Basic Intrusion, Charnockite.Rapakivi Granite Plutonism Aod Crusta! Depletion, S

Total Page:16

File Type:pdf, Size:1020Kb

Basic Intrusion, Charnockite.Rapakivi Granite Plutonism Aod Crusta! Depletion, S RENolCONTI DELL,\ SOCIETA lTAUANA 01 MINERALOG IA E PETROLOGIA, 1988, \bI. 4}.2, pp. '4).,,4 Basic intrusion, charnockite.rapakivi granite plutonism aod crusta! depletion, S. W. Sweden FREDERIK H. HUBBARD Depanment of Geolosy, Dundee University, Dundee, Scotland AUSTRACT. - The southern segment of the South-West South-West Swedish Province by a series of Swedish Province (SWSP) of the Precambrian of the major thrust zones, it has characteristics Baltic Shield has features which distinguish it from the northern sesment of the same province and the peculiar to this region pf the Swedish Svecofennian sequences to the east. Repeated cycles of Precambrian. These include an abundance of syn and late·orogenic b..sic magma injection maimained meta-basic intrusions, the occurrence of high crusta! temperatures and led to progressive granulite fades assemblages within the general depletion of the rode! at, and adjacent to, the conduits. This is shown by the development of loc:::aI ~u1ile facies upper amphibolite facies terrain and zones in the seneral amphibolite facies terrain and the distinctive plutonic associations of alkaline occurrence of plutonic charnockite Jrulsses. granite and charnockite (e.g. QUENSEL P., The syn-orogenic: basic magmas caused depletion largely 1951; CALDENruS et al., 1966, MOHREN E., by the generation of hydrous solutions derived from dehydration of mafic minerals in the rountry rocks LARSSON W., 1968, HUBBARD F.H., 1975, ronsequent on the heat influx associated with the 1978). A Rb-Srisochron age of 1420Ma was intrusion. These hydrothermlll solutions metasomatised obtained by WELIN and GORBATSCHEV (1978) and migmatised the basic rocks, formed ap!ite from a composite charnock.ite and granite segregatioO$, or were exhausted to higher level. pIu ton (the Charnockite-Granite Association The late orogenic basic magmalism, which was associated with a shearing deformation, led to the of the Varberg region, HUSBARD F.H., 1975). development of granitic plutons which segregated during This piu ton was affected by post­ I15CCnt to leave residual-testite charnockile and released emplacement, hot shearing and thrusting and REE and RE-enriched alkali granites with. rapakivi the date may reflect isotope resetting during granite signature. While a COl volatile phase is indicated as importam this tectonic activity rather than the age of in the llte·tectonic episode, it is not evident as a faclor the intrusion. A similar age is, however, found in the earlier syntectonic crustal depletion. for amphibolites and granitoids in the Key words: Basic magma, depletion, dJarnockile, sranite. northern segment of the South-West Swedish Province (e.g. SKIOLD T. , 1976; DALY].S., PARK R.G., CUFF R.A. , 1979; SAMUELSSON L. , AHALL K.-L, 1985). The add plutonic rocks were emplaced in metamorphic Introduction sequences which show evidence of a long and The southern segment of the South West complex earlier development history. The Swedish Province (Fig. 1) occupies a impression gained is one of an old sequence somewhat enigmatic position in the hierarchy of crustal rocks which has undergone of development of the Precambrian rock extensive, and perhaps repeated, reworking. sequences of the Baltic Shield. Separated from Unfortunately no firm time scale has been the Svecofennian Province to the east by a established for the period preceding the late, major mylonite zone and its associated hot deformation and recrystallisation. granites and from the northern segment of the However, the rocks of south-west Sweden are ~44 HUBBARD EH . clearly old and may represent an Early DALY j.S. et al., 1983), they lack similar Proterozoic, or even Archaean, province with prominence in the southern segmenl. a history of Proterozoic reworking. The differences between the