<<

The charnockite- suite of rocks exposed in central Dronning Maud Land, East Antarctica: a study on fluid-rock interactions, and post-entrapment change of metamorphic fluid inclusions

Die charnockitischen und anorthositischen Gesteinsserien im zentralen Dronning Maud Land: Fluid-Gesteins-Wechselwirkungen und die Veränderung metamorpher Fluid-Einschlüsse nach ihrer Bildung Bärbel Kleinefeld

Geologie der Polargebiete Fachbereich Geowissenschaften Universität Bremen Postfach 330440 28334 Bremen

Die vorliegende Arbeit ist die inhaltlich unveränderte Fassung der Dissertation, die im Juli 2002 dem Fachbereich Geowissenschaften der Universität Bremen unter gleichem Titel vorgelegt wurde. Tableofcontents

Table of contents

Abstract...... 1 Zusammenfassung...... 3

1. Introduction ...... 5

1.1. Fluidrockinteractionsindeepseatedcrustalrocks...... 5 1.2. Previousstudiesandscopeofthethesis...... 7 2. The charnockite – anorthosite suite of rocks...... 9

2.1. Classifyingrocksofthecharnockiteseries ...... 9

2.2. Massiftype...... 10 2.3. "Incipient"or"arrestedtype"charnockitisation...... 11 3. Principles of fluid inclusion studies ...... 14

3.1. Theoreticalbackgroundtheidealmodel ...... 14 3.2. Practicalaspectsoffluidinclusionstudies ...... 16

3.2.1. Irreversiblepostentrapmentchange...... 18

3.3. Nomenclature...... 19 4. Analytical methods and data evaluation...... 20

4.1. Polarisationmicroscopy ...... 20 4.2. Electronmicroprobeanalysis...... 20 4.3. Microthermometry...... 21 4.4. Ramanspectrometry...... 23 4.5. Bulkcomposition,molarvolumeandisochorecalculations...... 23 5. Geological setting...... 27

5.1. ThepositionofcentralDronningMaudLandinrespecttoRodinia andGondwanareconstruction...... 27 5.2. GeographyandgeologicalevolutionofcentralDronningMaud Land...... 29 5.3. NomenclatureofgeographicsitesinDronningMaudLand ...... 32

i Tableofcontents

6. The basement lithologies of the central Petermannketten - an example of secondary charnockitisation and leaching processes...... 34

6.1. Metamorphiccharnockitesandofthebasementlithologies. 35

6.1.1. Petrographyof"dark"rockvarieties...... 35

6.1.2. Petrographyof"light"rockvarieties...... 39

6.1.3. Fluidinclusionstudies...... 43

6.1.4. Mineralchemistryof,andgarnets ...... 49

6.2. Synandpostkinematicintrusions...... 52

6.2.1. Petrography ...... 52

6.2.2. Fluidinclusionstudies...... 54

6.3. SummaryandDiscussionmetamorphiccharnockitisationand successiveleaching...... 55 7. The Otto-von-Gruber-Gebirge - fluid content of a massif-type anorthosite complex...... 62

7.1. Massiftypeanorthositesamples ...... 62

7.1.1. Petrography ...... 62

7.1.2. Fluidinclusionstudies...... 66

7.2. ShearzoneswithintheO.v.Gruberanorthositecomplex ...... 71

7.2.1. Petrography ...... 71

7.2.2. Fluidinclusionstudies...... 75

7.2.3. Mineralchemistryoffeldspars,pyroxenes,andgarnets ...... 77

7.3. Discussion...... 79 8. Fluid inclusions as micro-chemical systems: evidence and modelling of fluid-host interaction in plagioclase (separate paper) ...... 87 9. Conclusion ...... 114 References ...... 118 Appendix...... I

9.1. AppendixC...... II 9.2. AppendixD ...... XX Acknowledgements

ii Abstract

Abstract ThestudyareaofcentralDronningMaudLand,EastAntarcticaisatypicalexample of a Precambrian terrane that was exposed to substantial polymetamorphismduringthelateNeoproterozoic/earlyPalaeozoic.Fluidinclusion studies from typical representatives of the charnockiteanorthosite suite of rocks, associated gneisses and syenitic intrusives give new constraints on both peak metamorphic conditions and postpeak metamorphic processes during retrograde uplift. Detailed petrographical studies were supported by Electron Microprobe techniquesandcombinedwithmicrothermometryandRamanspectrometrydata.

Threedistinctfluidphases,eitherconsistingofCO2±N2, H2OsaltorCO2±N2±H2O saltweredifferentiated.Allfluidinclusiontypesarehostedbyplagioclase,and garnet and display textural relationships indicative for a primary (metamorphic or magmatic)origin.TheCO2±N2 fluidismostabundant,anditisassumedthatitplayed an important role during metamorphic charnockite formation and anorthosite emplacement. However, evidence of postentrapment change reveals that a large number of inclusions were subjected to profound reequilibration processes that resultedinamodificationoforiginalfluidproperties,oftenaccompaniedbythepartial tocompletelossofanaqueouscomponent.

AnimportantindicatorfortheresidualcharacterofsomeCO2±N2fluidinclusions wasthefrequentobservationofsheetsilicateandcarbonatemicrocrystalsthatwere produced by a microchemical reaction of an originally CO2H2O±N2 fluid with its plagioclasehost.Theseobservationsfromtheanorthositecomplexwereusedtomodel thefluidhostinteractionwithconsiderationofdifferentoriginalfluidcompositions. Comparedtoanactualfluidinclusionitisobvious,thatvolumeestimationsofsolid phasescanbeusedasastartingpointtoreversetheretrogradereactionandrecalculate thecompositionalandvolumetricalpropertiesoftheoriginalfluid.Isochoresforan unmodifiedinclusioncanthusbereconstructed,leadingtoamorerealisticestimation ofPTconditionsduringearliermetamorphicstagesorfluidcapturing.

AlthoughCO2±N2inclusionsdetectedwithintheanorthositebodyandassociated shear zones reveal a large range in densities, isochoric calculations for the highest density inclusions are in accordance with independent PT data for near peak metamorphicconditions.Thisagainillustratesthatmetamorphicminerals(plagioclase and garnet) are able to preserve the original metamorphic fluid, as substantial reequilibrationprocessesdonottakeplaceuniformlywithinsinglecrystals.Adetailed fluid inclusion study can thus provide valuable constraints on the PT conditions actingduringdifferentstagesoffluidentrapmentandreequilibration. Aselectionofrepresentativeisochoresfromthedifferentbasementlithologieshave

1 Abstract beencorrelatedwithPTconstraintsbasedonmineralequilibriadataavailablefrom otherstudies.ThegradualdecreaseinfluiddensitiesbestfitsaclockwisePTpathand mineralfluidequilibrationduringnearisothermaldecompressionispostulatedforthe postpeakmetamorphicandretrogradedevelopmentoftherocksexposedincentral DronningMaudLand.

2 Zusammenfassung

Zusammenfassung DasArbeitsgebietimzentralenDronningMaudLand(Ostantarktis)isteintypisches Beispiel für einen granulitfaziellenpräkambrischenTerran, der während des späten Neoproterozoikums/frühen Paläozoikums durch intensive Polymetamorphose überprägtwurde.UntersuchungenvonFluidEinschlüssenrepräsentativausgewählter Gesteine der CharnockitAnorthositFolge, der assoziierten Gneise und der syenitischen Intrusiva liefern neue Hinweise sowohl auf die peakmetamorphen Bedingungen als auch auf die postpeakmetamorphen Prozesse, die während des retrogradenAufstiegpfadesstattfanden.DetailliertepetrographischeStudienwurden durch ElektronenstrahlMikrosondenUntersuchungen ergänzt und mit mikrothermometrischenundRamanspektrometrischenAnalysemethodenkombiniert. DreiunterschiedlichefluidePhasenkonntenidentifiziertwerden,dieentwederaus

CO2±N2, H2OSalz oder einem komplexen CO2±N2±H2OSalz Gemisch bestehen. Die Wirtsminerale für alle Einschlusstypen sind Plagioklas, Quarz und Granat. Die Einschlüsse zeigen eine texturelle Anordnung, die für einen primären (primär metamorphen oder magmatischen) Ursprung charakteristisch ist. Am weitesten verbreitet sind CO2±N2 Einschlüsse, die während der Enstehung metamorpher CharnockiteundderIntrusiondesAnorthositkörperseinevermutlichwichtigeRolle einnahmen.AnzeichenfüreineVeränderungderEinschlüssenachihrerEntstehung weisen jedoch darauf hin, dass eine grosse Anzahl von FluidEinschlüssen umfangreichenReequilibrierungsprozessenausgesetztwaren.Dieseführtenzueiner VeränderungderursprünglichenFluidEigenschaften,diehäufigmiteinempartiellen oder vollständigen Verlust der wässrigen Anteile einhergingen. Ein wichtiges

Anzeichen für den residualenCharakter einigerCO2±N2Einschlüsseistdashäufige AuftretenvonSchichtsilikatensowiekarbonatischenMikrokristallen,diedurcheine mikrochemische Reaktion des umgebenden Wirtsminerals mit dem ursprünglich eingeschlossenen Fluid (CO2H2O±N2) entstanden sind. Diese Beobachtungen an GesteinendesAnorthositkörperswurdenverwendet,umdiewechselseitigeReaktion zwischen dem Fluid und dem umgebenden Wirtsmineral zu modellieren. Dabei wurdenunterschiedlicheursprünglicheFluidZusammesetzungenberücksichtigt.Im Vergleich mit tatsächlich vorkommenden Einschlüssen zeigt sich, dass Volumenabschätzungen der Festphase als Ausgangspunkt für eine rechnerische Umkehr der retrograden Reaktion genutzt werden können. Dies erlaubt die Berechnung der ursprünglichen Volumina und Zusammensetzungen von Fluid Einschlüssen.AufdieseWeisekönnenIsochorenfürursprünglicheundunveränderte Einschlüsse berechnet werde, was eine realistischere Abschätzung der PT Bedingungen während einer frühmetamorphen Phase oder dem Moment der

3 Zusammenfassung

Einschlussbildungermöglicht.

Obwohl die CO2±N2 Einschlüsse des Anorthositkörpers und der mit ihm assoziiertenScherzoneneinenweitenDichtebereichabdecken,stimmendieIsochoren der dichtesten Einschlüsse mit aus unabhängigen Daten rekonstruierten PT Bedingungen nahe der PeakMetamorphose überein. Dies wiederum zeigt, dass metamorpheMineralphasen(PlagioklasundGranat)durchausinderLagesind,das ursprüngliche Fluid zu konservieren, da umfangreiche Reequilibrierungsprozesse innerhalbeinesKristallsnichtgleichmäßigablaufen.DiedetaillierteUntersuchungvon FluidEinschlüssen kann daher wichtige Hinweise auf PTBedingungen während unterschiedlicherPhasenderEinschlussBildungundReequilibrierungliefern. EinerepräsentativeAuswahlvonIsochorenausdenverschiedenenlithologischen Einheiten des Grundgebirges wurde mit unabhängigen PTDaten aus publizierten Arbeitenkorreliert.DieallmählicheAbnahmederFluidDichtenkannambestenmit einemimUhrzeigersinnverlaufendenPTPfaderklärtwerden.SieweistaufMineral FluidEquilibrierung unter Einfluss isothermer Druckentlastung während der retrograden Entwicklung der im zentralen Dronning Maud Land anstehenden Gesteinehin.

4 1.Introduction

1. Introduction

1.1. Fluid -rock interactions in deep-seated crustal rocks

Inrecentyears,theorigin,natureandroleofthefluidphaseinvolvedingranulite formationhasagainbecomeavitalsubjectofscientificinterest.InmostPrecambrian terranes, continental consists of , with a difference between a (relatively) more superficial part (, metasedimentary granulites) and a more igneous, intrusive deeper part (Touret, 1995). Affiliated peak is suggestedtobetriggeredbyasuddentemperatureincrease,mostprobablyrelatedto intrusions of mantle derived melts (magmatic underplating) (Touret, 1995). Rocks generated or modified under granulite facies conditions are water deficient, and metamorphism has taken place at temperatures that would be sufficient to cause meltinginthepresenceofwater.Theapparentdrynessisreflectedintheanhydrous mineralogy.Orthopyroxenebearingmembersofthecharnockiteanorthositesuiteof rocks(cf. chapter 2) are abundant. Sheet silicates and amphiboles are absent or are present only as minor components. This implies that metamorphism has either occurred under fluid absent conditions, or the fluid musthavebeenof otherthan predominantlyaqueous composition. The absence or subordinateoccurenceof free

H2OanddominanceofCO2±N2±CH4bearingfluidsingranuliticlithologieshasbeen demonstrated by several fluid inclusion studies from various granulite terranes worldwide(e.g.Raithetal.,1990;Santosh&Yoshida,1992). Prograde or peakmetamorphic inclusions have been shown to be preserved in varyingmetamorphicmineralsthathaveundergoneametamorphiccycle(Blom,1988;

Vry&Brown,1991;Bakker&Mamtani,2000).Nevertheless,theassumptionthatCO2 richfluidsevenofhighdensityalwaysreflectpeakmetamorphicconditionshasbeen questioned, and shown to be misleading (e.g. Lamb et al., 1987; Lamb; 1990). Furthermore, fluid inclusions detected in metamorphic rocks frequently reveal densities, which are incompatible with PT constraints derived from solid phase equilibria(e.g. Swanenberg, 1980; Sterner & Bodnar, 1989; Phillipot & Selverstone, 1991). That inclusions undergo varying compositional and density changes during metamorphic history has been demonstrated by several findings in nature and experiment(e.g.Sterner&Bodnar,1989;Hall&Sterner,1993;Bakker&Jansen,1994). Küster&Stöckhert(1997)evenpresumed,thatquartzisunabletopreserveprimary (metamorphic)inclusionsthatwerecapturedabove300°C.Itisthusverylikelythat fluidinclusionsthatformedduringpeakmetamorphicgranulitefaciesconditionshave experienced multiple retrograde modifications, including complete or partial decrepitation(failurebyfracturing),stretching(failurebyplasticcreep),diffusion,or

