this talk as well as a partial English translation are included. x1. Behmann's Career. Heinrich Behmann was born January 10, 1891, in Bremen. In 1909 he enrolled at the University of T¨ubingen. There he studied mathematics and physics for two semesters and then moved to Leipzig, where he continued his studies for three semesters. In 1911 he moved to G¨ottingen,at that time the most important center of mathematical activity in Germany. He volunteered for military duty in World War I, was severely wounded in 1915, and returned to G¨ottingenin 1916. In 1918, he obtained his doctorate with a thesis titled The Antin- omy of Transfinite Numbers and its Resolution by the Theory of Russell and Whitehead [Die Antinomie der transfiniten Zahl und ihre Aufl¨osung durch die Theorie von Russell und Whitehead] under the supervision of David Hilbert [Behmann 1918].
    [Show full text]
  • Singular Cardinals: from Hausdorff's Gaps to Shelah's Pcf Theory
    SINGULAR CARDINALS: FROM HAUSDORFF’S GAPS TO SHELAH’S PCF THEORY Menachem Kojman 1 PREFACE The mathematical subject of singular cardinals is young and many of the math- ematicians who made important contributions to it are still active. This makes writing a history of singular cardinals a somewhat riskier mission than writing the history of, say, Babylonian arithmetic. Yet exactly the discussions with some of the people who created the 20th century history of singular cardinals made the writing of this article fascinating. I am indebted to Moti Gitik, Ronald Jensen, Istv´an Juh´asz, Menachem Magidor and Saharon Shelah for the time and effort they spent on helping me understand the development of the subject and for many illuminations they provided. A lot of what I thought about the history of singular cardinals had to change as a result of these discussions. Special thanks are due to Istv´an Juh´asz, for his patient reading for me from the Russian text of Alexandrov and Urysohn’s Memoirs, to Salma Kuhlmann, who directed me to the definition of singular cardinals in Hausdorff’s writing, and to Stefan Geschke, who helped me with the German texts I needed to read and sometimes translate. I am also indebted to the Hausdorff project in Bonn, for publishing a beautiful annotated volume of Hausdorff’s monumental Grundz¨uge der Mengenlehre and for Springer Verlag, for rushing to me a free copy of this book; many important details about the early history of the subject were drawn from this volume. The wonderful library and archive of the Institute Mittag-Leffler are a treasure for anyone interested in mathematics at the turn of the 20th century; a particularly pleasant duty for me is to thank the institute for hosting me during my visit in September of 2009, which allowed me to verify various details in the early research literature, as well as providing me the company of many set theorists and model theorists who are interested in the subject.
    [Show full text]
  • Henkin's Method and the Completeness Theorem
    Henkin's Method and the Completeness Theorem Guram Bezhanishvili∗ 1 Introduction Let L be a first-order logic. For a sentence ' of L, we will use the standard notation \` '" for ' is provable in L (that is, ' is derivable from the axioms of L by the use of the inference rules of L); and \j= '" for ' is valid (that is, ' is satisfied in every interpretation of L). The soundness theorem for L states that if ` ', then j= '; and the completeness theorem for L states that if j= ', then ` '. Put together, the soundness and completeness theorems yield the correctness theorem for L: a sentence is derivable in L iff it is valid. Thus, they establish a crucial feature of L; namely, that syntax and semantics of L go hand-in-hand: every theorem of L is a logical law (can not be refuted in any interpretation of L), and every logical law can actually be derived in L. In fact, a stronger version of this result is also true. For each first-order theory T and a sentence ' (in the language of T ), we have that T ` ' iff T j= '. Thus, each first-order theory T (pick your favorite one!) is sound and complete in the sense that everything that we can derive from T is true in all models of T , and everything that is true in all models of T is in fact derivable from T . This is a very strong result indeed. One possible reading of it is that the first-order formalization of a given mathematical theory is adequate in the sense that every true statement about T that can be formalized in the first-order language of T is derivable from the axioms of T .
