Mechanism of Formation and Age of the Ayyarmalai A-Type Charnockite

Total Page:16

File Type:pdf, Size:1020Kb

Mechanism of Formation and Age of the Ayyarmalai A-Type Charnockite Mechanism of Formation and Age of the Ayyarmalai A-type Charnockite – Granite association from the South-Eastern Palghat- Cauvery Shear System, Southern India Stephanie. E. Rowe Tectonics Resources and Exploration (TRaX), Department of Geology and Geophysics, School of Earth and Environmental Sciences, University of Adelaide, South Australia. E-Mail: [email protected] OCTOBER 2010 S. Rowe, 2010 Table of Contents ABSTRACT................................................................................................................................................. 3 1. INTRODUCTION................................................................................................................................... 5 1.1. Charnockite Definition & Problem ................................................................................................ 5 1.2. Characteristics of Igneous and Metamorphic Charnockites........................................................ 6 2. GEOLOGICAL SETTING .................................................................................................................... 8 2.1. Geology of India ............................................................................................................................... 8 2.1.1. Dharwar Craton & The Northern Granulite Terrain ................................................................. 8 2.1.2. Southern Granulite Terrain ........................................................................................................ 9 2.2. Palghat-Cauvery Shear System .................................................................................................... 10 3. FIELD RELATIONS & SAMPLE PETROLOGY ........................................................................... 11 3.1.Field Relationships ...................................................................................................................... 12 3.2.Ayyarmalai Quarry Massif Charnockite .................................................................................. 12 3.2.1. Garnet & Hornblende Rich Charnockites ............................................................................. 12 3.2.2. Mafic Enclaves....................................................................................................................... 14 3.2.3. Charncokite Gneiss Zones ..................................................................................................... 14 3.3. Ayyarmalai Granite ..................................................................................................................... 14 3.3.1. Pink Alkali Granite ................................................................................................................... 14 3.3.2. Grey Granite............................................................................................................................. 15 3.3.3. Dehydration Zones.................................................................................................................... 15 3.3.4. Pegmatite .................................................................................................................................. 15 4. ANALYTICAL PROCEDURES ......................................................................................................... 16 4.1. Petrography & Mineral Chemistry ............................................................................................. 16 4.1.1 Pressure- Temperature Estimates.............................................................................................. 16 4.2. Whole rock Major and Trace Elements....................................................................................... 17 4.2.1 Trace Elements......................................................................................................................... 17 4.3. U-Pb Zircon Dating........................................................................................................................ 18 4.4. Whole Rock Isotopic Analyses ..................................................................................................... 19 4.4.1. Radiogenic Isotopes.................................................................................................................. 19 4.4.2. Stable Isotopes .......................................................................................................................... 19 1 S. Rowe, 2010 5. RESULTS .............................................................................................................................................. 20 5.1. Mineral Chemistry......................................................................................................................... 20 5.1.1. Ayyarmalai Charnockite .......................................................................................................... 20 5.1.1.1. Garnet .......................................................................................................................... 20 5.1.1.2. Pyroxenes..................................................................................................................... 21 5.1.1.3. Retrograde Minerals.................................................................................................... 21 5.1.2.P-T Estimate (Charnockite) ....................................................................................................... 22 5.2. Whole Rock Geochemistry............................................................................................................ 22 5.2.1. Ayyarmalai Charnockites......................................................................................................... 