5 1.Introduction reactionsofthefluidwithitsmineralhost(socalled"backreactions"inHeinrich& Gottschalk, 1995). Additionally, the retrograde fluid evolution is characterised by a complicatedregimeoflargeandsmallscalefluidmigrationandinflux,combinedwith fluid mixing and/or buffering. One example for large scale fluid migration is the pervasive influx or channelling of a carbonic fluid along shear zones, which some workers suggest to be responsible for "incipient" charnockite formation (e.g. Srikantappaet al., 1985; Hansen et al., 1987). The free fluid phase might also be involved in ongoing alteration processes. Pineau et al. (1981) have described the formationofsmallcarbonateparticlesattheemplacementofformerinclusionsthrough the reaction of a CO2rich fluid with an incoming H2Osalt fluid. These "late" carbonates are suggested to be very abundant in many granulites (Touret, 1995). Aqueousfluidsmayalsobeinvolvedinretrogrademineralreactionsleadingto the formationofhydrousphases(likesheetsilicates)andremarkablevariationsinfluid salinities. Potentialhostmineralsreactdifferentlytothepossiblemodificationprocesses,and themechanismsoflocalreequilibrationarenotsystematic.Asaresult,theoverallfluid movementwasoftennotabletohomogenisethefluidcomposition,noteveninhand specimen scale (Touret, 1995), and samples may comprise a large variation in fluid compositionsanddensities. It can be stated that fluidrock interactions (involving modification of fluid inclusionsandtheinteractionofanenclosedfluidwithitsmineralhost)areabundant duringgranuliteformation.Themajorityoffluidinclusionsdetectedwithingranulite terranesareinfactcharacterisedbythedominanceofaCO2richandnearlycomplete absenceofanH2Obearingcomponent.However,thisdoesnotnecessarilyimply,that thecurrentfluidisidenticalwiththefluidactiveduringmetamorphicreactions.In ordertoderiveanyusefuldataonformerPTconditions,fluidinclusionpopulations must be differentiated and related to specific stages of metamorphic history. Any possible mechanism of secondary change has to be taken into account during the evaluationandinterpretationofderiveddata.Achangeinoriginalfluidcomposition or density may specify reequilibration processes which are not yet completely understood,or give valuableinformationabout particularreequilibrationprocesses, whichareknowntooccuronlyundercertainconditions.

6 1.Introduction

1.2. Previous studies and scope of the thesis

Hitherto,fluidinclusiondataofmetamorphiccharnockitesandassociatedgranulitic lithologies from East Antarctica are rare, and have only been reported from the LützowHolmBay(LHB)region(Santosh&Yoshida,1991,1992).Theauthorsshow that the fluid imprint on and metamorphic charnockite assemblages is dominantly pure CO2, and postulate an external, sublithospheric origin of the preservedfluid.FurthermoretheycombinefluidinclusiondatawithPTdataderived frommineralphaseequilibriaandgeochronologicinformation,andconcludethatthe LHBrocksfollowedaclockwiseprogradeandretrogradePTtpath. Thegranulitefaciesbasementcomplexexposedin thePetermannketten and the OttovonGruberGebirge, central Dronning Maud Land, East Antarctica, comprises lithologiestypicalofPrecambriangranuliteterranes.Inthisstudy,basementgneisses thathaveobviouslybeensubjectedtometamorphiccharnockitisationandsubsequent leaching processes, massiftype anorthosites and associated shear zone samples, as wellasanorogenicsyeniteandcharnockiteintrusivesareinvestigatedwithregardto theirmodalandchemicalmineralcomposition(usingElectronMicroprobetechnique), andfluidcontent. In a first step, the gneisses, anorthosites and shear zone samples are classified accordingtotherecommendationsoftheIUGSsubcommissionformembersofthe charnockiteanorthositesuiteofrocks.Themainobjectiveofthisstudyistoexamine the contemporary fluid content preserved in the different lithologies by microthermometryandRamanspectrometry.Thedataareevaluatedincontextofthe nature of the fluid present during the early stage of granulitic metamorphism, charnockite formation and intrusion and deformation of theanorthositebody.Itis illustratedthatearlymetamorphicfluidsmaybepreservedinmetamorphicminerals, although the influence of postentrapment change is abundant and substantial. Derived density data are used to calculate isochores, which are correlated with independentPTdatatogivefurtherconstraintsonthecharacteroftheretrogradePT path. Basedonthefrequentobservationofcarbonateandsheetsilicatemicrocrystalsin carbonic fluid inclusions, further emphasis is put upon microchemical reaction processes between an enclosed CO2H2O fluid and its mineral host during retrogression. It is assumed that a fluid that originally contained an aqueous phase mayreactwithsurroundingplagioclaseundercompleteconsumptionoftheaqueous phase, and the formation of carbonates and sheet silicates. Aquantitativemodelis establishedtodescribevolumetricandcompositionalchangescausedbythepossible reactions.Themodelisappliedtohypotheticalandactualfluidinclusions.Itisshown

7 1.Introduction that the combination of fluid inclusion data with thermodynamic modelling may providecrucialconstraintsonthevolumetricalandcompositionalpropertiesofthe originalfluidinclusiontrappedduringhighgrademetamorphism. Isochores for an unmodifiedoriginalinclusioncanthusbereconstructed, leading to a more realistic estimationofPTconditionsduringearliermetamorphicstagesorfluidcapturing. The results are presented in two chapters devided on the basis of rock types (gneissesandanorthosites)andsamplelocalitiesand(PetermannkettenandOttovon GruberGebirge).The detailed study using thermodynamicmodellingtechniquesis presentedinaseparatechapterwhichconsistsofamanuscriptthathasbeenaccepted forpublicationbytheJournalofMetamorphicGeology.

8 2.Thecharnockiteanorthositesuiteofrocks

2. The charnockite - anorthosite suite of rocks

2.1. Classifying rocks of the charnockite series

Rocksofthecharnockiteseries(Holland,1900)orthecharnockiteanorthositesuite ofrocks(Goldschmidt,1916)arewidespreadinPrecambrianterranes.Oftentheentire rangeofcompositionsfromgranitictoanorthositicvarietiesoccursincloseproximity. Charnockitic rocks can be igneous, metaigneous or thoroughly metamorphic, and despitethefactthattheyoftenshowsignsofdeformationandrecrystallisation,they havebeenincludedintheclassificationschemeofigneousrocks(Streckeisen,1976;Le Maitre,1989).Chemically,theyaredefinedasequivalenttoplutonicrocksofQAPF fields 210, i.e. 0100 vol% alkali or plagioclase, and 060 vol% quartz component.Thedifference,though,liesinthemineralogicalcomposition.Insteadof,or inadditiontobiotiteand,whicharethetypicalmajormaficmineralsin calcalcalic rocks, orthopyroxene or fayalite + quartz are present. Perthitic or antiperthiticdevelopmentoffeldsparisafurthercharacteristic.Usingtheclassification oftheQAPFdoubletriangle,perthite(sensustricto)iscountedas"A"(alkalifeldspar), antiperthite as "P" (plagioclase) and mesoperthite as 50/50 A/P. Originally, the orthopyroxenehadbeenspecifiedas(Fs3050)(cf.Isachsen,1968;LeMaitre, 1989), but that no longer is an approved mineral name (cf. Morimoto, 1988). The presenceofveryfinegrainedchloriteandcalciteinbrittlecrystalfracturescausesa "greasygreen"colouringofplagioclase,whichinreturnisresponsibleforthetypical "waxygreygreen"appearanceoftherocks(Shelley,1993).

The mineralogical difference described above reflects a variation in PH2OT conditionsduringrockformationandcharnockiticrocksarecharacterisedbylowH2O activities in the fluid phase. Thereby, igneous charnockiticrocksrepresentCO2rich synmetamorphicintrusiveswhilemetamorphicvarietiesareproductsofdehydration reactionscausedbythereductionofwateractivity.Themembersofthecharnockite seriesarethegranulitefaciesequivalentofcalcalcalicrocks,whichnormallycontain mineralassemblagestypicalfortheupperamphibolitefacies(Isachsen,1968;Shelley, 1993). Thus, the metamorphic varieties of the charnockitic rocks are also properly described as granulites, whereas igneous charnockitic rocks may be given more standardnames(e.g.orthopyroxene).Thenomenclatureusedinliterature is confusing,aslongasgeneralandspecialtermsareusedmutuallyforthesamerock types. The varying names that may be applied to members ofthecharnockiticrock suitearegiveninTable2.1. Inthepresentstudy,sampleswerelabelledaccordingtothestrictdefinitionofthe term"charnockite"(Holland,1900;Streckeisen,1976).Specialtermswereusedwhen

9 2.Thecharnockiteanorthositesuiteofrocks available,andgeneraltermsapplied,whennospecialtermsexist(Table2.1).

Table 2.1: Specialandgeneralnamesusedforcharnockiticrocks(afterLeMaitre,1989) QAPF field General term Special term 2 orthopyroxene alkali feldspar granite alkali feldspar charnockite 3 orthopyroxene granite 3a: charnockite 3b: farsundite 4 orthopyroxene opdalite or charno-enderbite 5 orthopyroxene enderbite 6 orthopyroxene alkali feldspar syenite -- 7 orthopyroxene syenite -- 8 orthopyroxene mangerite 9 monzonorite (orthopyroxene monzodiorite) jotunite 10 (orthopyroxene ) or -- anorthosite if M (mafic minerals) < 10 vol%

2.2. Massif-type anorthosites

Onedistinctivememberofthecharnockiticrocksuiteisthegroupofanorthositesor "plagioclasites".Thecumulaterocksaredefinedtocontain90vol%plagioclasewitha compositionalrangeofandesinetobytownite(An3070),andafocalpointonAn4060,but no,and<10vol%maficminerals,preferablyhornblende,and (Le Maitre, 1989). Ashwal (1993) differentiates between four major types of anorthosites:Archeananorthosites,Proterozoicmassiftypeanorthosites,anorthosites inlayeredintrusionsandlunaranorthosites.Subordinatevarietiesareanorthositesof oceanicsettingsandanorthositeinclusionsinigneousrocks.Massiftypeanorthosite complexescanreachthousandsofkm2inarealextend,andaretypicallymadeupof nearly monomineralic coarse to very coarse grained anorthosites, leuconorites, leucogabbros, and leucotroctolites. Minor volumes of comagmatic , , troctolites, and FeTioxiderich rocks including massive ilmenitemagnetite ore deposits also form part of the common anorthosite complexes. Additionally, most massifscontainsmalldikesorintrusionsofFe,Ti,andPrichrocks,i.e.ferrodiorites orferrogabbros.Spatiallyassociatedwithnearlyallmassiftypeanorthositesarerocks ofbroadlygraniticcomposition,essentiallyothermembersofthecharnockiticrock suite.Mostcommonlyreportedisanintrusiverelationship,withthegranitoidsuite beingyoungerthantheassociatedanorthositicrocks.Thereverserelationshipisrareor absent,anditiswellacceptedthatthechemicallyindependentgraniticmeltsgenerated from anatexis of the country rocks during intrusion of the main suite and probablymixedwithvariableamountsofhighlyfractionatedanorthositicresidualmelt (e.g.DeWaard,1968a,b;Kolker&Lindsley,1989;Ashwal,1993;Emslieetal.,1994and referencesherein). Despite many attempts to unravel the history of massiftype anorthosites, their

10 2.Thecharnockiteanorthositesuiteofrocks genesishasstillremainedunclear.Modelsconcerningatypicaltectonicenvironment, the origin and chemical composition of the parental , the mode of emplacement(meltversuscrystalmush)anddepthofcrystallisationaremiscellaneous (e.g.Ashwal,1993andreferencesherein;Schiellerupetal.,2000;Krauseetal.,2001).So far,platetectonicsettingsas differentas Andeantypemarginsandcontinentalrifts have been discussed as being characteristic for massiftypeanorthositegenesis(e.g. Bruce etal., 1989; McLelland, 1989; Ashwal, 1993 and references herein). A similar dissensionsubsistswithregardtooriginalmagmaderivation.Atpresent,massiftype anorthosites are believed to have crystallised from either crustally contaminated mantlederived mafic melts that have fractionated olivine and pyroxene at depth (Emslie,1985;Ashwal,1993)orprimaryaluminousgabbroictojotuniticmeltsderived fromthelowercontinentalcrust(Longhietal.,1999;Duchesneetal.,1999;Schiellerup et al., 2000). Concerning the mode of crystallisation, several authors favour emplacementofanorthositesascrystalrichmushthatformedinlarge,slowlycooling magmachambersbeforeascendingintotheuppercrustascoalescendingdiapirs(e.g. Ashwal,1993;Lafranceetal.,1996). Intrusionagesreportedfrommassiftypeanorthosites areconcentrateduponthe periodbetween1.8and0.9Ga(Ashwal,1993;Scoates,2000).Dataindicatingalate ProterozoictoearlyPhanerozoicageofemplacementhavesofaronlybeenreported fromtheAïrringcomplex,Niger(e.g.Demaiffeetal.,1991a,b)andfromtheEckhörner and O.v.Gruber anorthosites , central Dronning Maud Land, East Antarctica (Mikhalskyetal.,1997;Jacobsetal.,1998).