rock associations of General geology of the Varberg Region the South-West Swedish Province and those of the Svecofennian Province to the east may The best exposure of the rock sequences merely be a consequence of the exposure of of the southern segmenl of the South-West differing crustallevels but the possibility that Swedish Province is to be found around the the South-West Swedish Province is exotic town of Varberg, on the Kattegat coast south cannot be ignored. The rocks of south-west of Gothenburg (Fig. 1), and contiguous with Sweden most closely resemble those of the the limiting northen thrust zone. The geology Pee-Caledonian rocks of southern Norway is dominated by an intrusive plutonic complex (e.g. TORSKE T., 1985), which have a strong which comprises both charnockitic and non­ Sveconorwegian (GrenvilIian) signature charnockitic granitoid components in intimate thought, to some extent, to mark overprinting association - the Varberg Charnockite­ of a younger age on older rocks (PRlEM Granite Association (CGA) - (HUBBARD RN.A. et aI., 1973; VERSTEEVE A., 1975; F.H ., 197.5). The country-rocks to this TORSKE T., 1977; SMALLEY p,e. et al., 1983). association are, in large pare, upper While c. 1000Ma ages are fairly common in am phibolite facies grade granitic para-gneisses the northern segment of the South-West which have locally developed charnockitic Swedish Province (e.g. SAMUfJ..SSON 1., 1980; characters (HUBBARD F.H., 1978). Horizons I' Imet.basit, Okm Fig. 1. - Location map (S.A ... study area; G .. Gothc:nburg; S. Stockholm; 0 .. Oslo; SWSP(S)·South-We$\ Swedish Province (southern segment); SWSP(N) .. South-We$t Swedish Province (northern segment); SOA .. Svcwfennian Orogenic A15ociation; cross panelD" Protogene woe granite$; dot panern .. Caledonide$) and geological sketch map of the Varberg area (black .. mela·basic rocks; VC, AGe and TC .. charnockite and sub-charDOCkite components and TG . the mator granite component of the Oumockite-Granite Association, CGA). BASIC INTRUSlON, CHARNOCKJTE..RAPAKlVI GRANITE PWIONISM AND CRUSTAL DEPLETION ETC. 5 4 .5 of more varied lithology, which include meta· occurring as enclaves, xenoliths and intrusive basic layers, occur within these rather sheets in the charnockites and as sub­ monotonous granitic gneisses. It is in these conformable sheets in the country rocks. compositionally-layered horizons that the Several generations of basic intrusion are structural complexity of the country rock indicated (Figs. 2, 3), which are all now Fig. 2. - Folded metabuites cut by younger metabasile in depleted (charnockitic) granite gneiss. Triislovsliige. Fig. }. - Agmatite of hornblendite blocks in scapolite·metabaggro. N. Honen. ~nciss is most clearly expressed. Metabasic represented by metamorphic derivatives. They rocks are a feature 01 both the plutonic may be grossly divided into those which complex and the surrounding country rocks; predate the granitoid plutonic activity and 546 HU88ARO F.H. The Period of Granitoid Plutonic Activity Although rather severely disrupted by post­ emplacement hot shearing and thrusting the general form of the charnockite and granite complex of the Varherg region can be reconstructed with reasonable confidence due to the excellence of the outcropping along this coastal region (Fig. 4). The composite intrusion was emplaced during a period of shearing and shear folding, synchronous with a further basic magma influx into country rocks which already had well-established major structural and metamorphic patterns. The form of the pluton follows the general structural grain of the country rocks with the narrow, deeper, neck lying in a structural steep zone, which was concurrently being further accentuated by shearing. The lateral spread Fig. 4. - Idealised 5e(:tion of the Chamockitc:·Granite of the pluton at higher levels coincides with AS$odation. Fine dots .. charnockite cumulate (VC of a similar change in country rock structure. A Fig. I); coarse 001$ .. the active