22 5.2.2. Ayyarmalai Pink and Grey Alkali Granites ............................................................................. 23 5.3. U-Pb Zircon Geochronology.......................................................................................................... 24 5.3.1. Charnockite Zircons (SR-6 and SR-57) ................................................................................... 25 5.3.2. Ayyarmalai Granites (SR-68H and SR-63).............................................................................. 26 5.4. Isotopes............................................................................................................................................ 27 5.4.1. Radiogenic Isotopes................................................................................................................. 27 5.4.1.1 Sm-Nd............................................................................................................................... 27 5.4.1.2. Rb-Sr................................................................................................................................ 27 5.4.1.3. Pb-Pb................................................................................................................................ 28 5.4.2. Stable Isotopes .......................................................................................................................... 28 5.4.2.1. δ18O isotopes.................................................................................................................... 28 6. DISCUSSION........................................................................................................................................ 29 6.1. Petrographic and Geochemical Interpretation............................................................................ 29 6.3. Timing and significance of charnockite and felsic magmatism in the PCSS............................ 31 6.4. Protolith and Crustal Evolution ................................................................................................... 33 7. CONCLUSION ..................................................................................................................................... 36 8. ACKNOWLEDGEMENTS.................................................................................................................. 37 9. REFERENCES...................................................................................................................................... 37 10. FIGURE CAPTIONS ......................................................................................................................... 45 11. APPENDIX A – Supplementary Data Tables 12. APPENDIX B – Supplementary Figures 2 S. Rowe, 2010 MECHANISM OF FORMATION AND AGE OF THE AYYARMALAI A-TYPE CHARNOCKITE – GRANITE ASSOCIATION FROM THE SOUTH-EASTERN PALGHAT-CAUVERY SHEAR SYSTEM, SOUTHERN INDIA ABSTRACT The Ayyarmalai A-type charnockite and A-type alkali granite lies on the south-eastern margin of the Palghat-Cauvery Shear System and provides an example of co-magmatism that was later overprinted with granulite facies metamorphism at ~2.45-2.5Ga. The Palghat-Cauvery Shear System represents an intriguing zone with Neoproterozoic aged granulites (~800-500 Ma) to the south and Archaean granulites (~3000-2500 Ma) to the north; the origins of which are still often disputed. This study presents whole rock major and trace element compositions, mineral chemistry, pressure-temperature estimates and whole rock Sm-Nd, Rb-Sr, Pb-Pb and δ18O isotopic compositions of this A-type charnockite-granite association found at Ayyarmalai, Tamil Nadu, Southern India. The subsequent data from this study suggests that: (1) the Ayyarmalai charnockites from the Palghat-Cauvery Shear System have zircon ages that
Recommended publications
  • ANTIPERTHITE and MANTLED FELDSPAR TEXTURES in CHARNOCKITE (ENDERBITE) from S.W. NIGERIA Fnnp. H. Hunrenn, Departmenl of Geology
    THE AMERICAN MINERALOGIST, VOL 50, \OVEMBER-DECEMBER, 1965 ANTIPERTHITE AND MANTLED FELDSPAR TEXTURES IN CHARNOCKITE (ENDERBITE) FROM S.W. NIGERIA Fnnp. H. Hunrenn, Departmenl of Geology,Fourah Bay College, Freelown,Siena Leone. ABSTRACT The strongly antiperthitic plagioclases of a hypersthene-quattz-dioritic (enderbite) member of a charnockite series occurring in S.W. Nigeria v''ere found to be commonly mantled by alkali feldspar (orthoclase microperthite). The potassium-rich phase of the orthoclase microperthite is in optical continuity with the potassium-rich phase of the anti- perthites. The petrography and mineralogy of these feldspars are described, including qualitative data obtained by microprobe analysis, and the probability of a common origin for the antiperthite and mantle alkali feldspar by exsolution processes discussed. Modal analyses of the proportions of alkali feldspar to plagioclase for trvelve individual crystals from the same rock specimen gave sufficientiy constant values to help substantiate the proposal of exsolution origin. INrnolucrroN Antiperthitic plagioclaseis a very common feature of the charnockitic rocks, to such an extent that it is often quoted as a characteristicof such rocks (e.g.,Heinrich, 1956).Because of the practical difficultiesof experi- mental and synthetic studies inherent in the sluggish transformation kinetics of the plagioclases,antiperthite texture has not receivedas great attention as the perthite textures from researchworkers. Development of antiperthite both by exsolutionand replacementprocesses is accepted (Deer et el., t963). An exsolution origin for the antiperthites in granulite faciesrocks has beenconsidered by Sen (1959).This worker investigated the potassium content of a seriesof naturai plagioclasefeldspars from amphibolite facies,granulite faciesand volcanic rocks by meansof par- tial chemical analyses.He found a definite increasein potassium content utith increase in temperature of formation and sought to explain this trend by lattice structural consideratiorls,e.g.