2.3. "Incipient" or "arrested-type" charnockitisation

Themainknowntypesofcharnockiticrockscomprise(a) magmatic charnockitic rocks associated with large massiftype anorthosites (for example O.v.Gruber anorthosite complex, Antarctica: e.g. Kämpf & Stackebrandt, 1985), (b) massive charnockitesfoundingranuliteterranes(forexampleNilgiriHills,India:e.g.Raithet al. 1990), (c) metamorphic charnocktisation in contact aureoles around intrusive enderbites(forexampleSouthAfrica:e.g.vandenKerkhof&Grantham,1999),and(d) abundantpervasivemetamorphiccharnockitisationalongfracturesandshearzonesin gneissic complexes. The latter, also referred to as "arrestedtype" or "incipient" charnockitisation,hasfirstbeendescribedbyPichamuthu(1960)fromKabbaldurga, southernIndia,andseveralotherlocationsthroughoutthesouthernIndianhighgrade terrane and the adjacent Sri Lankan terrane have been reported thereafter (cf. RavindraKumaretal.,1985;Srikantappaetal.,1985;Hansenetal.,1987).Asatypical featureobservedinPrecambriangneisscomplexes,incipientcharnockitisationisalso known from the northern hemisphere e.g. from Siberia and Finland (Perchuk et al.,

11 2.Thecharnockiteanorthositesuiteofrocks

1989). However, no secured data on this type of charnockitisation have yet been reportedfromtheEastAntarcticcratonastobeexpectedwhenconsideringtheseveral findingsontheothercrustalsegmentsofformerEastGondwana(India,SriLanka)and theircommongeologicalhistory. Meso and macroscopically, the hornblende, biotite and/or quartzofeldspathic gneissestypicallyshowgreygreenpatchesandstreakyzoneswheretheoriginalgneiss textureisblurredorcompletelyerasedbyrecrystallisationandgrainsizecoarsening. Mineralogical changes in these zones involve the partial tocompletebreakdownof hornblende, biotite and garnet and the neoblastesis of orthopyroxene (hypersthen). Despite the variable bulk chemistry, mineral composition and texture of the host gneisses,thecharnockiteisalwaysacoarsegrainedorthopyroxenebearingrockwith remarkablyuniformgraniticcomposition(Raith&Srikantappa,1993),whichhintsat more or less pronounced element mobility and opensystem behaviour during the dehydrationprocess(e.g.Hansenetal.,1987;Stähleetal.,1987;Milisendaetal.,1991). Because of this observation and the conspicuous intimate relationship between gneissesand"arrestedtype"metamorphiccharnockites,afluidcontrolledmechanism toexplainthisphenomenaiswidelyfavoured(e.g.Janardhanetal.,1979;Newtonetal., 1980;Glassley,1983;Stähleetal.,1987;Raithetal.,1989;Santoshetal.,1990;Perchuket al.,2000).

Some workers have proposed a high grade CO2metasomatic process to be responsible for the spatially restricted decrease in H2Oactivity a prerequisite assumedtobeessentialforinsitucharnockitisation(e.g.Touret,1971;Newtonetal.,

1980;Glassley,1983;Raithetal.,1989andreferencesherein).Accordingtothem,CO2 influxcausestheexpulsionordilutionofporefluids.SufficientamountsofCO2 are suggestedtooriginatefrome.g.degassingofcrystallisingunderplatedbasalticmagma, decarbonationofsubductedoceaniclithosphereoruppermantle,orsuddentapping andexpulsionof'fossil'reservoirsof'internally'derivedandbufferedcarbonicfluids trapped in deepercrustal granulites. The idea of CO2influx is supported by the observation,thatthemajorityoffluidinclusionshostedbyincipientcharnockitesis

CO2dominated.TheinfiltrationandmobilityofsignificantamountsofCO2requirean environmentstructurallycontrolledbyfracturingandshearing,andithasbeenshown thatevendiffusepatchesandstringersandrandomdistributionofpatchycharnockites havedevelopedalongtectonicallygeneratedstructures(e.g.Dobmeier&Raith,2000).

However,theappealofcarbonic fluidsasamainspringingranulitemetamorphism has been confined by their poor wetting ability relative to silicate mineral grain boundaries, inhibitinginfiltration,and the low solubilitiesofsilicateconstituentsin

CO2richfluids.Thereuponmorerecentstudieshaveconcentratedontheimportance ofalkalimobilityandtheroleofhighlysalinefluidphases("brines")duringgranulite

12 2.Thecharnockiteanorthositesuiteofrocks faciesmetamorphismand charnockitisationprocesses(e.g. Perchuk & Gerya, 1992, 1993; Newton etal., 1998). The role of potassium in the formation of some arrested charnockites has been demonstrated by Stähle et al. (1987). Perchuk & Gerya (1992,

1993)proposed,thatthechemicalpotentialsofCO2, H2O and K2Oinametamorphic fluidgovernthecharnockitisationprocessduringretrogression,andthathighalkali activityallowsorthopyroxeneformationunderH2Oactivitiessimilarorevenhigher thanthatfortheinitialgneisses.Additionally,experimentalstudieshaveshownthat concentratedsupercriticalbrineshaveappropriatelowH2Oactivities,highinfiltration ability and high alkali mobility to foster charnockite formation (e.g. Shmulovich & Graham,1996;Aranovich&Newton,1998). Perchuk etal.(2000)evenfoundevidenceofbothfluidregimesdescribedabove, andtheyconcludedthattwoimmisciblefluids,i.e.analkalicsupercriticalbrineand almostpureCO2coexistedduringincipientcharnockiteformation.Accordingtothem, the ongoing metasomatic process could also be responsible for partial melting, a featureoftenobservedinconjunctionwitharrestedtypecharnockites.Theabundance of pegmatites, quartzofeldspathic veins and migmatites spatially associated with incipientcharnockiteshasalsobeeninterpretedintermsofpartialmeltingunderH2O undersaturatedconditions(e.g.Bhattacharya&Sen,1986;Holness,1993),whichinturn provoked early workers to explain the formation of incipient charnockites by metamorphismofanhydrouslithologies(e.g.Lamb&Valley,1984)ortheextractionof partialhydrousmelts(e.g.Fyfe,1973;Waters,1988;Burton&O'Nions,1990). In summary, most recent studies agree that the known domainsofarrestedtype charnockitisation formed by in situ dehydration processes during a late stage of tectonothermal history at a structurally controlled site (Dobmeier & Raith, 2000). Nevertheless, mechanisms conducting fluid movements during highgrade metamorphism and incipient charnockite formation, and the scale at which fluid controlled processes operate (mm, m, km) have not been examined to a satisfying degreeyet.Fluidfugacitiescanbecontrolledbyseveralparameterse.g.,theinternal buffering by metamorphic reactions (fluidrock interaction), diffusion processes, immiscibilityof complex fluid phases or wetting properties of mineralfluid under givenmetamorphicconditions,largelydeterminingthemobilityoffluidsofdifferent compositions.Consequently,varyingmechanismsarecurrentlyenvisagedtoaccount for arrested charnockitisation in different granulite terranes, either operating independently, in conjunction or mutual relationship. Thus, the debate about the modelsmentionedaboveisstillcontroversialandmore detailed investigations will havetobecarriedoutbeforeconcludingexplanationsmaybegiven.

13 3.Principlesoffluidinclusionstudies

3. Principles of fluid inclusion studies

3.1. Theoretical background - the ideal model

Fluidinclusionsarepresentinnearlyallrocktypeswhetherderivedfromthecrust or the mantle. As they are almost ubiquitous in geologic samples their study is applicabletoavarietyofgeologicquestions.Mostnaturalfluids(gasesandliquidsat highpressure)consistofmolecularcompoundsofthesystemCOHNS+salt(with

"salt" representing e.g. NaCl, CaCl2, KClandotherchlorides).The"simple"species

H2O,CO2,CH4,N2andH2Sappeartobemoststableinfluidinclusions.Brewster(1823) andSorby(1858)wereamongstthefirsttorealisetheirpotentialfortheunderstanding of geologic problems, and three main prerequisites for the model of ideal fluid inclusionbehaviourcanbeascribedtotheseearlyworkers: • The host crystal of inclusions that formed under high PT conditions is impermeabletoanychemicalchanges • Becauseofthecrystals'rigidity,externalvariationsinstressarenottransferredto thefluidandthecompressibilityandexpansionofthehostcrystalarenegligible overgeologicPTconditions • Thehostcrystalisconsideredtotransferheatbetweenthegeologicsurroundings andthefluidinclusion. Basedonthesepresumptions,theidealmodelfluidinclusionsareconsideredtobe closed("isoplethic")andconstantvolume("isochoric")systemsthatremaininthermal equilibriumwiththeirimmediateenvironment.Consequently,onceentrappedwithin acrystal,thefluidinclusionfollowsanisochoricandisoplethicpaththroughPTspace whereinternalpressureisdependentontheimposedtemperature(cf. Sorby, 1858; Roedder,1984). Forthecompositionoftheisopleth,thePTconditionsthatprevailatthemomentof entrapmentfromahomogeneousfluidphasedictatethebulkmolarvolume(density) ofthefluidinclusion.Iftheinclusionremainsanisoplethicisochoricsystem,thenno matter how many times it is heated or cooled, the PT trajectoryoftheinclusionis lockedontheisochorewhichpassesthroughthepoint(inPTspace)ofentrapment (Fig.3.1).Astheinclusioncoolsfromitsentrapmentpointtheinternalpressuredrops andtheisochoreeventuallyintersectsthemiscibilityboundaryofthegivensystem.At thispointthehomogeneousfluidseparatesintoaliquidlikeandavapourlikephase, i.e.abubblenucleates.AsfluidisochoreshavepositivePTslopes,thetemperatureat whichthebubbleappearsmustbelessthantheentrapmenttemperature.Thenatural coolingpathofthefluidmaybereversedinthelaboratory by heating above room temperature and observing the inclusion through a microscope (method of

14 3.Principlesoffluidinclusionstudies microthermometry).Thus,theminimumformationtemperatureoftheinclusionmay bedeterminedfromthetemperatureofhomogenisation (Th)ofthebubble(i.e.the pointatwhichthebubbledisappearsuponheating)(Fig.3.1).Additionally,themode ofhomogenisationi.e.homogenisationintotheliquidphase(thebubbleshrinksupon heating)orintothevapourphase(thebubblegrowsuponheating)indicates,whether theoriginalhomogeneousfluidwasvapourlikeorliquidlike(Fig.3.1).

Fig. 3.1:SchematicdiagramofPVTpropertiesintheunaryCO2system.,(modifiedafterBurruss,1981).

ThreepureCO2inclusionswithdifferentmolarvolume(V13)weretrappedintheonephaseregionand "locked"totheassociatedisochoreatthemomentoftrappingmarkedbythestar.Uponcooling,phase separationoccursassoonastheisochoreintersectsthemiscibilityboundary(blackdots).Proportionsof theseparatedliquidandvapourphasearedeterminedbytheleverrule.BlackdotsalsomarkthePVT conditionsatthemomentofhomogenisation(uponheating).Notethatthemolarvolumedeterminesthe modeofhomogenisation.Th(l),(v),or(crit).c.p.=criticalpoint(31.1°CforpureCO2).

Asmuchasthetemperatureofhomogenisationischaracteristicofthemolarvolume of a fluid, the melting temperature (Tm) of the solid phases that formed through supercoolingandfreezingoftheinclusionprovidesanindicationofthecompositionof the captured fluid. In the H2Osalt system, for example, the eutectic melting temperatureischaracteristicofthetypeofsaltpresent,whereastheextenttowhichthe meltingpointoficeisdepressedprovidesanindicationofthebulksalinityofthe inclusions.Incarbonicinclusions,theloweringofthetriplepointofpureCO2(56.6°C) issymptomaticforthepresenceofadditionalgasspecies,suchasN2orCH4. The phase behaviour described above (Th and Tm) is validforsimpleunaryor binarysystems(e.g.pureCO2orH2Osalt).Theprevalentfluidsidentifiedinthestudy

15 3.Principlesoffluidinclusionstudies

area either belong to the system CO2±N2 or H2Osalt, but a more complex fluid, containingH2OCO2±salt, was detected as well. In H2Ogassaltrichsystems,further phase transitions, e.g. formation and melting of a gas hydrate (or clathrate) and/or partial homogenisation of a subsystem, can be observed duringheatingorcooling, whichcomplicatestheinterpretationofmicrothermometricaldata. For example, the presenceofaCO2clathrate(CO2•5.75H2O)atthemomentoficemeltingorpartial homogenisationofthesubsystem,hasacrucialeffectonthepropercalculationofbulk fluidcompositionormolarvolume,asitdeprivessmallamountsofH2OandCO2from the bulk system. Consequently, neglecting its appearance would result in incorrect estimatesofsalinitiesordensitiesoftheremaininggaseousspecies.Formoredetailed descriptionsofpossiblephasechanges,fluidbehaviourinmorecomplexsystemsor thesignificanceofclathraterefertoe.g.Diamond(1992,2001)forCO2H2Oinclusions;

Thiery etal.(1994)andvandenKerkhof(1988)forthesystemCO2±CH4±N2;Bodnar

(1993) for H2ONaCl fluid systems, and Collins (1979) and Bakker (1998) for gas hydratesinfluidinclusions. Phasechangesobservedandabbreviationsusedinthisstudytodescribethephase transitionsaresummarisedinTable3.1.