    [Show full text]
  • Ineffability Within the Limits of Abstraction Alone
    Ineffability within the Limits of Abstraction Alone Stewart Shapiro and Gabriel Uzquiano 1 Abstraction and iteration The purpose of this article is to assess the prospects for a Scottish neo-logicist foundation for a set theory. The gold standard would be a theory as rich and useful as the dominant one, ZFC, Zermelo-Fraenkel set theory with choice, perhaps aug- mented with large cardinal principles. Although the present paper is self-contained, we draw upon recent work in [32] in which we explore the power of a reasonably pure principle of reflection. To establish terminology, the Scottish neo-logicist program is to develop branches of mathematics using abstraction principles in the form: xα = xβ $ α ∼ β where the variables α and β range over items of a certain sort, x is an operator taking items of this sort to objects, and ∼ is an equivalence relation on this sort of item. The standard exemplar, of course, is Hume’s principle: #F = #G ≡ F ≈ G where, as usual, F ≈ G is an abbreviation of the second-order statement that there is a one-one correspondence from F onto G. Hume’s principle, is the main support for what is regarded as a success-story for the Scottish neo-logicist program, at least by its advocates. The search is on to develop more powerful mathematical theories on a similar basis. As witnessed by this volume and a significant portion of the contemporary liter- ature in the philosophy of mathematics, Scottish neo-logicism remains controver- sial, even for arithmetic. There are, for example, issues of Caesar and Bad Com- pany to deal with.
    [Show full text]
  • Reverse Mathematics Carl Mummert Communicated by Daniel J
    B OOKREVIEW Reverse Mathematics Carl Mummert Communicated by Daniel J. Velleman the theorem at hand? This question is a central motiva- Reverse Mathematics: Proofs from the Inside Out tion of the field of reverse mathematics in mathematical By John Stillwell logic. Princeton University Press Mathematicians have long investigated the problem Hardcover, 200 pages ISBN: 978-1-4008-8903-7 of the Parallel Postulate in geometry: which theorems require it, and which can be proved without it? Analo- gous questions arose about the Axiom of Choice: which There are several monographs on aspects of reverse math- theorems genuinely require the Axiom of Choice for their ematics, but none can be described as a “general audi- proofs? ence” text. Simpson’s Subsystems of Second Order Arith- In each of these cases, it is easy to see the importance metic [3], rightly regarded as a classic, makes substantial of the background theory. After all, what use is it to prove assumptions about the reader’s background in mathemat- a theorem “without the Axiom of Choice” if the proof ical logic. Hirschfeldt’s Slicing the Truth [2] is more ac- uses some other axiom that already implies the Axiom cessible but also makes assumptions beyond an upper- of Choice? To address the question of necessity, we must level undergraduate background and focuses more specif- begin by specifying a precise set of background axioms— ically on combinatorics. The field has been due for a gen- our base theory. This allows us to answer the question of eral treatment accessible to undergraduates and to math- whether an additional axiom is necessary for a particular ematicians in other areas looking for an easily compre- hensible introduction to the field.
    [Show full text]
  • Coll041-Endmatter.Pdf
    http://dx.doi.org/10.1090/coll/041 AMERICAN MATHEMATICAL SOCIETY COLLOQUIUM PUBLICATIONS VOLUME 41 A FORMALIZATION OF SET THEORY WITHOUT VARIABLES BY ALFRED TARSKI and STEVEN GIVANT AMERICAN MATHEMATICAL SOCIETY PROVIDENCE, RHODE ISLAND 1985 Mathematics Subject Classification. Primar y 03B; Secondary 03B30 , 03C05, 03E30, 03G15. Library o f Congres s Cataloging-in-Publicatio n Dat a Tarski, Alfred . A formalization o f se t theor y withou t variables . (Colloquium publications , ISS N 0065-9258; v. 41) Bibliography: p. Includes indexes. 1. Se t theory. 2 . Logic , Symboli c an d mathematical . I . Givant, Steve n R . II. Title. III. Series: Colloquium publications (American Mathematical Society) ; v. 41. QA248.T37 198 7 511.3'2 2 86-2216 8 ISBN 0-8218-1041-3 (alk . paper ) Copyright © 198 7 b y th e America n Mathematica l Societ y Reprinted wit h correction s 198 8 All rights reserve d excep t thos e grante d t o th e Unite d State s Governmen t This boo k ma y no t b e reproduce d i n an y for m withou t th e permissio n o f th e publishe r The pape r use d i n thi s boo k i s acid-fre e an d fall s withi n th e guideline s established t o ensur e permanenc e an d durability . @ Contents Section interdependenc e diagram s vii Preface x i Chapter 1 . Th e Formalis m £ o f Predicate Logi c 1 1.1. Preliminarie s 1 1.2.