    [Show full text]
  • 45. Myrmekite Formed by Na- and Ca-Metasomatism of K- Feldspar
    1 ISSN 1526-5757 45. Myrmekite formed by Na- and Ca-metasomatism of K- feldspar Jiashu RONG Beijing Research Institute of Uranium Geology P.O. Box 9818, Beijing, 100029 Peoples Republic of China Email address: [email protected] September 23, 2002 Abstract Myrmekite, an intergrowth of plagioclase and quartz vermicules, often occurs in felsic-to-intermediate, calc-alkalic plutonic and gneissic rocks. Several hypotheses for myrmekite genesis are briefly reviewed and discussed. The proportional relationship between the volume of quartz vermicules and the An value of plagioclase is consistent with the hypothesis or replacement, solid state exsolution, and recrystallization of primary plagioclase. (1) Perthitic albite and K- feldspar relicts in myrmekite and (2) swapped myrmekite between two differently oriented K-feldspar crystals obviously indicate that myrmekite is formed by nibble replacement of K-feldspar by myrmekitic plagioclase because of modification by Ca-bearing sodic emanation or fluid. Myrmekite of different morphology and spatial distribution are of the same metasomatic origin. The myrmekite that was produced during deformation should be later than that formed prior to deformation. Characteristics of myrmekite Myrmekite was first described by Michel-Lévy (1874) and named by Sederholm (1897) as an intergrowth of plagioclase and quartz vermicules. Myrmekite is commonly observed in felsic-to-intermediate calc-alkalic granitic rocks (but not in alkalic-tending plutonic rocks) and in granitic gneisses of similar composition. 2 On the basis of the geologic environment, Phillips (1974) classified myrmekite in the following ways: 1. rim myrmekite, occurring at the contact of plagioclase with another differently oriented K-feldspar; 2. intergranular myrmekite, situated at the boundary between two differently oriented K-feldspars; 3.
    [Show full text]
  • The Charnockite-Anorthosite Suite of Rocks Exposed in Central Dronning
    The charnockite-anorthosite suite of rocks exposed in central Dronning Maud Land, East Antarctica: a study on fluid-rock interactions, and post-entrapment change of metamorphic fluid inclusions Die charnockitischen und anorthositischen Gesteinsserien im zentralen Dronning Maud Land: Fluid-Gesteins-Wechselwirkungen und die Veränderung metamorpher Fluid-Einschlüsse nach ihrer Bildung Bärbel Kleinefeld Geologie der Polargebiete Fachbereich Geowissenschaften Universität Bremen Postfach 330440 28334 Bremen Die vorliegende Arbeit ist die inhaltlich unveränderte Fassung der Dissertation, die im Juli 2002 dem Fachbereich Geowissenschaften der Universität Bremen unter gleichem Titel vorgelegt wurde. Tableofcontents Table of contents Abstract.......................................................................................................................1 Zusammenfassung.................................................................................................... 3 1. Introduction ........................................................................................................5 1.1. Fluid-rockinteractionsindeep-seatedcrustalrocks...............................5 1.2. Previousstudiesandscopeofthethesis..................................................7 2. The charnockite – anorthosite suite of rocks..................................................9 2.1. Classifyingrocksofthecharnockiteseries ..............................................9 2.2. Massif-typeanorthosites.........................................................................