Table 3.1: Abbreviations used in this study to describe phase changes observed during microthermometricalmeasurements abbreviation explanation

Tme temperature of eutectic melting in the H2O-salt system

Tm (aq or CO2) temperature of final ice melting or of solid carbonic phase Tm clath. temperature of final clathrate melting

Th (CO2 or tot) temperature of homogenisation (of the carbonic phase or total homogenisation) Th (l/v/crit) mode of homogenisation (to the liquid/ vapour phase or critical) NaCleq salinity calculated from Tm for the equivalent amount of NaCl in solution

3.2. Practical aspects of fluid inclusion studies

Thatthepreviouslydescribedidealmodelonlyapproximatelyreflects the actual factsfoundinnatureisamatterofcourse.Carehastobetakenwhenconductinga fluid inclusion study to avoid any misinterpretation of e.g. phase proportions or densities. Animportantprerequisitetoanyfluidinclusionstudyisadetailedknowledgeof thenatureandtextureofthehostmineral,e.g.itsformationconditions,possiblesigns of deformation, growth zonation or alteration. Additionally, varyingfluidinclusion generations and assemblages should be differentiated on the base of distribution, number,phaseproportions,sizeandshape.Thepropertiesofaninclusionassemblage

16 3.Principlesoffluidinclusionstudies combinedwithdataderivedfrommicrothermometrymeasurement(e.g.Th,Tm)form the smallest unit of geological information. Nearly every inclusion assemblage is characterised by a standard deviation (or better for small numbers: total range) in inclusionattributes.Thus,crucialconclusionscanbedrawnconcerningthenatureof thefluidatthetimeofentrapment(homogeneousversusheterogeneousfluidphase), andwhethertheinclusionshavebeenalteredandchangedaftertrapping(cf.3.2.1). Formationofafluidinclusionassemblageintheonephasefield,i.e.trappingofa homogeneousfluid,willresultininclusionswithrelativelysimilarmicrothermometric propertiesanduniformvolumetricproportionsatroomtemperature.Thisprincipleis also valid for all solid phases that precipitate from such a fluid during cooling (formationof"daughter minerals"e.g.,saltcrystalsornahcolite). Contrarytothefeaturesdescribedabove,trappingofaheterogeneousfluidphase i.e. trapping in a multiphase field, results in variable microthermomericproperties andamutabledistributionofrelativevolumetricproportionsoftheincludedphasesat roomtemperature.Reasonsforheterogeneityofanaturalfluidphasemaybeboiling, effervescenceorimmiscibilityofthepresentfluidspecies(e.g., water/hydrocarbon). This principle also applies to solid phases that were "accidentallytrapped" during inclusionformation. The determination of densities the key parameter for many geological interpretations is only justified when both phase behaviour and composition of individualinclusionsareknown.Thedensityiscalculatedbymeansofexperimentally derivedmodels(equationsofstate)usingdataobtainedbytheobservationofphase transitions at controlled temperatures ("microthermometry"), and knowledge of the composition of gases, entrapped solids, and/or frozen fluids as gained by Raman spectrometry(c.f.chapters4.5to4.6). Many fluid inclusion studies aim at the calculation of isochores from inclusion densities.Isochorescanbecombinedwithindependentpressureand/ortemperature estimatesforabetterunderstandingofmetamorphicconditions. In summary, the main parameters that have to be respected when selecting representativedensities(andisochores)foranyinterpretationoffluidinclusionwork are: • thepreciserelationshipbetweeninclusions(hostmineral)andmetamorphicstage • thecompositionalcomplexityoffluidinclusions(inclusions with a similar fluid

contentmustbechosen,ase.g.,thepresenceofreasonableamountsofN2inCO2±N2 fluidinclusionscandrasticallylowertheinclusiondensities) • thepossibilityofpostentrapmentmodification

17 3.Principlesoffluidinclusionstudies

3.2.1. Irreversible post-entrapment change The occurence of variable of microthermometric properties (Th, Tm, volume fractions),alreadydescribedasindicatorfortrappingofaheterogeneousfluid,may alsoindicatevolumetricorcompositionalmodificationsoffluidinclusionsaftertheir formation.Reversiblechange(phaseseparationuponcooling,precipitationof"daughter minerals")hasalreadybrieflybeenaddressedinthepreviousparagraph.However,the influenceofirreversiblesecondarychangeoffluidinclusions,thoughiswidelyspread in(granulitic)metamorphicenvironments.Itisthereforeconsideredinmoredetail. Severalpossiblemechanismsthatalterfluidinclusionse.g., brittle and/or plastic deformationofthehostcrystal,orreactionofthefluid with the enclosing mineral, havebeenreportedfromnatureandexperimentuptonow(cf.Sterner&Bodnar,1989; Hall & Sterner, 1993; Bakker & Jansen, 1994; Küster & Stöckhert, 1997; Heinrich & Gottschalk,1995). Brittlefailureeitherresultsincompleteorpartial explosion("decrepitation")or implosionof fluidinclusions.Microstructuralevidenceforbrittlefailurearehighly irregularinclusionshapes,radialcracksthatoriginatefromtheinclusion,andhealed microfracturesrepresentedbyhalosofsmallinclusions(e.g.Roedder,1984). Theeffectofplasticdeformationontheenclosingmineralisgenerallyreferredtoas "stretching"or"reequilibration".Themicrostructuralrecordislesspronouncedand unequivocal.Regularorroundishtonegativeinclusionshapeshavebeensuggestedto beindicativeforstretching(e.g.Sterner&Bodnar,1989). Both modes of irreversible deformation are triggered by differential stress (the pressure difference between the internal fluid pressure and the confining pressure acting on the host mineral) that builds up, as soon as the metamorphic PT path deviatessignificantlyfromthefluidisochore.Theyarecontrolledbyparameterslike themechanicalstrengthofthehostmineral,initialinclusionshapeandsize,prevailing temperature, or strain rate (e.g. Küster & Stöckhert, 1997). Additionally, the compositionalchangeisinfluencedbyselectivelossofH2Oornitrogen,whichdiffuse andmigratemoreeasilythanCO2throughanyhostmineral(Vityk&Bodnar,1998; Audétat & Günther, 1999; Touret, 2001). Next to the microstructural record, a correlationofinclusionsizewithTh(andthusdensities)maybeindicativeforthe mode of failure and type of metamorphism. Large inclusions are more likely to undergodecrepitationandsubsequentleakagethansmallinclusionsduetotheirlower mechanical strength (e.g. Swanenberg, 1980; Bodnar et al., 1989). Consequently, a positivecorrelationwithTh,e.g.,theabsenceoflargeinclusionswithhighdensities mayhintatfluidlossduetooverpressure,andthus(rapid) decompressionduring uplift. A negative correlation with inclusion size though, may indicate a phase of isobariccooling,asinclusionsizehastodecreasewithoutleakageinordertoincrease

18 3.Principlesoffluidinclusionstudies thedensity(Touret,2001). Incontrasttotheformationofreal"daughterphases",theoccurrenceofchemical reactionsbetweentheentrappedfluidandareactivemineralhost(e.g.feldspar,garnet, pyroxene)hasbeenreportedbyonlyafewworkerssofar(cf.Andersenetal.,1984; Heinrich & Gottschalk, 1995; Svensen et al., 2001), and is not sufficiently well documented, yet. The reaction of parts of a complex fluid with the inclusion walls resultsinthegenerationofaresidual(probablylesscomplex)fluidandonetoseveral solids,socalled"stepdaughter"phases(Svensenetal.,1999).Dependingonthephases andcomponentsinvolved,thismayeitherresultinanincreaseordecreaseofinclusion volumeanddensities. Themagnitudeofmodificationusuallyvariesbetweenindividualinclusionsinone assemblageoforiginallyidenticalfluids,whichleadstovariableinclusionpropertiesin apetrographicassemblage.Processesinvolvedmayinteract,anddonotfollowawell definedscheme.However,theallegedambiguitiesof originandsubsequentchange can even cause the obtained data to have greater significance, provided that the techniquesusedareadequatetoresolvethem.

3.3. Nomenclature

Theclassificationschememostwidelyusedforthedescriptionoffluidinclusions was proposed by Roedder (1984). Roedder (1984) differentiates on a genetical base between "primary"inclusionsthatformedduringmineralgrowthand"secondary" inclusions that developed after the primary crystallisation of the host, e.g., through entrapmentduringhealingofmicrofractures.Azoneofoverlapofthesetwotypesare socalled"pseudosecondary"inclusionsthatmayformalongcrystalfacesorfractures that develop during crystal growth. In most metamorphic rocks, though, the application of the terms "primary" and "secondary" might be difficult or even impossible.Thetotalfluidcontentofsuchsamplesisarecordoftheseveralstagesof rockevolutionandmanygenerationsoffluidassemblagesoccurincloseproximity. Thesizeofmostfluidinclusionsisexpressedintherangeofseveralmicrons,and theirshapevariesbetweenhighlyirregular(oftenaresultofdecrepitation),irregular, roundedandnegativecrystalshape.Distributionofinclusionsthroughoutacrystalis describedassingleorisolated,alongsidetrailsorplanes/clusters.Thephysicalstateof enclosedphasesiseitherliquidlike(l),vapourorgaslike(v)orsolid(s). Inpracticeitisoftendifficulttoobserveeutecticmeltingtemperatures,whichare characteristicofthetypeofsaltpresentinH2Osaltinclusions.Thereforeitisgenerally acceptedtorecalculatesalinitiesonthebaseoffreezingpointdepressioncausedbyan equivalentamountofNaClinsolution,andsalinitythenisgiveninwt%NaCleq(Table 3.1).

19 4.Analyticalmethods

4. Analytical methods and data evaluation

4.1. Polarisation microscopy

Detailedpetrographicstudieswerecarriedoutonthinsections(approx.25mthick) of 25 samplesusinga ZeissAxioplanpetrographicmicroscopeequippedwithZeiss 2.5X, 5X, 10X and 40X objective lenses, 10X oculars, and an Olympus DP 10 digital camera.Ifmorethanonethinsectionwaspreparedofasinglesamplee.g.,toallowa more detailed analysis on veins or pegmatitic mobilisates,thedifferentthinsections werelabelledwithanadditionalletterinalphabeticalorder.Themagmaticrockswere classifiedandnamedonthebaseoftheestimatedmodemineralcontent(involume percent),usingtheQAPFdoubletriangleandfollowingtheIUGSrecommendations (LeMaitre,1989).Metamorphicrockspecieswereclassifiedandnamedaccordingto thehierarchicalsystemrecommendedbyShelley(1993).Theguidelinesforclassifying membersofthecharnockiticrocksuitehavealreadybeendiscussedandspecifiedin chapter2.1.AllmineralabbreviationsusedarebasedonBucher&Frey(1994).

4.2. Electron Microprobe analysis

Polishedthinsectionswerecoveredwithathinlayerofvapourisedcarbon,andused forrepresentativeanalysisof7gneiss,andanorthositemineralassemblages.Mineral analysesandgarnetelementmappingswerecarriedoutonaCamecaSX50electron microprobe at the RuhrUniversitätBochum, Germany. It is fitted with four wavelengthdispersivespectrometers(WDS)andoneenergydispersivespectrometer (EDS).Qualitativeandquantitativeelementanalyseswerperformedonalkalifeldspar, plagioclase,pyroxeneandgarnet.Operatingconditionswereanaccelerationvoltageof 15kVandabeamcurrentof15nA.Countingtimeswere20sonpeakand10son background.Afocussedbeamwasappliedtoallphasesexceptformicaswhichwere analysedwithaslightlydefocussedbeam.Naturalandsyntheticmineralsandglasses were used as calibration standards. Calculation of concentrations given in weight percent of elements was performed by the builtin correction procedure. Weight percentofoxides,mineralformulasandendmemberswerecalculatedasdescribedin Spear(1993)andusingExcelspreadsheetskindlyprovidedbyDr.P.Appel(Christian AlbrechtsUniversitätKiel,Germany). The calculation of the mineral formulas of plagioclase and alkalifeldspars was carriedoutonthebaseof8oxygens,andofgarnetonthebaseof24oxygens. Verydetailedelectronmicroprobeanalysisaroundsinglefluidinclusionshostedby plagioclase of a characteristical anorthosite sample were performed at the Montan UniversitätLeoben,Austria,usinganupgradedARLSEMQ30microprobeequipped

20 4.Analyticalmethods withTAP,LiFandPETwavelengthdispersivespectrometercrystals.Beamconditions were20kVand15nA.AplagioclasestandardfromtheLeobenUniversitywasused for calibration.The Bastincorrectionwas appliedto theobtaineddata, and mineral formulaswerecalculatedasdescribedabove.