fractionatins zone (AGe of Fig. 1); heavy c;ros5eS" charnockitc and sub­ parallel distribution can be observed in the charnockite raiduum (Te of Fig. 1); fWit crosses .. the products of the accompanying basic activity. evolved granite (r G of Fig_ 1). This discontinuity of structural grain continued to play a fundamental role during those sub-sYhchronous with the emplacement the subsequent major thrusting which of the granitoids. The early group of meta­ established the northern limit of the southern basic rocks are amphibolites and garnet­ segment of the South-West Swedish Province. amphibolites and afe commonly linked with migmatisation. The younger group rocks, on The Charnockite-Granite Plutonic Activity the other hand, characteristically occur as garnet-pyribolite, although there are The plutonic granitoid association of the associated local developments of coarse garnet­ Varberg region has less well , and less amphibolite. completely, exposed counterparts throughout the province. In some instances, the granite has become detached from its charnockitic associates, in others, there is arrested The Pre-CGA Meta-basic Rocks development, as displayed at Varherg (the The earliest recognisable basic magmatism Charnockite-Granite Association or CGA of is that associated with the lithologically­ HUBBARD F. H ., 1975), where the granite­ layered gneiss/granulites within the granitic charnockite link remains intact, thus revealing gneisses, represented by tight, strongly the mechanism of formation. flattened, fold remnants. These may ~prese:nt The massive charnockite phases of these a volcanic component of the early supracrustal plutons are intcpreted as «cumulate-restites» system of the the gneiss complex. The from the fractionation of anatectic melt­ following
Recommended publications
  • ANTIPERTHITE and MANTLED FELDSPAR TEXTURES in CHARNOCKITE (ENDERBITE) from S.W. NIGERIA Fnnp. H. Hunrenn, Departmenl of Geology
    THE AMERICAN MINERALOGIST, VOL 50, \OVEMBER-DECEMBER, 1965 ANTIPERTHITE AND MANTLED FELDSPAR TEXTURES IN CHARNOCKITE (ENDERBITE) FROM S.W. NIGERIA Fnnp. H. Hunrenn, Departmenl of Geology,Fourah Bay College, Freelown,Siena Leone. ABSTRACT The strongly antiperthitic plagioclases of a hypersthene-quattz-dioritic (enderbite) member of a charnockite series occurring in S.W. Nigeria v''ere found to be commonly mantled by alkali feldspar (orthoclase microperthite). The potassium-rich phase of the orthoclase microperthite is in optical continuity with the potassium-rich phase of the anti- perthites. The petrography and mineralogy of these feldspars are described, including qualitative data obtained by microprobe analysis, and the probability of a common origin for the antiperthite and mantle alkali feldspar by exsolution processes discussed. Modal analyses of the proportions of alkali feldspar to plagioclase for trvelve individual crystals from the same rock specimen gave sufficientiy constant values to help substantiate the proposal of exsolution origin. INrnolucrroN Antiperthitic plagioclaseis a very common feature of the charnockitic rocks, to such an extent that it is often quoted as a characteristicof such rocks (e.g.,Heinrich, 1956).Because of the practical difficultiesof experi- mental and synthetic studies inherent in the sluggish transformation kinetics of the plagioclases,antiperthite texture has not receivedas great attention as the perthite textures from researchworkers. Development of antiperthite both by exsolutionand replacementprocesses is accepted (Deer et el., t963). An exsolution origin for the antiperthites in granulite faciesrocks has beenconsidered by Sen (1959).This worker investigated the potassium content of a seriesof naturai plagioclasefeldspars from amphibolite facies,granulite faciesand volcanic rocks by meansof par- tial chemical analyses.He found a definite increasein potassium content utith increase in temperature of formation and sought to explain this trend by lattice structural consideratiorls,e.g.