    [Show full text]
  • Structural Geology of the Upper Rock Creek Area, Inyo County, California, and Its Relation to the Regional Structure of the Sierra Nevada
    Structural geology of the upper Rock Creek area, Inyo County, California, and its relation to the regional structure of the Sierra Nevada Item Type text; Dissertation-Reproduction (electronic); maps Authors Trent, D. D. Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 27/09/2021 06:38:23 Link to Item http://hdl.handle.net/10150/565293 STRUCTURAL GEOLOGY OF THE UPPER ROCK CREEK AREA, INYO COUNTY, CALIFORNIA, AND ITS RELATION TO THE REGIONAL STRUCTURE OF THE SIERRA NEVADA by Dee Dexter Trent A Dissertation Submitted to the Faculty of the DEPARTMENT OF GEOSCIENCES In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY In the Graduate College THE UNIVERSITY OF ARIZONA 1 9 7 3 THE UNIVERSITY OF ARIZONA GRADUATE COLLEGE I hereby recommend that this dissertation prepared under my direction by __________ Dee Dexter Trent______________________ entitled Structural Geology of the Upper Rock Creek Area . Tnvo County, California, and Its Relation to the Regional Structure of the Sierra Nevada ________________ be accepted as fulfilling the dissertation requirement of the degree of ____________Doctor of Philosophy_________ ___________ P). /in /'-/7. 3 Dissertation Director fJ Date After inspection of the final copy of the dissertation, the following members of the Final Examination Committee concur in its approval and recommend its acceptance:* f t M m /q 2 g ££2 3 This approval and acceptance is contingent on the candidate's adequate performance and defense of this dissertation at the final oral examination.
    [Show full text]
  • On Charnockites ⁎ B
    Available online at www.sciencedirect.com Gondwana Research 13 (2008) 30–44 www.elsevier.com/locate/gr GR Focus On charnockites ⁎ B. Ronald Frost , Carol D. Frost Department of Geology and Geophysics, University of Wyoming, Laramie, WY 82071, USA Received 4 June 2007; received in revised form 20 July 2007; accepted 24 July 2007 Available online 7 August 2007 Abstract Charnockitic rocks form extensive orthogneiss plutons in many granulite terranes and are less commonly found in unmetamorphosed plutons, which have formed in various tectonic regimes. Geochemically, clearly igneous charnockites cover nearly the whole range of granite chemistry, from magnesian to ferroan and from calcic to alkalic. Pyroxenes from unmetamorphosed charnockitic rocks have compositions ranging from magnesian to very iron-rich and record temperatures as high as 1000 °C. Oxygen fugacities for these plutons range from below FMQ to Δ log FMQN+2, values that cover nearly the whole range found in other granitic rocks. This range in bulk chemistry and intensive parameters is a reflection of the many mechanisms that produce charnockites. They may form in rifting environments, where they are ferroan, alkali-calcic to alkalic and metaluminous. Many of these ferroan charnockites are isotopically primitive, suggesting that they have been derived largely or entirely from differentiation or melting of tholeiitic melts. Charnockites are also found in deeply eroded arcs, where they are magnesian, calcic to calc-alkalic and metaluminous. Some charnockitic magmas may form by crustal melting or have incorporated a large component of crustal melt; these plutons tend to be weakly to moderately peraluminous and to have intermediate values of FeO/(FeO+MgO).