4.3. Microthermometry

Besides the petrographic examinations, the qualitative to semiquantitative, non destructivemethodof"microthermometry"isthemostimportantanalyticaltechnique for characterising fluid inclusions. Its basic principle is the observation of various phasetransitionsundercontrolledconditionsofheatingandcooling.Iftheinclusions have simple compositions (less than 3 or 4 major components) then the microthermometric measurements allow the bulk composition and density of the inclusions to be calculated. If the inclusions are more complex, then the phase transition temperatures provide useful constraints on the bulk composition and density, but additional analytical results must be combined to reach a more exact solution(e.g.Ramanspectrometry). Microthermometric measurements were carried out on fragments of doubly polished thicksections (ca. 100 m) using two different heating/freezing stages a modifiedU.S.GeologicalSurvey(U.S.G.S.)gasflowstageattheUniversitätBremen, Germany,andaLinkamMDS600stageattheUniversitätLeoben,Austria. ThemodifiedU.S.G.S.gasflowstage(FLUIDINC.,Denver,Colorado,U.S.A.)heats andcoolssamplesoveratemperaturerangeof196°Cto700°C,bypassingpreheated orchilledgasand/orliquidnitrogendirectlyoverthespecimen.Thetemperatureis measuredviaathermocoupleelementplaceduponthewafer,andpressingittothe bottom window of the heating/cooling chamber. The stage is mounted on a Zeiss StandardWLtransmittedlightmicroscope,equippedwithLeitz4X,10Xand32Xlong workingdistanceobjectivelenses,10Xocularsanda12V/100Vquartzhalogenlight source. The Linkam MDS 600 motor driven stage, combined with a TMS 93 temperature programmerandLNP93/2coolingsystemcoversatemperaturerangeof196°Cto 600 °C. Heating/freezing experiments are controlled via a Pentium III 450 MHz computerwithaNokia445XpromonitorusingtheLinkSyssoftwarepackage.Heldby aquartzcrucibleandsamplecarrier,afragmentofthespecimenisplaceduponasilver blockequippedwithheaterandintegralcoolingchamber.Aplatinumresistorsensoris mountedneartothesurfaceofthesilverblockandallowsforanaccurateandstable temperaturesignal.ThestageismountedonanOlympusBX60microscope(modified andsuppliedbyFLUIDINC.)outfittedforusewithreflectedandtransmittedvisible light, reflected UV light, and transmitted IR light, using 4X, 10X, 40X and 100X

21 4.Analyticalmethods

Olympus longworking distance objective lenses for visible light and 10X oculars. VisiblelightimagesaredigitallyacquiredandviewedonthemonitorusingaJVCF553 3ccdchipvideocamera. Bothstageswerecalibratedandregularlymonitoredusingsyntheticfluidinclusion temperaturestandardsprovidedbySYNFLINC,coveringatemperaturerangefrom

56.6 °C to 0.0 °C and 374.1 °C, the melting of pure CO2, and the melting and homogenisationofpureH2O,respectively.Additionally,theU.S.G.S.gasflowstage wascalibratedwithanicebath(0°C)andliquidnitrogen(196.8°C).Theaccuracyof temperature measurements on either of the stages was determined to ± 0.2 °C at temperaturesbelow100°C,and±0.4°Cathighertemperatures. With respect to the size of sample wafers, their thickness, polishing quality and mineralcontent,heatingrateswerechosenandkeptasaroutineprocedureinorderto getbesttemperaturereproducibilitiesforstandardandsamplemeasurements.When using the U.S.G.S. gasflow stage, the location of the thermocouple relative to the inclusion(s)beingmeasuredwasconsideredaswell.Atthebeginningofeverynew experiment,sampleswerecooledclosetoliquidnitrogentemperature(196°C),and subsequently heated back to 32 °C very quickly (>50 °C/minute) to get a first impressionofthefluidcompositionandtorecogniseevensubtlephasechangese.g., meltingofverysmallamountsofcarbondioxide,initialmeltingneartheeutecticor final ice melting of low salinity fluids. Knowing the approximate transition temperatures from the fast run, the experiments were repeated, stepping the temperatureupinincrements,andusingprogressivelyslowerheatingrates(50°/min, 10°/minand5°C)from120°Cuntilca.5°Cbelowthephasetransition.Ratesusedfor theexactdeterminationofthetemperatureofphasechangeswere:

• 1°/minforCO2andH2OmeltingandCO2homogenisation

• 2°/minforH2Ohomogenisation • 0.5°/minforsluggishreactionslikerecrystallisationorhydratemelting

The method of "cycling" (c.f. Roedder, 1984; Shepherd et al., 1985; Goldstein & Reynolds,1994)wasappliedtoconfirme.g.,finalclathratemeltingorhomogenisation temperaturesinverysmallordarkfluidinclusions.Everyphasechangewasmeasured atleasttwotimestoconfirmthereceiveddata.Forfurtherdescriptionsoftechnical detailsconcerningthestagesorspecialtechniquesofmeasuringfluidinclusionswith oneofthestagesmentionedabove,refertoe.g.Roedder(1984),Shepherdetal.,(1985), orthestagereferencemanualsprovidedbyFluidInc.andLinkam.

22 4.Analyticalmethods

4.4. Raman spectrometry

TheapplicationofRamanspectrometryonfluidinclusionsallowstheimmediate qualitative and semiquantitative measurement of individual phases in a non destructiveway. Especiallythe identificationof small solid(crystalline)compounds likedaughterminerals(carbonates,sulphatesetc.),whicharedifficulttoanalyseby moretraditionalmethods(e.g.electronmicroprobe)hasbeenenhancedbythismethod. A Dilor LABRAM confocalRaman spectrometer combined with a frequency doubledNdYAGlaser(100mW,532.2nm)andaOlympusBX40microscopewith50X and 100X objectivelenses(Olympus)was usedto identifyfluidandsolidphasesin inclusions. Wavenumber measurements have an accuracy of 1.62 cm1 at low Dn (Ramanshiftaround0cm1)and1.1cm1athighDn(around3000cm1).Toanalysea homogeneous gas mixture and invisible small amounts of H2O by Raman spectrometry,sampleswereheldatcontrolledtemperaturesof+33°Cand120°Cwith a Linkam THMSG 600 heatingfreezingstage. The objectivelenses combined with a confocal optical arrangement enable a spatial resolution in the order of one cubic micrometre. Thus, the laser (100 mW frequencydoubled NdYAG with 532 nm wavelengthi.e.a"greenlaser")canbefocussedonverysmallindividualphaseswithin multiphaseinclusions. Theinteractionoftheincidentlaserlightwiththemolecularbondsinthetarget speciesscatterssomeoftheincidentlightviathe"Ramaneffect",emittinglightwitha frequency that is shifted from that of the laser, and that is characteristic of the vibrationalmodeandenergyofthebond.Aportionofthescatteredlightiscollected throughthemicroscopeandfocussedontoadiffractiongrating.Thegratingselectsthe desiredregionoftheRamanspectrumandreflectsthisontoaPeltiercooled,matrix detector. The resulting spectrum (intensity versus Ramanshifted frequency) is displayed on a computer monitor for further processing and interpretation. The positions and intensities of Raman lines are slightly dependentonthedensityand especiallyonthephysicalstate(gasorliquid).Theimplicationfortheaccuracyofthe quantitative Raman analysis is limited but measurements can be checked by the comparison with composition calculated or graphically estimated from microthermometrical data and available phase models (cf. chapter 3.6.). A more detailed description of the possible applications of Raman spectrometry on fluid inclusionscanbefoundine.g.,Dubessyetal.(1989)orBurke(2001).

4.5. Bulk composition, molar volume and isochore calculations

Apart from a subordinate number of aqueous fluid inclusions, the majority of inclusionsshowsmeltingofasolidphasewithinatemperaturerangeof–59.2to–56.6

°C.Thus,thecavitieswereinterpretedtocontainaCO2dominatedfluid.Thelowering

23 4.Analyticalmethods

ofthetriplepointofpureCO2(56.6°C)byupto2.6°Cissymptomaticofthepresence ofsmallquantitiesofadditionalgasessuchasCH4orN2.However,nitrogenwasthe only additional gaseous species detected in CO2dominated inclusions by Raman analysis.ThepresenceofN2couldnotalwaysbeconfirmedbyRamanspectrometry.In other cases the amount of N2 detected by Raman spectrometry was lower than expectedfromgraphicestimationswherehomogenisationandmeltingtemperatures were transferred into volumecomposition (VX) properties using the diagrams provided by Thiery et al. (1994). Vice versa, Raman spectrometric measurements sometimes proved the presence of accessory gases, where microthermometry had indicatedapurecarbonicfluidphase. Possiblereasonsforthesediscrepanciescanbesummarisedasfollowing: • The quality of Raman measurements is affected by many parameters e.g.the qualityofwafer,inclusionsize,shapeanditspositionwithinthesampleorits density(cf.Burke,2001).Nostandardsexistforthecalibrationofgasmixturesor theinternalstandarddeviationsoftheRamanequipment.Althoughanalytical conditionsandmethodologyweretriedtobeoptimised,itcannotbecompletely excludedthatoneoranotherfactorhadanegativeeffectonthequalityofthe measurements,leadingtolessaccurateresults. • Duetothemineralcolour(e.g.ingarnet),thepresenceofmanysmallsolidor fluidinclusionsthatbecloudsinglecrystals(oftenthecase infeldspar),or the

darkish appearance of many CO2dominated inclusions, the quality of the observation of a phase transition may be limited. Consequently, the melting temperaturemeasuredbymicrothermometrydoesnotcorrespondexactlytothe actual content of the fluid inclusion although, the accuracy of the stages was determinedto±0.2°Cforlowtemperaturemeasurementsandspecialtechniques (e.g.cycling)hadbeenapplied. • TheuseofVXdiagramstographicallydeterminefluidcompositionsormolar volumesisafflictedwitharelativelylargeerror.TheVXvaluesincorporatedin

thepublisheddiagramforCO2N2fluidinclusionsarebasedonanexperimental reproduction of TPXdata. Deviations caused by inaccuracies may be sizeable especiallyinthecriticalregion.Forsomeinclusions,nodataoncompositionor molarvolumecanbederivedasnopointofintersectionexistsforthecurvesof themeltingandhomogenisationtemperaturesmeasured. The deviation between compositional values derived from Raman analysis and those determined graphically may be as high as 7 mole % (e.g. incl. no. 2176224). Albeit,thefactthattheresultsattainedbyapplyingseveralmethodsdonotalways agree with each other, the error concerning the exact fluid composition lies within acceptableanalyticallimits.Particularly,ifoneconsiderstheerrorsthatoccurduring

24 4.Analyticalmethods molar volume/density and isochore calculations that result from the limited applicabilityofavailableequationsofstate. Densities were calculated for all fluid inclusions whose composition could have beenderivedfromeithermethod,andthusguidevalueswereobtainedforinclusion assemblages. Nevertheless, to avoid possible miscalculations or misinterpretations, isochoreswerecalculatedonlyforrepresentativefluidinclusionswhosecomposition known from Raman microanalysis is in close accordance with resultsfrom graphic estimates. Thebulkcompositions,molarvolumes/densitiesandisochoresofindividualfluid inclusionswerecalculatedfrommicrothermometrydata,Ramananalysisandvolume fractionestimatesusingthesoftwarepackagesFluids(Bakker,inpress)andClathrates (Bakker, 1997). The programs provide several equations of state (EOS) for the calculations of PVTX properties of varying fluid systems. In consideration of the particular fluid system and the accuracy and limitations of the corresponding equations of state, the suitable equations were chosen for further calculations (see below). During all isochore computations the program took into account the compressibilityandexpansionofthehostmineralwiththevolumetricdataforquartz takenfromHosienietal.(1985)andfromBerman(1988)forallotherminerals.Ifthe amountofN2detectedbyRamanspectrometryorgraphicestimationsdidnotexceed2 mol%,fluidpropertieswerecalculatedasbeingequivalenttopureCO2.Theerrorin molarvolumecalculationsresultingfromthisassumptionisbyfarsmallerthanliquid vapourequilibriumcalculationswithpublishedequationsofstate.

Pure CO2

MolarvolumesofpureCO2fluidinclusionswereobtainedfromthehomogenisation temperaturesusingtheequationofDuscheketal.(1990),andisochorecalculationsare basedontheequationofstateofSpan&Wagner(1996).

CO2-N2

VX properties of mixed CO2N2 fluids were determined from homogenisation temperaturesandRamandataaccordingtotheEOSofThieryetal.(1994),basedonthe modelling of PTXconditions by the SoaveRedlichKwong EOS (Soave, 1972) and molar volumes by the LeeKesler correlation (Lee & Kesler, 1975). Isochores were calculatedapplyingtheEOSofDuanetal.(1992,1996).

H2O-salt (NaCleq) Fluid salinities (in wt% NaCleq) were determined from final ice melting temperaturesapplyingthedataofBodnar(1993).TheEOSforbulkfluiddensityand isochore calculations given by Zhang & Frantz (1987) was used for further computations.

25 4.Analyticalmethods

H2O-CO2±N2±salt

Complexfluidsystemscontainingmixturesofseveralgases(e.g.CO2CH4N2),H2O and salt are not yet accurately investigated by experimental studies. Consequently, dataonsolvusPVTXpropertiesarenotavailableandhomogenisationtemperatures can not be directlytransformedinto bulk molar volumes/densities but depend on estimationofvolumefractionsofthefluidphasespresent. Ifclathratemeltinginpresenceofaheterogeneouscarbonicphasewasobservedin complexfluidsystems,theprogramQ2fromthesoftwarepackageClathrates(Bakker, 1997)wasusedforthecalculationofbulkfluidpropertiesapplyingtheEOSofDuanet al.(1992,1996)andThieryetal.(1994)(H2OCO2N2salt)orDuscheketal.(1990)(H2O

CO2NaCl)incombinationwithvolumefractionestimates.Isochoreswerecalculated accordingtoBowers&Helgeson(1983)modifiedbyBakker(1999).

In salt free complex systems (H2OCO2N2), volume fraction estimates were combined with volumetric properties calculated after Thiery et al. (1994) whereas isochoreswerecalculatedwiththeequationofstateofHolloway(1977).