    [Show full text]
  • The Charnockite-Anorthosite Suite of Rocks Exposed in Central Dronning
    The charnockite-anorthosite suite of rocks exposed in central Dronning Maud Land, East Antarctica: a study on fluid-rock interactions, and post-entrapment change of metamorphic fluid inclusions Die charnockitischen und anorthositischen Gesteinsserien im zentralen Dronning Maud Land: Fluid-Gesteins-Wechselwirkungen und die Veränderung metamorpher Fluid-Einschlüsse nach ihrer Bildung Bärbel Kleinefeld Geologie der Polargebiete Fachbereich Geowissenschaften Universität Bremen Postfach 330440 28334 Bremen Die vorliegende Arbeit ist die inhaltlich unveränderte Fassung der Dissertation, die im Juli 2002 dem Fachbereich Geowissenschaften der Universität Bremen unter gleichem Titel vorgelegt wurde. Tableofcontents Table of contents Abstract.......................................................................................................................1 Zusammenfassung.................................................................................................... 3 1. Introduction ........................................................................................................5 1.1. Fluid-rockinteractionsindeep-seatedcrustalrocks...............................5 1.2. Previousstudiesandscopeofthethesis..................................................7 2. The charnockite – anorthosite suite of rocks..................................................9 2.1. Classifyingrocksofthecharnockiteseries ..............................................9 2.2. Massif-typeanorthosites.........................................................................
    [Show full text]
  • AN ABSTRACT of the THESIS of Federico Cernuschi Rodilosso For
    AN ABSTRACT OF THE THESIS OF Federico Cernuschi Rodilosso for the degree of Master of Science in Geology presented on February 11, 2011. Title: Geology of the Cretaceous Lascano-East Intrusive Complex: Magmatic Evolution and Mineralization Potential of the Merín Basin, Uruguay Abstract approved: John H. Dilles The Cretaceous Merín aborted-rift basin of eastern Uruguay is composed of sub- alkaline Paraná-Etendeka province basaltic flows and shallow intrusives (~133 to 131 Ma), rhyolitic ignimbrites (~130 to 128 Ma) and associated mildly alkaline to alkaline intrusions and volcanic rocks (~128 to 127 Ma). Four intrusive complexes from 20 to >30 kilometers wide are identified by circular positive gravity and cospatial magnetic anomalies and are aligned in a northeast-southwest trend. Whereas the outcropping Valle Chico complex is mainly composed by mildly alkaline syenites, drilling at Lascano East revealed mostly alkaline gabbros and trachytes. The Lascano-West and San Luis concealed complexes are inferred by the location of the aeromagnetic and gravity anomalies. Ten lithogeochemical units were identified and grouped into three rock associations. A sub-alkaline group composed of Treinta y Tres A basalts, Treinta y Tres B basalts and gabbros, Lavalleja rhyolitic ignimbries and San Miguel granodiorite granophyres; a mildly alkaline group including the Santa Lucía basalts and gabbros, Aiguá rhyolites, Valle Chico syenites and India Muerta rhyolites; and an alkaline group including the Lascano alkaline gabbro to trachyte series and the Arrayán olivine basalts. The only observed sedimentary rocks are conglomerates grouped as the Quebracho Formation. Melting of a shallow mantle source (depleted mantle) combined with abundant crustal assimilation likely produced the diversity of the sub-alkaline magmatic rocks.
    [Show full text]
  • On Charnockites ⁎ B
    Available online at www.sciencedirect.com Gondwana Research 13 (2008) 30–44 www.elsevier.com/locate/gr GR Focus On charnockites ⁎ B. Ronald Frost , Carol D. Frost Department of Geology and Geophysics, University of Wyoming, Laramie, WY 82071, USA Received 4 June 2007; received in revised form 20 July 2007; accepted 24 July 2007 Available online 7 August 2007 Abstract Charnockitic rocks form extensive orthogneiss plutons in many granulite terranes and are less commonly found in unmetamorphosed plutons, which have formed in various tectonic regimes. Geochemically, clearly igneous charnockites cover nearly the whole range of granite chemistry, from magnesian to ferroan and from calcic to alkalic. Pyroxenes from unmetamorphosed charnockitic rocks have compositions ranging from magnesian to very iron-rich and record temperatures as high as 1000 °C. Oxygen fugacities for these plutons range from below FMQ to Δ log FMQN+2, values that cover nearly the whole range found in other granitic rocks. This range in bulk chemistry and intensive parameters is a reflection of the many mechanisms that produce charnockites. They may form in rifting environments, where they are ferroan, alkali-calcic to alkalic and metaluminous. Many of these ferroan charnockites are isotopically primitive, suggesting that they have been derived largely or entirely from differentiation or melting of tholeiitic melts. Charnockites are also found in deeply eroded arcs, where they are magnesian, calcic to calc-alkalic and metaluminous. Some charnockitic magmas may form by crustal melting or have incorporated a large component of crustal melt; these plutons tend to be weakly to moderately peraluminous and to have intermediate values of FeO/(FeO+MgO).