    [Show full text]
  • Metamorphism
    Title page INTRODUCING METAMORPHISM Ian Sanders DUNEDIN EDINBURGH LONDON Contents Contents v Preface ix Acknowledgements x 1 Introduction 1 1.1 What is metamorphism? 1 1.1.1 Protoliths 1 1.1.2 Changes to the minerals 1 1.1.3 Changes to the texture 3 1.1.4 Naming metamorphic rocks 3 1.2 Metamorphic rocks – made under mountains 3 1.2.1 Mountain building 3 1.2.2 Directed stress, pressure and temperature in a mountain’s roots 4 1.2.3 Exhumation of a mountain’s roots 6 1.3 Metamorphism in local settings 6 1.3.1 Contact metamorphism 7 1.3.2 Hydrothermal metamorphism 7 1.3.3 Dynamic metamorphism 9 1.3.4 Shock metamorphism 9 2 The petrography of metamorphic rocks 11 2.1 Quartzite and metapsammite 11 2.1.1 Quartzite 11 2.1.2 Metapsammite 13 2.2 Metapelite 13 2.2.1 Slate 14 2.2.2 Phyllite and low-grade schist 16 2.2.3 Minerals and textures of medium-grade schist 17 2.2.4 The regional distribution of minerals in low- and medium-grade schist 20 2.2.5 Pelitic gneiss and migmatite 22 2.2.6 Metapelite in a contact aureole 23 2.2.7 The significance of Al2SiO5 for inferring metamorphic conditions 23 2.3 Marble 24 2.3.1 Pure calcite marble 24 2.3.2 Impure marble 26 2.3.3 Metasediments with mixed compositions 29 CONTENTS 2.4 Metabasite 30 2.4.1 Six kinds of metabasite from regional metamorphic belts 31 2.4.2 The ACF triangle for minerals in metabasites 36 2.4.3 P–T stability of metabasites, and metamorphic facies 38 vi 2.4.4 A metabasite made by contact metamorphism 40 2.5 Metagranite 41 2.5.1 Granitic gneiss and orthogneiss 41 2.5.2 Dynamic metamorphism
    [Show full text]
  • PRELIMINARY EVALUATION of BEDROCK POTENTIAL for NATURALLY OCCURRING ASBESTOS in ALASKA by Diana N
    Alaska Division of Geological & Geophysical Surveys MISCELLANEOUS PUBLICATION 157 PRELIMINARY EVALUATION OF BEDROCK POTENTIAL FOR NATURALLY OCCURRING ASBESTOS IN ALASKA by Diana N. Solie and Jennifer E. Athey Tremolite (UAMES 34960) displaying the soft, friable fibers of asbestiform minerals. Sample collected from the Cosmos Hills area, Kobuk District, Alaska, by Eskil Anderson. Image courtesy of the University of Alaska Museum Earth Sciences Department. June 2015 Released by STATE OF ALASKA DEPARTMENT OF NATURAL RESOURCES Division of Geological & Geophysical Surveys 3354 College Road, Fairbanks, Alaska 99709-3707 907-451-5020 dggs.alaska.gov [email protected] $2.00 (text only) $13.00 (per map sheet) TABLE OF CONTENTS Abstract ................................................................................................................................................................................................................................. 1 Introduction ........................................................................................................................................................................................................................ 1 General geology of asbestos ......................................................................................................................................................................................... 2 Naturally occurring asbestos potential in Alaska ..............................................................................................................................................
    [Show full text]
  • Streaming of Saline Fluids Through Archean Crust
    Lithos 346–347 (2019) 105157 Contents lists available at ScienceDirect Lithos journal homepage: www.elsevier.com/locate/lithos Streaming of saline fluids through Archean crust: Another view of charnockite-granite relations in southern India Robert C. Newton a,⁎, Leonid Ya. Aranovich b, Jacques L.R. Touret c a Dept. of Earth, Planetary and Spaces, University of California at Los Angeles, Los Angeles, CA 90095, USA b Inst. of Ore Deposits, Petrography, Mineralogy and Geochemistry, Russian Academy of Science, Moscow RU-119017, Russia c 121 rue de la Réunion, F-75020 Paris, France article info abstract Article history: The complementary roles of granites and rocks of the granulite facies have long been a key issue in models of the Received 27 June 2019 evolution of the continental crust. “Dehydration melting”,orfluid-absent melting of a lower crust containing H2O Received in revised form 25 July 2019 only in the small amounts present in biotite and amphibole, has raised problems of excessively high tempera- Accepted 26 July 2019 tures and restricted amounts of granite production, factors seemingly incapable of explaining voluminous bodies Available online 29 July 2019 of granite like the Archean Closepet Granite of South India. The existence of incipient granulite-facies metamor- phism (charnockite formation) and closely associated migmatization (melting) in 2.5 Ga-old gneisses in a quarry Keywords: fl Charnockite exposure in southern India and elsewhere, with structural, chemical and mineral-inclusion evidence of uid ac- Granite tion, has encouraged a wetter approach, in consideration of aqueous fluids for rock melting which maintain suf- Saline fluids ficiently low H2O activity for granulite-facies metamorphism.