26 5.Geologicalsetting

5. Geological setting

5.1. The position of central Dronning Maud Land in respect to Rodinia and Gondwana reconstruction

ThegeotectonicandmetamorphichistoryofEastAntarctica,andthusofDronning MaudLand(DML),iscloselyrelatedtotheformationandfragmentationofRodinia (McMenamin&McMenamin,1990),anearlyNeoproterozoicsupercontinentcentred around Laurentia, and the subsequent amalgamation of Gondwana in late Neoproterozoic/early Palaeozoic times (cf.Bondet al., 1984; Moores, 1991; Dalziel, 1991;Hoffmann,1991). As concluded from the correlation of palaeomagnetic data with relicts of Mesoproterozoic mobile belts preserved in the margins of Proterozoic continental nuclei, the assembly of Rodinia was connected with a phase of deformation and metamorphismcausedbyacollisionalorogenyatca.11001000Ma,alsoknownasthe "Grenvilleageevent".TheexactpositionofindividualProterozoiccratonsconstituting Rodiniaarestillunderdebate(cf.Torsviketal.,1996;Pelechatyetal.,1996;Weiletal., 1998;Grunow,1999;Meert,2001),butitisingeneralagreedupon,thatEastAntarctica wasfacingthewesternmarginofLaurentia(Moores,1991). Tectonicactivitiesfromca.750Matoca.550Maeventuallyledtothebreakupof RodiniaandtheconsolidationofGondwana(cf.Black&Liegeois,1993;Rogersetal., 1995a,b).TheriftinganddriftingofRodiniascontinentalelementsprobablybeganwith theseparationofEastGondwanaasacoherentblock,atca.750730Ma(Li&Powell, 1993; Powell etal., 1993; Borg & DePaolo, 1994). The latest phase of diachronuous dispersal of Rodinia overlaps in time with early collision events between East Gondwana (Australia, India, East Antarctica) and West Gondwana cratons (South AmericanandAfricancratons/shieldareas),generallyreferredtoasthe"PanAfrican event"(correlativetoe.g.thePanIndianevent,theRossortheBrasilianoorogeny). However, some authors have stated that parts of East Gondwana were not fully assembled until the latest Neoproterozoic to early Palaeozoic as indicated by the existence of PanAfricanage orogenic belts within East Antarctia, Australia, MadagascarandSriLanka(Shiraishietal.,1994;Grunowetal.,1996).Thefinalcollision ofEastandWestGondwanaatca.530Maresultedintheclosingandconsumptionof the 'Mozambique Ocean' and the formation of the late Neoproterozoic/early Palaeozoic East African Orogen (EAO) (Stern, 1994) or the extended East African/AntarcticOrogen(EAAO)(Jacobs&Thomas.,inpress)(Fig.5.1). Antarctica, once forming the central part of Gondwana, today is pivotal for an improvedreconstructionofthesupercontinent.DuringtheamalgamationofEastand

27 5.Geologicalsetting

WestGondwana,thestudyareaofcentralDronningMaudLand(cDML)waslocated nexttotheeasternmarginofsouthernAfrica(Fig.5.1).Consequently,itsharesdistinct lithochronological and tectonic characteristics with parts of the Mozambique Belt exposedinMozambique,Madagascar,SriLankaandsouthernIndia.

Fig. 5.1:ThepositionofcDML(markedbytherectangle)withinthelateNeoproterozoic/earlyPalaeozoic supercontinentGondwana(reconstructionafterLawver&Scotese,1987).C:CoatesLand;EAAO:East African/Antarctic Orogen; EM: Ellsworth Mountains; FCB: Filchner crustal block; FM: Falkland Microplate;G:Grunehognacraton;H:Heimefrontfjella;HN:HaagNunatak;K:Kirvanveggen;LHB: LützowHolmbay;M:Madagascar;MB:Mwembesishearzone;MH:MühligHofmannGebirge;PB: PrydzBay;R:Richtersveldcraton;S:Saldaniabelt;SL:SriLanka;Sø:SørRondane;SR:Shackleton Range;Z:Zambesibelt;(modifiedafterJacobs&Thomas,inpress).

A PanAfrican highgrade metamorphic overprint of earlier Grenvilleage structures,a pre to posttectonicanorthositicand granitic (charnockitic) magmatic provinceandsinistralshearzonestypicalformostpartsoftheMozambiqueBeltin Africa(e.g.Pinnaetal.,1993;Kröner,1997)findtheiranalogiesincDML(Jacobsetal., 1998).Thus,DMLandtheregionfarthereast,alsotermedthe"EastAntarcticmobile belt",areinterpretedtorepresentthecontinuationofthePanAfricanMozambiqueBelt intoAntarctica(Unrug,1996;Dirks&Wilson,1995;Jacobsetal.,1998).Nevertheless,it has yet remained unclear where the Mozambique Suture between E and W

28 5.Geologicalsetting

GondwanaprojectsintoAntarcticaandwhetherthereisjustoneormoreofthemtobe detected (Jacobs et al., 1998). Shackleton (1996) suggests to locate the suture in Heimefrontfjella,western DML, while Grunowet al. (1996) and Wilson et al. (1997) arguefortheLützowHolmComplexasanalternativelocation.Thelattershowsbetter correlationwithdatafromJacobsetal.(1995,1998),whointerpretthePanAfricanage tectonisedpart of DronningMaud Land as a forelandthrustbeltwiththecoreand sutureofthebeltlocatedfarthertotheeast.However,duetothesimilargeotectonical situationsfoundinDML and theLützowHolmBay complex,pinpointingtheexact positionofthesuturebetweenEastandWestGondwanainEastAntarcticaisstillan outstandingproblem.Hitherto,noclearanswerhasbeengiventothequestionwhether DMLoriginallywaspartofEastorWestGondwanaorifitevenformedanindividual microplate within the Mozambique Ocean (Jacobs et al., 1998; Jacobs & Thomas, in press).

5.2. Geography and geological evolution of central Dronning Maud Land

SouthoftheLazarevandRiiserLarsenSea,DronningMaudLandencompassesthe antarcticregionbetween20°Wand45°E.Fromitsnortherncoastlinetothesouth,the Nivlisen (Novolazarevskaya) and Lazarev ice shelve passes gradually over into a gentleforelandcoveredwiththickinlandicesheets.Atca.70°40’Sand11°12°E,theice sheet is interrupted by the Schirmacher Oase, the northernmost ice free spot and continentalboundaryofDML.Furthersouthbetween71°20’Sand72°20’S,aca.60km widesteepandruggedmountainridgethatrunssubparalleltothecoastlineofEast Antarctica for approximately 800 km protrudes the ice cover. This EW trending mountain chain reaches from the Heimefrontfjella in the west to the Sør Rondane mountaincomplexintheeast(Fig.5.4).Tothesouth,itisborderedbytheWegener inlandicewhichfindsitscontinuationinthecentralantarcticicecap.Thestudyareaof central Dronning Maud Land (cDML) lies between 8°E to 14°E, where the strongly accentuatedrelief(Fig.5.2)reacheselevationsof3000mandhigher.CDMLembraces the nearly NS aligned mountain chains of Orvinfjella, comprising Drygalskiberge, Holtedahlfjella,Kurzegebirge,Dallmannberge,SmåskeidristaandConradgebirge,and of Wohlthatmassiv, including AlexandervonHumboldtGebirge, Petermannketten andOttovonGruberGebirge(Fig.5.4).TothewestcDMLisflankedbytheMühlig HofmannGebirge, while to the east it continues into the Sør Rondane mountain complex.

29 5.Geologicalsetting

a b

Fig. 5.2:(a)TheruggedmorphologyofthecentralPetermannketten;(b)TheOttovonGruberGebirge.

BeingsituatedatthemarginoftheEastAntarcticcraton,cDMLhasexperiencedat leasttwophasesofmajordeformationandmetamorphism:the"Grenvilleageevent"at ca. 1100 – 1000 Ma, which is only preserved in relics, and the younger and predominant"PanAfricanevent",thatledtoastrongpervasiveoverprintoftheolder structures. The various lithologic units cropping out in cDML can generally be describedasatwofoldsubdivisionofmetamorphicbasementrocksversussyn,late, and/orpostkinematicintrusivebodiesoffelsicandmaficcomposition. Athicksupracrustalseriesofsedimentaryandvolcanicrocks,todayformingthe crystallinebasementcomplex,wassubjectedtoanextensivetectonometamorphismat hightomediumpressuregranulitefaciesconditions(M1 according to Baueret al., 1996).Themetasedimentaryunitsarecomposedofgarnetbiotite±hornblendegneisses, garnetsillimanitecordierite–bearingmetapelites,quartzitesandcalcsilicateboudins oftenassociatedwithlayersorlenses(Baueretal.,1996;Markl&Piazolo,1998; Piazolo&Markl,1999).TheleucocrateparagneissesaremainlyexposedintheA.v. HumboldtGebirge and Petermannketten, and often contain a network of dark coloured to greenish hue or brown orthopyroxenebearing patches and tubes crosscuttingthegneissicfoliation.Thissecondarycharnockitisationpatternislocally interruptedby bleached zones around fractures and mylonitezonesorundeformed pegmatiteveinsandfelsicdykes(Paech,1997)(Fig.5.3).

Fig. 5.3:Fieldviewofsecondarycharnockitisationpatterncrosscutbylightgreybleachedzonesaround fracturesandfoliationplanes(centralPetermannketten).

30 5.Geologicalsetting

The metavolcanic rocks are characterised by a layered sequence of finegrained banded hornblendebearing gneiss, plagiogneiss and amphibolites, hinting at a bimodalcharacteroftheoriginalvolcanicunits,andintercalationsofultramaficlenses and metagabbros (Bauer et al., 1996; Paech, 1997; Colombo & Talarico, in press). Magmatic zircons of these rocks gave crystallisation ages of ca. 1130 Ma and metamorphic zircon overgrowth at ca. 1080 Ma (Jacobs et al., 1998). This early Grenvilleage metamorphic event was associated with the syntectonic intrusion of granitesheetsandplutonsatca.1085to1075Ma(Jacobsetal.,1998),thatwerelocally metamorphosed to garnetbearing migmatic orthogneisses. Rare remnants of D1 deformation are S1 planes parallel to the compositional layering and isoclinal, intrafolialandoftenrootlessmicrofoldswithvariableorientations(Baueretal.,1996). Nofurthertectonothermalormagmaticimprintisrecordeduntilca.600Mawhen anorogenicmagmatismmarkedtheonsetofanextendedperiodoflateNeoproterozoic to lower Palaeozoic geodynamic activity. Subsequent highgrade tectonothermal overprintwascausedbythecollisionofEastandWestGondwanawhichisascribedto thebroader"PanAfricanevent".(cf.Black&Liegeois,1993;Rogersetal.,1995a,b).The intrusionof igneousrocks into the Grenvilleagebasementpreand postdatesthe geodynamicevent. In the Wohlthatmassiv, the magmatic activity started with the emplacement of a voluminousmassiftypeanorthositecomplex(theO.v.Gruber–Anorthositecomplex) associated with subordinate charnockites, ferrodiorites and norites (Kämpf & Stackebrandt, 1985; Jacobs et al., 1998; Markl et al., in press). The O.v.Gruber anorthosite complex crops out over approximately 250 km2 and shows a relatively homogeneous plagioclase ±orthopyroxene ±clinopyroxene magnetite illmenite mineral assemblage. A common feature are layers and lenses of ultramafic composition,mainlycomposedofFeTioxidesandorthopyroxene.The anorthosite complexiscrosscutbyferrodioriticdykes,varyingamountsof(leuco)gabbrosand (leuco)norites and late PanAfrican pegmatoids (Markl et al., in press). Granitic plutons,anorthositicdykes,androcksoftheferrodioritesuitealsointrudedinthearea ofthePetermanketten(Ravich&Kamenev,1975;Parimooetal.,1988;Joshietal.,1991). The margins of the anorthositebody were stronglydeformed at ca. 580550 Ma (Jacobs et al., 1998). Deformation took place at mediumpressure granulite facies conditionsofabout6.8±0.5kbarand830±20°C,andisinterpretedasrepresentingthe collisionalstage,i.e.PanAfricanI(Markl&Piazolo,1998;D2inBaueretal.,inpress). Withintheanorthositebodydiscretemyloniticshearzonesdevelopedduringthishigh gradeevent.

ThemainstructuraltrendascribedtothePanAfricanI(orD2)deformationalevent isnothomogenousthroughoutcDML.IntheWohlthatmassiv,tightB2 fold axes are

31 5.Geologicalsetting preserved, but their original vergence is concealed by later refolding and rotation.

CommonfeaturesofthecoevalmetamorphismM2thatcanbeobservedwithinthe metamorphicbasementrocksincludesyntectonicmigmatisation,dehydrationmelting of metapelitesand expulsionof leucosomes (Bauer etal., in press). The anorthosite bodywasaffectedbyafoliationS2whichbendsgraduallyfromEWinthenorthern marginsoverNESWinthenorthwesttoNSatthewesternflank.Intheeasternand central region no foliation is discernible, and undeformed magmatic textures and –layeringarepreserved.Thus,theanorthositeisinterpretedashavingbehavedlikea largedeltaclastduringdeformation(Baueretal.,inpress;Markletal.,inpress).

Asubsequenttectonometamorphicevent(PanAfricanII;D3/M3inBaueret al.,in press) started with the syntectonic intrusion of granitoids and gabbros at approximately 530515 Ma (Jacobs etal., 1998; Bauer et al., in press). Metamorphic conditions were at low–pressure granulite facies of 4 5 kbar and temperatures of about640±10°C(Markl&Piazolo,1998).

Extensional shearing (D4) gave way for a second voluminous anorogenic anorthositecharnockitecycleandtheintrusionofposttectonicsyenitebatholithsatca. 510 Ma (Mikhalsky et al., 1997) that marked the final stage of PanAfrican metamorphism. It was accompanied by a poorly developed and yet undated retrogressionatpressuresofapproximately25kbarand480580°Cpostdatingthe voluminousintrusionofgranitoidsat510Ma(Markl&Piazolo,1998;D4inBaueretal., inpress). Thermobarometric studies indicate a clockwise PTpath characterised by an isothermal decompression evolution for the early PanAfrican I event, whereas the structures of the PanAfrican II event are ascribed to a lateorogenic extensional collapseoftheEastAfrican/AntarcticOrogen(Colombo&Talarico,inpress.;Jacobs& Thomas,inpress).