    [Show full text]
  • Streaming of Saline Fluids Through Archean Crust
    Lithos 346–347 (2019) 105157 Contents lists available at ScienceDirect Lithos journal homepage: www.elsevier.com/locate/lithos Streaming of saline fluids through Archean crust: Another view of charnockite-granite relations in southern India Robert C. Newton a,⁎, Leonid Ya. Aranovich b, Jacques L.R. Touret c a Dept. of Earth, Planetary and Spaces, University of California at Los Angeles, Los Angeles, CA 90095, USA b Inst. of Ore Deposits, Petrography, Mineralogy and Geochemistry, Russian Academy of Science, Moscow RU-119017, Russia c 121 rue de la Réunion, F-75020 Paris, France article info abstract Article history: The complementary roles of granites and rocks of the granulite facies have long been a key issue in models of the Received 27 June 2019 evolution of the continental crust. “Dehydration melting”,orfluid-absent melting of a lower crust containing H2O Received in revised form 25 July 2019 only in the small amounts present in biotite and amphibole, has raised problems of excessively high tempera- Accepted 26 July 2019 tures and restricted amounts of granite production, factors seemingly incapable of explaining voluminous bodies Available online 29 July 2019 of granite like the Archean Closepet Granite of South India. The existence of incipient granulite-facies metamor- phism (charnockite formation) and closely associated migmatization (melting) in 2.5 Ga-old gneisses in a quarry Keywords: fl Charnockite exposure in southern India and elsewhere, with structural, chemical and mineral-inclusion evidence of uid ac- Granite tion, has encouraged a wetter approach, in consideration of aqueous fluids for rock melting which maintain suf- Saline fluids ficiently low H2O activity for granulite-facies metamorphism.
    [Show full text]
  • The Genesis of the Gaborone Rapakivi Granite Complex in Southern Africa
    J. geof. Soc. London, Vol. 139. 1982, pp. 109-126, 16 figs, 2 tables. Printed in Northern Ireland. The genesis of the Gaborone rapakivi granite complex in southern Africa R. M. Key & E. P. Wrigbt SUMMARY: The Gaborone Granite is a mushroom-shaped intrusion with a surface area of over 5000 km’. Theintrusion is layered,consisting of a centralcore of rapakivigranite (ThamagaGranite) surrounded bysuccessive shells of anequigranular leucocratic granite (Kgale Granite), a porphyritic granophyre or microgranite (Ntlhantlhe Microgranite) and an outermostzone of massiveEelsite (Kanye Volcanics). Thewhole lithological sequence is deduced to have been derived from a single, highly viscous magma body emplaced into the crust at a high level. The genesis is proposed as follows. The outer felsitesrepresent quenched primary magma with the underlying porphyritic granophyreshaving formed during a subsequenttranquil period after emplacement. The rapakivi granite corewas also of early crystallization abovethe floor but with significant textural characters impressed during updoming in the late crystallization stage. Residual liquid rich in SiO,, K20 and volatiles migrated upwards to form the Kgale Granite. The Gaborone Granite was emplaced in the KaapvaalCraton at about 2400 Ma and its morphology was controlled by pre-existing structures in the crust. The countryrock consists of Archaean gneisses, Lobatse Volcanic Group supracrustals and locally Transvaal Supergroup strata. Chemically the Gaborone Granite is identical to other early Proterozoic non-orogenic granites of theKaapvaal Craton. It is also similar in manyrespects to the Fennoscandian rapakivi granites. The Gaborone Granite has a surface area exceeding al. (1974) reviewed the various hypotheses in the light 5000 km2 in SE Botswana and adjacent parts of South of results of a series of age determinations.