    [Show full text]
  • Petrographical Characters of Some Important Host Rocks in Vizianagarm Manganese Ores Belt (A.P.), INDIA
    UNIVERSITY OF MAURITIUS RESEARCH JOURNAL – Volume 16 – 2010 University of Mauritius, Réduit, Mauritius Petrographical Characters of Some important host rocks in Vizianagarm Manganese Ores Belt (A.P.), INDIA. F. N Siddiquie Department of Geology,, Aligarh Muslim University India Email: [email protected] Paper Accepted on 17 February 2010 Abstract Petrographical study of various rocks types has been carried out in the present study area with the discovery of a new rock type- Crystalline algal Limestone. An attempt has been made to describe the petrographical characters of the following rock types encountered in the present study area. 1. Calc-granulite 2. Garnet-sillimanite-feldspathic gneiss 3. Garnetiferous gneiss 4. Feldspathic quartzite 5. Crystalline algal limestone 6. Shale 7. Hypersthene gneiss. 8. Granitic gneiss. The older Khondalite Group mainly consists of calc-granulite, garnet sillimanite gneiss, feldspathic quartzite and garnetiferous gneiss. The occurrence of crystalline algal limestone and red and green shales have been F.N Siddiquie reported for the first time. The younger Charnockite Group mainly consists of hypersthene gneiss (porphyrroblastic and non-porphyroblastic) and granitic gneisses. Granite and pegmatite occur as intrusive bodies in this group of rocks. The Khondalites and Charnockites show a complex structural pattern resulting from repeated periods of deformation. The general strike of rocks is NW-SE with local swings at places. These rocks at places show relict banding. Stratigraphically these are included within a thick succession of Pre- Cambrian rocks belonging to the Khondalite and Charnockite Groups of Dharwar Supergroup, that form a part of Eastern Ghat Complex of India. The manganiferous rocks that have been encountered in the Vizianagarm Manganese Ore Belt (A.P.) India are known as Kodurites.
    [Show full text]
  • A Systematic Nomenclature for Metamorphic Rocks
    A systematic nomenclature for metamorphic rocks: 1. HOW TO NAME A METAMORPHIC ROCK Recommendations by the IUGS Subcommission on the Systematics of Metamorphic Rocks: Web version 1/4/04. Rolf Schmid1, Douglas Fettes2, Ben Harte3, Eleutheria Davis4, Jacqueline Desmons5, Hans- Joachim Meyer-Marsilius† and Jaakko Siivola6 1 Institut für Mineralogie und Petrographie, ETH-Centre, CH-8092, Zürich, Switzerland, [email protected] 2 British Geological Survey, Murchison House, West Mains Road, Edinburgh, United Kingdom, [email protected] 3 Grant Institute of Geology, Edinburgh, United Kingdom, [email protected] 4 Patission 339A, 11144 Athens, Greece 5 3, rue de Houdemont 54500, Vandoeuvre-lès-Nancy, France, [email protected] 6 Tasakalliontie 12c, 02760 Espoo, Finland ABSTRACT The usage of some common terms in metamorphic petrology has developed differently in different countries and a range of specialised rock names have been applied locally. The Subcommission on the Systematics of Metamorphic Rocks (SCMR) aims to provide systematic schemes for terminology and rock definitions that are widely acceptable and suitable for international use. This first paper explains the basic classification scheme for common metamorphic rocks proposed by the SCMR, and lays out the general principles which were used by the SCMR when defining terms for metamorphic rocks, their features, conditions of formation and processes. Subsequent papers discuss and present more detailed terminology for particular metamorphic rock groups and processes. The SCMR recognises the very wide usage of some rock names (for example, amphibolite, marble, hornfels) and the existence of many name sets related to specific types of metamorphism (for example, high P/T rocks, migmatites, impactites).