    [Show full text]
  • Notes on Set Theory, Part 2
    §11 Regular cardinals In what follows, κ , λ , µ , ν , ρ always denote cardinals. A cardinal κ is said to be regular if κ is infinite, and the union of fewer than κ sets, each of whose cardinality is less than κ , is of cardinality less than κ . In symbols: κ is regular if κ is infinite, and κ 〈 〉 ¡ κ for any set I with I ¡ < and any family Ai i∈I of sets such that Ai < ¤¦¥ £¢ κ for all i ∈ I , we have A ¡ < . i∈I i (Among finite cardinals, only 0 , 1 and 2 satisfy the displayed condition; it is not worth including these among the cardinals that we want to call "regular".) ℵ To see two examples, we know that 0 is regular: this is just to say that the union of finitely ℵ many finite sets is finite. We have also seen that 1 is regular: the meaning of this is that the union of countably many countable sets is countable. For future use, let us note the simple fact that the ordinal-least-upper-bound of any set of cardinals is a cardinal; for any set I , and cardinals λ for i∈I , lub λ is a cardinal. i i∈I i α Indeed, if α=lub λ , and β<α , then for some i∈I , β<λ . If we had β § , then by i∈I i i β λ ≤α β § λ λ < i , and Cantor-Bernstein, we would have i , contradicting the facts that i is β λ β α β ¨ α α a cardinal and < i .
    [Show full text]
  • Paradoxes Situations That Seems to Defy Intuition
    Paradoxes Situations that seems to defy intuition PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information. PDF generated at: Tue, 08 Jul 2014 07:26:17 UTC Contents Articles Introduction 1 Paradox 1 List of paradoxes 4 Paradoxical laughter 16 Decision theory 17 Abilene paradox 17 Chainstore paradox 19 Exchange paradox 22 Kavka's toxin puzzle 34 Necktie paradox 36 Economy 38 Allais paradox 38 Arrow's impossibility theorem 41 Bertrand paradox 52 Demographic-economic paradox 53 Dollar auction 56 Downs–Thomson paradox 57 Easterlin paradox 58 Ellsberg paradox 59 Green paradox 62 Icarus paradox 65 Jevons paradox 65 Leontief paradox 70 Lucas paradox 71 Metzler paradox 72 Paradox of thrift 73 Paradox of value 77 Productivity paradox 80 St. Petersburg paradox 85 Logic 92 All horses are the same color 92 Barbershop paradox 93 Carroll's paradox 96 Crocodile Dilemma 97 Drinker paradox 98 Infinite regress 101 Lottery paradox 102 Paradoxes of material implication 104 Raven paradox 107 Unexpected hanging paradox 119 What the Tortoise Said to Achilles 123 Mathematics 127 Accuracy paradox 127 Apportionment paradox 129 Banach–Tarski paradox 131 Berkson's paradox 139 Bertrand's box paradox 141 Bertrand paradox 146 Birthday problem 149 Borel–Kolmogorov paradox 163 Boy or Girl paradox 166 Burali-Forti paradox 172 Cantor's paradox 173 Coastline paradox 174 Cramer's paradox 178 Elevator paradox 179 False positive paradox 181 Gabriel's Horn 184 Galileo's paradox 187 Gambler's fallacy 188 Gödel's incompleteness theorems
    [Show full text]