    [Show full text]
  • Petrographical Characters of Some Important Host Rocks in Vizianagarm Manganese Ores Belt (A.P.), INDIA
    UNIVERSITY OF MAURITIUS RESEARCH JOURNAL – Volume 16 – 2010 University of Mauritius, Réduit, Mauritius Petrographical Characters of Some important host rocks in Vizianagarm Manganese Ores Belt (A.P.), INDIA. F. N Siddiquie Department of Geology,, Aligarh Muslim University India Email: [email protected] Paper Accepted on 17 February 2010 Abstract Petrographical study of various rocks types has been carried out in the present study area with the discovery of a new rock type- Crystalline algal Limestone. An attempt has been made to describe the petrographical characters of the following rock types encountered in the present study area. 1. Calc-granulite 2. Garnet-sillimanite-feldspathic gneiss 3. Garnetiferous gneiss 4. Feldspathic quartzite 5. Crystalline algal limestone 6. Shale 7. Hypersthene gneiss. 8. Granitic gneiss. The older Khondalite Group mainly consists of calc-granulite, garnet sillimanite gneiss, feldspathic quartzite and garnetiferous gneiss. The occurrence of crystalline algal limestone and red and green shales have been F.N Siddiquie reported for the first time. The younger Charnockite Group mainly consists of hypersthene gneiss (porphyrroblastic and non-porphyroblastic) and granitic gneisses. Granite and pegmatite occur as intrusive bodies in this group of rocks. The Khondalites and Charnockites show a complex structural pattern resulting from repeated periods of deformation. The general strike of rocks is NW-SE with local swings at places. These rocks at places show relict banding. Stratigraphically these are included within a thick succession of Pre- Cambrian rocks belonging to the Khondalite and Charnockite Groups of Dharwar Supergroup, that form a part of Eastern Ghat Complex of India. The manganiferous rocks that have been encountered in the Vizianagarm Manganese Ore Belt (A.P.) India are known as Kodurites.
    [Show full text]
  • Isotopic Evidence for the Origin of Proterozoic Massif-Type Anorthosites and Their Relation to Rapakivi Granites in Southern Finland and Northern Brazil
    Isotopic evidence for the origin of Proterozoic massif-type anorthosites and their relation to rapakivi granites in southern Finland and northern Brazil AKU HEINONEN ACADEMIC DISSERTATION Department of Geosciences and Geography To be presented, with the permission of the Faculty of Science of the University of Helsinki, for public examination in the Auditorium of the University Museum Arppeanum, on May 26th, 2012 at 12 o’clock noon. DEPARTMENT OF GEOSCIENCES AND GEOGRAPHY A18 / HELSINKI 2012 DEPARTMENT OF GEOSCIENCES AND GEOGRAPHY A18 © Aku Heinonen (synopsis and Paper III) © Oxford University Press (Paper I) © The Mineralogical Association of Canada (Paper II) © Elsevier B.V. (Paper IV) Cover photo: Outcrops of the Repartimento anorthosite of the Mucajaí complex along the Rio Repartimento, in Roraima, northern Brazil. Author’s address: Aku Heinonen Department of Geosciences and Geography P.O.Box 64 00014 University of Helsinki Finland [email protected] Supervised by: Professor Tapani Rämö Department of Geosciences and Geography University of Helsinki Co-supervised by: Dr. Irmeli Mänttäri Geological Survey of Finland Reviewed by: Professor Lewis Ashwal School of Geosciences University of Witwaterstrand South Africa Docent Hannu Huhma Geological Survey of Finland Discussed with: Professor James S. Scoates Department of Earth and Ocean Sciences University of British Columbia Canada Department of Geosciences and Geography A ISSN-L 1798-7911 ISSN 1798-7911 (print) ISBN 978-952-10-6319-0 (paperback) ISBN 978-952-10-6320-6 (PDF) http://ethesis.helsinki.fi Unigrafia Helsinki 2012 2 Heinonen, A., 2012. Origin of Proterozoic massif-type anorthosites Heinonen, A., 2012. Isotopic evidence for the origin of Proterozoic massif-type anorthosites and their relation to rapakivi granites in southern Finland and northern Brazil.