    [Show full text]
  • A Crystal Size Distribution (CSD) Study of Microcline in the Cathedral Peak Granodiorite, Sierra Nevada, California
    Origin of megacrysts in granitoids by texturai coarsening: a crystal size distribution (CSD) study of microcline in the Cathedral Peak Granodiorite, Sierra Nevada, California MICHAEL D. HIGGINS Sciences de la Terre, Université du Québec à Chicoutimi, Chicoutimi, G7H 2Bl, Canada (e-mail: [email protected]) Abstract: Microcline megacrysts in the Cathedra! Peak Granodiorite and other parts of the Tuolumne Intrusive Suite were formed by texturai coarsening (Ostwald Ripening) of earlier formed crystals. The early-formed crystals nucleated and grew in an environment of increasing undercooling, probably during the ascent of the magma. Emplacement of the magma into warm host rocks promoted texturai coarsening. Crystals smaller than a certain size (the critical size) dissolved in the interstitial melt whilst larger crystals grew. Microcline was most sensitive to this effect as the magma temperature was buffered close to its liquidus for a long period by the release of latent heat of crystallization. Positive feedback between texturai coarsening and magma permeability channelled the flow of interstitial melt to produce a heterogeneous distribution of megacrysts. Megacryst growth was halted when cooling resumed at the end of the intrusive cycle. K-feldspar nucleation was then renewed and K-feldspar crystals grew to form part of the groundmass. lt was the particular thermal history of this pluton that promoted texturai coarsening-chemically similar plutons that lack megacrysts probably did not have the pause during cooling that was necessary for the development of this texture. Euhedral K-feldspar megacrysts up to 20 cm Swanson (1977) and Fenn (1977) measured the long are a striking and relatively common nucleation and growth rates of plagioclase, component of many granitoid plutons, but K-feldspar and quartz crystallizing from glassy their origin is still controversial.
    [Show full text]
  • 43. Myrmekite Formation at Temecula, California, Revisited: a Photomicrographic Essay Illustrating Replacement Textures
    1 ISSN 1526-5757 43. Myrmekite formation at Temecula, California, revisited: A photomicrographic essay illustrating replacement textures Lorence G. Collins and Barbara J. Collins Email: [email protected] May 18, 2002 Abstract A sequence of sixteen photomicrographs of thin sections of unaltered quartz diorite through a zone of deformation to myrmekite-bearing granite near Temecula, California, shows the textural and mineralogical changes that occurred in a quartz diorite as (1) K-metasomatism altered the primary plagioclase crystals to form microcline, myrmekite, quartz-bleb clusters, and recrystallized sodic plagioclase and as (2) Si-metasomatism converted microfractured biotite and hornblende into quartz. Cathodoluminescence, electron microprobe, and scanning electron studies confirm the chemical changes that occurred in the altered and recrystallized minerals. These photomicrographs and others (a) provide clues to the origin of metasomatic granitic in other terranes, (b) show that massive granite lacking gneissic fabric or cataclasis can be formed by K-metasomatism, (c) indicate that sharp contacts between mafic and felsic igneous rocks are not always caused by injection of magma into fractured rock, (d) reveal that complete cataclasis of all normally zoned plagioclase crystals in a mafic rock followed by K-metasomatism results in metasomatic granite lacking both normally zoned plagioclase and K- feldspar megacrysts, and (e) suggest that selective deformation of a few normally zoned plagioclase crystals in a primary rock can result in K-feldspar megacrysts coexisting with normally zoned plagioclase in granodiorite or quartz monzonite. Introduction This article is intended to be a supplement to articles http://www.csun.edu/~vcgeo005/Nr1Myrm.pdf and http://www.csun.edu/~vcgeo005/Nr2Myrm.pdf and to provide additional illustrations that show how myrmekite formed in the site near Temecula, California (Collins, 1988ab; Hunt et al., 1992).
    [Show full text]