5.3. Nomenclature of geographic sites in Dronning Maud Land

ThenamingoftopographicfeaturesincentralDronningMaudLandhasnotbeen unitisedyet.Whenselectingexistingnamesfortheuseinthiswork,preferencewas given to the earliest approved or documented names, as recommended by the guidelines of the "Composite Gazetteer of Antarctica"(www.pnra.it/SCAR_GAZE), publishedbytheScientificCommitteeonAntarcticResearch(SCAR)WorkingGroupon GeodesyandGeographicInformation.AccordingtoSCARrecommendations,placenames shouldbegivenintheiroriginalformandnotinatranslatedversion.In1937,when claimedthesectorbetween20°Wand45°Etosecureitswhalingactivities,the regionwas named in honourof the NorwegianQueenMaud (18691938). Thus, the Norwegian term Dronning Maud Land is used throughout this study. On the other

32 5.Geologicalsetting hand,mostgeographicnamesthatareincommonusetodaycanbetracedbacktothe German Expedition led by A. Ritscher in 1938/39, during which the geography of Dronning Maud Land was systematically mapped with the help of aircraft and aerophotogrammetry. Consequently, German and Norwegian names are applied in hierarchicalsuccessionor accordingto theirprevalence and acceptance throughout recentliterature.Englishtermsareapplied,ifnoappropriateGermanorNorwegian namesexistoriftheyaretheonesmostwidelyaccepted.

Fig. 5.4: Overview map of central Dronning Maud Land showingitspositionwithinthe Antarctic continent, the most importantgeologicalunitsand sample locations. (modified afterMeier,1999)

33 6.ThebasementlithologiesofthecentralPetermannketten

6. The basement lithologies of the central Petermannketten - an example of secondary charnockitisation and leaching processes Therocksstudiedanddiscussedinthischapterrepresentsomeofthemajorrock unitsexposedinthecrystallinebasementcomplexofcDML,asdescribedinchapter 5.2.Duringthefieldcampaign,varyingsurfacecolouringsofcorrespondingrockunits led to the assumption that the basement lithologies had been subjected to non pervasivesecondarycharnockitisation,andfractureandfoliationcontrolledleaching processes.Oneintentionofthisstudyistoaffirmordisprovethissupposition,andto investigate in the character of the fluid phases potentially involved in the charnockitisationand/orleachingprocesses.Hence,analyticalresultswerecompared bymeansofdifferentrockcolouring,andasnotalldarkishrockscanbeclassifiedas charnockitess.str.,thefollowingpresentationofdatastillreliesontheprimary,and generalisingsubdivisioninto"dark"and"light"rocktypes.

Table 6.1:LocationsandrocktypesofsamplescollectedfromthecentralPetermannketten.Thecolour attribute"dark"describesagreenishhueascharacteristicofcharnockites/secondarycharnockitisation. "Light"referstotheleachedororiginalrockcolour.

sample no. locality rock type colour latitude S longitude E altitude [m] 1533 Svarthornkammen mangerite (gneissic) dark 71°29.2' 12°27.3' 1540 1535 Svarthornkammen granitic gneiss (migmatitic) light 71°29.2' 12°27.3' 1340 1535-1 Svarthornkammen granitic gneiss dark 71°29.2' 12°27.3' 1340 1548 Zwieselhögda granitic grt-gneiss light 71°46.3' 12°00.8' 1760 1549 Zwieselhögda qtz-alkali-fsp-syenite light 71°46.3' 12°00.8' 1760 1551 Zwieselhögda hbl-bearing granitic gneiss light 71°46.3' 12°00.8' 1760 1562 Storsåta granitic grt-gneiss dark 71°27.1' 12°30.6' 1240 1563 Storsåta granitic grt-gneiss light 71°27.1' 12°30.6' 1240 2168 Schwarze Hörner qtz-rich granitic gneiss light 71°35.7' 12°33.4' 1660 2169 Schwarze Hörner charnockite (massive) dark 71°35.7' 12°33.4' 1660 2171 Schwarze Hörner charnockite (massive) dark 71°35.7' 12°33.4' 1660 2175 SE Storsåta alkali-fsp-syenite light 71°29.0' 12°31.1' 1400 2176 SE Storsåta granitic grt-gneiss (migmatitic) light 71°29.0' 12°31.1' 1400 2177 SE Storsåta charno-enderbite (massive) dark 71°29.0' 12°31.1' 1400 2178 SE Storsåta granitic gneiss (migmatitic) light 71°29.0' 12°31.1' 1400 2179 SE Storsåta charnockite (migmatitic, 2179a) dark 71°29.0' 12°31.1' 1400 jotunite (massive, 2179c) 2180 SE Storsåta charno-enderbite (migmatitic) dark 71°29.0' 12°31.1' 1400 2181 SE Storsåta monzonitic grt-gneiss (migmatitic) light 71°29.0' 12°31.1' 1400

34 6.ThebasementlithologiesofthecentralPetermannketten

6.1. Metamorphic charnockites and gneisses of the basement lithologies

6.1.1. Petrography of "dark" rock varieties (thinsections no. 1535-1, 1562, 2169, 2171, 2177, 2179a, 2179b, 2180) Macroscopically,thefinetomediumgrained"dark"rockvarietiesareequigranular to inequigranular, and characterised by a distinct greenish to brownish colouring. Gneissic samples show a pronounced foliation. In some rocks, the foliation is interrupted and destroyed by coarse grained migmatitic zones, whereas massive varietieslackanypreferredordistinctivetexture. The main mineral constituents of these samples (major and minor phases) are plagioclase,Kfeldspar,quartz,greenhornblende,biotite,garnet,orthopyroxeneand clinopyroxeneinvaryingamountsandphaseproportions.Muscovite,blackanddark redopaquephases,apatite,zircon,chlorite,monazite,tourmaline,titaniteandcalcite wereidentifiedasaccessories.Notethatnotallsamplescontainallphasesmentioned above(seeTable6.2).

Table 6.2: Modal compositions (in vol%) of "dark" varieties of gneissicsamplesfromthebasement lithologiesofthePetermannketten.x≤2vol%.Thinsection2179arepresentsthemigmatiticpart,and 2179cthemassivepartofsample2179.

sample no. 1535-1 1562 2169 2171 2177 2179a 2179c 2180 rock type granitic granitic charnockite charnockite charno- charnockite jotunite charno- gneiss grt-gneiss enderbite enderbite

plagioclase 30 35 7 20 30 25 40 40 K-feldspar 35 20 35 40 15 15 5 15

quartz 20 35 45 25 40 35 x 15 biotite 3 5 5 x 10 10 10

muscovite x x x x x x

garnet 3 5 7 green hornblende 6 x 7 15

orthopyroxene 5 5 5 10 15 7

clinopyroxene x 10 opaque phase x x x x x x x x

apatite x x x x x x x

zircon x x x x x x chlorite x x x x x

monazite x

titanite x x tourmaline x

calcite x x x

relictic phase x x x x

35 6.ThebasementlithologiesofthecentralPetermannketten

Samplesno.15351and1562thatdonotcontainorthopyroxene,compriseastrongly alteredrelicticphasewithyellowtobrownishcolouring,whichcouldnotbefurther identifiedbyopticalmicroscopyorelectronmicroprobe analysis. Nevertheless, this phasewasalsoobservedinconjunctionwithorthopyroxeneorrelicticinmigmatitic zonesofsample2179(Fig.6.1e,f).Thereforeitisinterpretedas beingaproductof pyroxenealteration. Theamountofplagioclaseislowestincharnockitesampleno.2169(c.7vol%)and highestinsamples2179cand2180(c.40vol%)(Table6.2).However,thecharacteristics of the anhedral to subhedral plagioclase grains are similar throughout all darkish rocks.Withinatotalrangeofc.0.05to2.0mm,theyshowanaveragegrainsizeofc.0.5 to1 mm.Typically,plagioclasesdisplaypolysynthetictwinningafteralbiteand/or pericline twin law in addition to commencing formation of dihedral angles and straightgrainboundaries.Myrmekiticintergrowthwithsmall,rodlikequartzgrainsis common (Fig. 6.1a). Secondary alteration to sericite and calcite is pervasive or restrictedtointracrystallinemicrofractures. ModalproportionsofKfeldspar vary between c. 5 and 40 vol% and sizes of the anhedraltosubhedralgrainsspreadfrom0.1to2.5mm(seriategrainsizedistribution). OnerepresentativefeatureofKfeldspargrainsisperthiticunmixing.type albite and pericline twinning infrequently occurs. Diffuse and discontinuous crosshatched twinning further indicate the presence of microcline (Fig. 6.1b), that sometimesrevealsvermicularintergrowthwithadjacentquartz.Sporadicalterationto finegrainedaggregatesof sheetsilicatesis restricted to intra/ and intercrystalline fissuresorgrainboundaries. Quartz,whichisonlyanaccessoryphaseinthinsection2179cmaytakeupc.15to45 vol% with the highest value reached in sample no. 2169 (Table 6.2). Grain size distributionofanhedraltosubhedralcrystalsisseriatetoinequigranular,rangingfrom 0.1 to 7.2 mm. Generally,small grainsizes belongto (secondary)quartzthat shows graphic or vermicular intergrowth with feldspar, biotite or garnet. The longest dimensionsbelongtodiscshapedquartzgrains,whichareflattenedandalignedalong foliationplanesofgneissicsamples(Fig.6.1c).Nexttothediscshapedhabit,quartzes exhibit further deformation features as extinction, bent deformation lamellae, and interandintracrystallinemicrofractures.Occasionally,thefissuresarefilledwithfine grained network of muscovite, chlorite and biotite. Frequentindicatorsof dynamic recrystallisation and recovery are irregular grain boundaries, subgrain rotation and subgrain formation (Fig. 6.1c). Zones of completely statically recrystallised grain aggregateswithpolygonalfabricandgrainsizesofc.0.1to0.5mmwerealsoobserved. Biotiteispresentinallrockseitherasmajor,minororaccessorycomponent.Inmost samples,twodifferentvarietieshavebeenidentified.

36 6.ThebasementlithologiesofthecentralPetermannketten

Fig. 6.1: Microphotographsofcharacteristicmineralphasesandtexturesof"dark"rockvarieties:(a) myrmekiticgrowthofplagioclaseandquartzintoKfeldspar;(b)microclinewithtypicaltwinning;(c) discshapedquartzwithdifferentlyorientatedsubgrains;(d)subhedralorthoandclinopyroxenecrystals and"primary"biotiteflake;(e)alterationoforthopyroxenealongrimsandfracturesresultinginthe formationofayellowishphase(redarrows),greenhornblende,opaquephaseandfringybiotite;(f)relictic phasewithoutanyrelicticpyroxene,andbiotitewithvermicularquartz(arrow).

37 6.ThebasementlithologiesofthecentralPetermannketten

Onetypeofbiotiteisalignedalongfoliationplanesorintegratedinthefabricof massivesamples.Pleochroiticcolouringofthesubhedralflakesisdarkbrowntolight brown,andgrainsizeisc.0.3to1.0mm(Fig.6.1d).Inclusionsofsmallroundedzircon grains are surrounded by black pleochroitic halos. The other, and assumedly secondary,typeofmostlyanhedralbiotitemaybelarger,rangingfrom0.2to2.0mmin longest dimension. It displays similar pleochroitic colouring, but some grains also revealpleochroismfromdarktolightgreen.Themost characteristicattributeis its vermicularintergrowthwithquartz,whichresultsinafringyappearance(Fig.6.1e,f). Singlegrainsgenerallyovergrowtherocks'fabric,formrimsaroundpyroxeneoroccur parageneticallywithorassolidinclusioniningarnetorgreenhornblende.Aroundthe stronglyalteredrelicticphaseofsamplesno.1562and15351,biotitealsoappearsin conjunctionwithcalcite.Itisnotalwayspossibletoclearlydifferentiatebothbiotite varietiesinrespecttovolumepercentageestimation,asthesecondtypemayreveal epitaxicalovergrowthonearlygrains. Orthopyroxene(i.e.hypersthene),themineralphaseessentialforclassifyingrocksin respect of the charnockitic rock suite, was detected in all thinsections except for samplesno.1562and15351.Orthopyroxenecrystalsareeuhedraltosubhedral,and rangefromc.0.05to2.0mminsize.Theirpleochroiticcolourchangesbetweenpale greentopaleyellowish(Fig.6.1d).Mostmineralsexhibitvaryingstatesofalteration alongmineralcleavageplanes,microfracturesorgrainmargins.Alterationresultsin formationofbrownishopaquephase,anetworkofunspecifiedyellowmicrocrystalsor different sheetsilicates, green hornblende and secondary biotite (Fig. 6.1e). Biotite (early type), black opaque phase, quartz and feldspar occur as solid inclusions in orthopyroxene.Clinopyroxene was identified by means of weak pleochroism (light greenandlightred),andhighbirefringence.Theeuhedraltosubhedralcrystalsare between c. 0.05 and 0.5 mm in size. Large grains are sometimes surrounded by a narrowrimoforthopyroxene. Samplesno.1562,2177and2180containsubhedralgarnetblaststhatrangefromc. 0.1to4.0mminsize.Theblastssometimesrevealopenmicrofractures,andvarying numbersandcombinationsofsolidinclusions,whichwereidentifiedasquartz,black opaquephaseandbiotite(earlyandlatetype). Greenhornblendeisanaccessoryphaseinsampleno.2169andamajorconstituentin samplesno.15351,2171,and2179.Themineralgrainsareanhedraltosubhedral,0.2to 0.8 mm in size. They reveal a strong pleochroism of light to dark green. Mineral cleavageplanesarevisibleinsectionscutperpendiculartothecaxis.Ingeneralgreen hornblende has formed as mantle around pyroxene. It has also developed along fracturesandcleavageplanesofpyroxene,orintergrownwithbiotite.Rarely,green hornblendedisplaysbeginningofcalcitisationandsericitisation.

38 6.ThebasementlithologiesofthecentralPetermannketten

Fig. 6.2:Classificationof"dark"(charnockitic)rocksintheQAPtriangleaccordingtoLeMaitre(1989) followingtherecommendationsoftheIUGSsubcommissionfortheclassificationofcharnockiticrocks. Modalcompositionsofplagioclase,KfeldsparandquartzaregiveninTable6.2.Withrespecttothe definitionofthemembersofthecharnockiticrockseries(c.f.chapter2.1),onlysamplesno.2169,2171 and2179acanbeclassifiedascharnockites.str.Thenamesoforthopyroxenebearingsamplesaregivenin the figure. Samples no. 15351 and 1562 do not contain orthopyroxene any more and are therefore classified as granitic gneiss and granitic grtgneiss, respectively, although they show the typical charnockite colouring and contain a relictic phase that indicates former orthopyroxene occurance. NumbersinitalicsindicatetheQAPFfieldnumberafterLeMaitre(1989).