    [Show full text]
  • The Shahewan Rapakivi-Textured Granite – Quartz Monzonite Pluton, Qinling Orogen, Central China… 133
    The Shahewan rapakivi-textured granite – quartz monzonite pluton, Qinling orogen, central China… 133 THE SHAHEWAN RAPAKIVI-TEXTURED GRANITE - QUARTZ MONZONITE PLUTON, QINLING OROGEN, CENTRAL CHINA: MINERAL COMPOSITION AND PETROGENETIC SIGNIFICANCE XIAOXIA WANG, TAO WANG, ILMARI HAAPALA AND XINXIANG LU WANG, XIAOXIA, WANG, TAO, HAAPALA, ILMARI and LU, XINXIANG 2002. The Shahewan rapakivi-textured granite – quartz monzonite pluton, Qin- ling orogen, central China: mineral composition and petrogenetic significance. Bulletin of the Geological Society of Finland 74, Parts 1–2, 133–146. The Mesozoic Shahewan pluton consists of four texturally different types of biotite-hornblende quartz monzonite. In the porphyritic types alkali feldspar occurs as euhedral or ovoidal megacrysts that are often mantled by one or more plagioclase shells, and as smaller grains in the groundmass. Quartz, plagioclase (An20–28), biotite, and hornblende occur as inclusions in the alkali feldspar mega- crysts and, more abundantly, in the groundmass. Euhedral quartz crystals in the groundmass are not as common and well developed as in typical rapakivi gran- ite. Compared to typical rapakivi granites, the mafic minerals (biotite and horn- blende) are rich in Mg and poor in Fe, and the whole rock is low in Si, K, F, Ga, Zr, LREE, Fe/Mg, and K/Na. The rocks of the Shahewan pluton are thus regarded as rapakivi-textured quartz monzonites and granites but not true rapa- kivi granites. Key words: granites, rapakivi, quartz monzonite, alkali feldspar, phenocrysts, geochemistry, mineralogy, Mesozoic, Shahewan, Qinling, China Xiaoxia Wang: China University of Geosciences, Beijing 100083, China and Department of Natural Resources, Chang’an University, Xi’an 710054, China and Department of Geology, P.O.
    [Show full text]
  • 5. Myrmekite Formed by Exsolution?
    1 ISSN 1526-5757 5. MYRMEKITE FORMED BY EXSOLUTION? Lorence G. Collins email: [email protected] February 3, 1997 In order to remain open to other possibilities for the origin of myrmekite, I report the following two sites in this presentation in which bulbous myrmekite on the border of perthitic orthoclase is suggested by other investigators to form by exsolution. Weinsberg (Moldanubian) Granite, Austria At the first site, the Weinsberg (Moldanubian) granite and an older quartz- monzonite facies of the South Bohemian pluton in Austria both contain orthopyroxene and clinopyroxene and must have crystallized from magmas at high temperatures. The granite contains orthoclase megacrysts (as much as 10 to 20 cm long), which (1) are chemically zoned with Ba-rich cores (1 to 2 % mol Cs; and locally as much as 6 to 8 % Cs) and (2) are mineralogically zoned with aligned inclusions of plagioclase whose subhedral to euhedral faces are parallel to potential faces of the orthoclase (from illustrations at poster session, III Hutton Symposium, Koller and Kloetzli, 1995; personal communication, Koller, 1996). The megacrysts are perthitic and locally are bordered by small bulbous myrmekite with tiny quartz vermicules. Plagioclase lamellae are absent in the orthoclase adjacent to the myrmekite. The myrmekite is also associated with symplectic biotite which Koller and Kloetzli (1995) suggest is formed by the breakdown reaction orthopyroxene + K-feldspar + water = biotite + quartz. Discussion Koller (personal communication at the Hutton Symposium, 1995) suggested that the myrmekite bordering the orthoclase megacrysts was formed by exsolution. If that is true, it should have contrasting characteristics with myrmekite formed by K-metasomatism.
    [Show full text]
  • Charnockitic Magmatism in Southern India
    Charnockitic magmatism in southern India H M Rajesh1∗ and M Santosh2 1Department of Geographical Sciences and Planning, University of Queensland, St Lucia, 4072 Queensland, Australia. 2Department of Natural Environmental Science, Faculty of Science, Kochi University, Kochi 780-8520, Japan. ∗e-mail: [email protected] Large charnockite massifs cover a substantial portion of the southern Indian granulite terrain. The older (late Archaean to early Proterozoic) charnockites occur in the northern part and the younger (late Proterozoic) charnockites occur in the southern part of this high-grade terrain. Among these, the older Biligirirangan hill, Shevroy hill and Nilgiri hill massifs are intermediate charnockites, with Pallavaram massif consisting dominantly of felsic charnockites. The charnockite massifs from northern Kerala and Cardamom hill show spatial association of intermediate and felsic charnock- ites, with the youngest Nagercoil massif consisting of felsic charnockites. Their igneous parentage is evident from a combination of features including field relations, mineralogy, petrography, ther- mobarometry, as well as distinct chemical features. The southern Indian charnockite massifs show similarity with high-Ba–Sr granitoids, with the tonalitic intermediate charnockites showing simi- larity with high-Ba–Sr granitoids with low K2O/Na2O ratios, and the felsic charnockites showing similarity with high-Ba–Sr granitoids with high K2O/Na2O ratios. A two-stage model is suggested for the formation of these charnockites. During the first stage there was a period of basalt under- plating, with the ponding of alkaline mafic magmas. Partial melting of this mafic lower crust formed the charnockitic magmas. Here emplacement of basalt with low water content would lead to dehy- dration melting of the lower crust forming intermediate charnockites.
    [Show full text]
  • Origin of Myrmekite As It Relates to K-, Na-, and Ca-Metasomatism and the Metasomatic Origin of Some Granite Masses Where Myrmekite Occurs
    1 Origin of myrmekite as it relates to K-, Na-, and Ca-metasomatism and the metasomatic origin of some granite masses where myrmekite occurs. Lorence Gene Collins1 1Department of Geological Sciences, California State University Northridge, Northridge, CA 91330 Barbara Jane Collins2 2Department of Biology, California Lutheran University, Thousand Oaks, CA 91360 1email: [email protected] December 2013 Key words: metasomatism, K-feldspar, granite, myrmekite ABSTRACT Petrologists generally agree that granitic rocks form by crystallization from magma. Some granitic bodies, however, have been modified by alkali metasomatism at subsolvus temperatures (350-550°C). Myrmekite offers a petrographic means to detect the occurrence and conditions of alkali metasomatism in granitic rocks. Because metasomatic minerals inherit the hypidiomorphic textures of the former magmatic rocks, K-, Na-, and Ca-metasomatism may go unrecognized were it not for the additional presence of myrmekite in combination with other textural and mineralogical features, including microfractures, parallel alignments of silicate lattices and feldspar twin planes, quartz sieve-textures in ferromagnesian silicates, and sizes of quartz vermicules. Deformation is a precursor for myrmekite formation, but recrystallization may obliterate the deformation textures, so that myrmekite is the only remnant of prior deformation history. Crystals under stress develop a porosity that opens rocks to hydrous fluid that moves through the crystals and create a large-scale, coupled, dissolution-reprecipitation that totally modifies the rocks’ compositions. The loss of displaced Ca, Mg, Fe, and Al on a plutonic scale causes shrinkages as the residue becomes more granitic. The maximum width of the quartz vermicules in myrmekite correlates with the An content of the primary plagioclase being replaced that was once in the surrounding non-myrmekite-bearing relatively more-mafic rock.
    [Show full text]