6.1.2. Petrography of "light" rock varieties (thinsections no. 1535, 1548, 1551, 1563, 2168, 2176, 2178, 2181) Thegroupof"light"rockvarietiescomprisesgneisseswithfinelayersofwhite,light and darkgrey minerals. Some samples exhibit migmatitic zones, garnet blasts, or roundish aggregates of green hornblende and biotite that overgrow the gneissic foliation.Macroscopically,therocksarepredominantlyinequigranular,finetomedium grained. Major and minor mineral phases distinguished during optical microscopy are plagioclase,Kfeldspar,quartz,hornblende,garnetandbiotite.Accessoriesobserved are muscovite, chlorite, black and brownish opaque phases, apatite, zircon, calcite, rutile,monazite,andtitanite.

Anhedraltosubhedralplagioclasecrystalsrangearound0.1to1.6mminsize.They oftenrevealpolysynthetictwinningafteralbiteandpericlinetwinlaw,andmyrmekitic intergrowthwithquartz.Somegrainsdisplay extinction,subgrainsand/orirregular grain boundaries. Rarely, antiperthitic unmixing can be observed. Sericitisation of plagioclase grains occurs along fissures or restricted to single twin lamellae.

39 6.ThebasementlithologiesofthecentralPetermannketten

Table 6.3: Modalcompositions(vol%)of"light"varietiesofgneissandmigmatitesamplesfromthe basementlithologiesofthePetermannketten.x≤2vol%. sample no. 1535 1548 1551 1563 2168 2176 2178 2181 rock type granitic granitic hbl-bearing granitic qtz-rich granitic granitic monzonitic gneiss grt-gneiss granitic gneiss grt-gneiss granitic gneiss grt-gneiss gneiss grt-gneiss plagioclase 25 20 20 25 7 25 20 40 K-feldspar 40 20 25 25 20 25 30 30 quartz 25 40 40 40 50 35 35 10 biotite 7 7 5 x 10 x x 10 muscovite x x x x x garnet 7 5 5 5 4 green hornblende 7 x opaque phase x x x x x x x x apatite x x x x x x zircon x x x x x x x x chlorite x x x x x monazite x calcite x rutile x x x titanite x relictic phase x x x x x

Kfeldsparshowsseriategrainsizedistribution,generallyrangingfromc.0.05to1.5 mm, but grain sizes up to c. 30.0 mm are also present in migmatitic samples. The subhedraltoanhedralgrainscommonlyrevealperthiticunmixinganddiscontinuous crosshatched twinning as it is typical for microcline (Fig. 6.3a). Abundant microstructures caused by deformation and/or recovery include irregular grain boundaries(Fig.6.3a), extinction,andsubgrainformation.Finegrainedrecrystallised Kfeldsparaggregatesorthintwinlamellaeareasubordinatefeature.Straightgrain boundaries and dihedral angles have preferably formed in contact with quartz and biotite. Evidence of brittle fracturing is given by the presence of inter and intracrystallinefissuresandmicrofractures.Regularly,theyarefilledwithfinegrained aggregatesofmuscovite,calciteand/orchlorite. Quartzgenerallydisplaysbimodalgrainsizedistribution,rangingfromc.0.8to8.8 mm.Instronglyfoliatedgneisses,largeanhedralquartzcrystalsarediscshapedand flattened parallel to the foliation planes (Fig. 6.3a). They show interlobate grain boundaries, undulous extinction and subgrain formation. The textureand habit of small quartz grains of these samples indicate dynamic and sometimes static recrystallisation, the latter leading to the formation of polygonal fabric, a lack of undulous extinction, and interfacial angles of approximately 120°. In migmatitic samples,grainsizedistributionissimilar(c.0.4bis6.4mm),butthelargecrystalsare anhedraloldgrainsthatdonotshowanypreferredorientation.

40 6.ThebasementlithologiesofthecentralPetermannketten

Fig. 6.3:Microphotographsof"light"colouredsamplesofthebasementlithologies:(a)discshapedquartz and microcline with irregular grain boundaries; (b) flaky (primary) biotite aligned within gneissic foliation;(c)greenhornblendeincirculararrangementaroundplagioclase;(d)thesamedisplaydetailas in(c),butwithcrossedpolars;(e)garnet,biotite,andrelicticyellowphase(arrow);(f)orthopyroxeneand clinopyroxeneofmangeritesampleno.1533(synkinematicintrusion,cf.chapter6.2).

41 6.ThebasementlithologiesofthecentralPetermannketten

Larger quartzes are sometimes crossed by open microfractures. Intergrown with plagioclase,rodlikequartzinmyrmekiticzonesdisplaysgrainsizesofc.0.1to0.4mm. Similargrainsizesaretypicalforquartzthatoccursassolidinclusionin,orgraphic texturewith,garnetorbiotite. Allsamplescontainbiotiteatleastasaccessoryphase,butmostlypresentasminor ormajorconstituent.Theanhedraltosubhedralgrainsvaryinsizebetweenc.0.04and 2.0mm,andtwovarietiescanbedistinguishedinsomesamples.Onetypeofbiotiteis flakyandintegratedintotherocks'fabric.Itdisplayspleochroiticcoloursoflightto darkbrown(Fig.6.3b).Asecondkinddisplayspleochroiticcoloursoflightyellowish todarkbrownandconspicuousvermicularintergrowthwithrodlikequartz,which results in a fringy appearance. In some samples, biotite alsorevealspleochroismof lightanddarkgreen,orachangeofcolourfrombrownishtogreenishtowardscrystal margins.Thefringybiotiteislessabundant.Ifgarnetispresent,bothmineralsoccur paragenetically,oftentogetherwitharelicticyellowishphase(Fig.6.3e).

Fig. 6.4:Forabettercomparisonwiththedarkish(partlycharnockitic)samples,lightgneissesarealso plottedintheQAPtriangle.Themodalcompositionandconspicuousmineralcomponentswereincluded intothenamewhenclassifyingtherocksunderinvestigation(e.g.qtzrichgraniticgneiss),cf.Table6.1.

Anhedraltoeuhedralgarnetblastsovergrowthegneissicfoliationandrangefromc. 0.2 and 4.0 mm in size. The grains are often intergrown with biotite, some display spongy cellular relationship with quartz, or solid inclusions of opaque phases, K feldspar, plagioclase or sheet silicates. Single garnets arecrossedbyopenfractures, whichmaybefilledwithsheetsilicates. Onlysample1551containsgreenhornblende,whichisanhedraltoeuhedral,varying insizefrom0.1to0.4mm.Togetherwithfinebiotiteflakes,thecrystalsarearrangedin circlesaroundaggregatesofpolygonalplagioclase(Fig.6.3c,d).

42 6.ThebasementlithologiesofthecentralPetermannketten

6.1.3. Fluid inclusion studies (thicksections no. 1535, 1535-1, 1562, 1563, 2176, 2177, 2178, 2179a, 2179c, 2180, 2181) Not all samples described in the previous chapter were suitable for microthermometry analysis, and hence, the most characteristicand promisingones wereselectedforfurtherinvestigations.Withinbothgroupsofrocks("dark"and"light" varieties) three different fluid phases containing either CO2±N2, H2Osalt or H2O

CO2±N2salt, have been identified. Fluid inclusions are predominantly hosted by quartzandsubordinatelybyplagioclaseandgarnet.

CO2±N2bearinginclusions Thefluidphasethatismostabundantthroughoutthedarkandlightvarietiesof

(migmatitic)gneissesisCO2richwithminorandvaryingamountsofnitrogen.When hostedbyquartz,theseinclusionsrangebetween3.5to45.0minsize.Theyaremostly arranged in intracrystalline clusters and trails but single inclusions do also occur. Inclusion shapes are highly irregular or elongated (Fig. 6.6a), but predominantly roundishtonegativecrystalshape(Fig.6.6b).MeltingtemperaturesofsolidCO2after supercoolingto120°Candreheatingtoroomtemperatureis58.3to56.6°C(light rock types) and 58.4 to 56.6 °C (dark rocks) (Fig. 6.5a, b). Homogenisation temperatures range between 10.9 and 30.7 °C (light rocks) and 7.5 to 29.9 °C (dark rocks)and homogenisationeitheroccursto theliquid or to the vapour phase (Fig. 6.5a,b).Somerareinclusionsalsorevealfadingoftheminiscusofthebubblewhich indicates critical homogenisation. Densities calculated from homogenisation temperaturesrangebetween0.17and0.84gcm3forlightrockvarietiesand0.37to0.82 gcm3fordarkrockvarieties.

Fig. 6.5a: HomogenisationandmeltingtemperaturesofqtzhostedCO2±N2 inclusions of "dark" and "light"rocktypes.Homogenisationiseithertothevapourortheliquidphase.Notethatnocharacteristic regularityinThorTmofdarkishandlightrockvarietiescanbederived.

43 6.ThebasementlithologiesofthecentralPetermannketten

Fig. 6.5b: HomogenisationandmeltingtemperaturesofplagioclaseandgarnethostedCO2±N2inclusions of"dark"and"light"rocktypes.Homogenisationisalwaystotheliquidphase.Darkrocksdisplaya largerangeofTm,whereasTmofgrtandplhostedinclusionsinthelightrocksplotinclusters.

The amount of N2 detectedbyRaman microspectrometryor estimatedfrom the meltingpointdepressionofCO2rangesbetween0and10mol%(inlightrocks)and0 to16mol%indarkrockvarieties.Someofthequartzhostedfluidinclusionscontain solidphaseswhichwereidentifiedbyRamanmicrospectrometrytobeeithernahcolite

(NaHCO3)orsiderite(FeCO3)(Fig.6.7a).

CO2±N2inclusionshostedbyfeldspar crystals of light and dark rock varieties are predominantly arranged on intracrystalline clusters and trails and single fluid inclusionsonlyoccurinasubordinatenumber.Thepreponderantinclusionshapeis elongated to square or negative crystal shape (Fig. 6.6c), and inclusionsizes range between5.0and32.0m.Feldsparhostedfluidinclusionsaremoreabundantinthe darkishsamples.ThemeltingtemperatureofCO2afterfreezingis59.2to56.6°Cand 58.8to56.7°Cinthelightanddarksamples,respectively(Fig.6.6b).Homogenisation ofthesefluidsisalwaysintotheliquidphasewithinthelimitsof16.0and26.7°C(light rocks)and13.0and23.9°C(darksamples). AsRamanspectrometryandgraphicestimationshaverevealed,theentrappedfluid containsupto18mol%N2inthedarkishrockvarietiesandmax.3mol%inthelight samples.EnclosedmicrocrystalswereidentifiedwithRamanmicrospectrometrytobe calcite,Mgcalcite,dolomite,pyrophylliteand/orparagonite/muscovite(dioctahedral mica). Densities calculated from microthermometry and Raman spectrometry data rangebetween0.60and0.81gcm3inlightrocks,andbetween0.47and0.81gcm3in darkrocks.

44 6.ThebasementlithologiesofthecentralPetermannketten

Fig. 6.6: Microphotographsofcharacteristicfluidinclusiontypesdetectedinquartz,plagioclaseand/or garnet of "light" and "dark" rock types. (a) CO2±N2inclusionswithelongatedandhighlyirregular shapeshostedbyquartz;(b)QuartzhostedCO2±N2inclusionswithroundishtonegativecrystalshape;

(c) plagioclase hosted cluster of elongated CO2±N2 inclusions; (d) rare elongated CO2±N2inclusions hosted by garnet; upper arrow points at a vapour bubble, lowerarrowpointsatsolidinclusionsof carbonatesandmicas;(e)rareH2Osalt inclusions hosted by quartz with irregular shape and small vapourbubble;(f)roundishH2OCO2saltinclusionswithnahcolitedaughtercrystals(arrowsatleft) thatdissolvedduringtheheatingcycle(right).

45 6.ThebasementlithologiesofthecentralPetermannketten

Fig. 6.7:(a)RamanspectraofsideriteandnahcolitemicrocrystalsdetectedwithinCO2±N2inclusions hostedbyquartz,and(b)Ramanspectraofsideriteandpyrophyllitemicrocrystalsdetectedingarnet hostedCO2±N2inclusionsof"light"and"dark"rocktypes.Representativepeaksofenclosedsolidsare labelledwiththecorrelatingwavenumber,andpeaksofthehostmineralsandprevailingfluidaremarked witharrows.

Garnet crystals rarely contain fluid inclusions large enough to be examined by microthermometry. The inclusions are elongated to roundish and arranged in intracrystallineplanararraysandtrails(Fig.6.6d).Singleinclusionssometimesoccur. Thecommonsizerangesfrom3.0to15.0m,butmayaswellreachupto40.0m.At room temperature, the inclusions are often darkish and the volumefractionof the vapourbubbleintwophaseinclusionsisc.3070vol%.MeltingofthesolidCO2rich

46 6.ThebasementlithologiesofthecentralPetermannketten phase occurs at 57.2 to 56.6 °C in inclusions found in lightcolouredgneissesand between58.7and57.2°Cindarkbasementrocks.Homogenisationisalwaysintothe liquidphaseattemperaturesrangingfrom24.8to26.9°Cand8.8to22.4°Cinlightand darkrocktypes,respectively(Fig.6.5b).TheamountofnitrogendetectedbyRaman spectrometrydoesnotexceed7mol%ininclusionsfoundinthelightrocks,whereas graphicallyestimatedamountsindarkgneiss(sampleno.1562)reachas highas21 mol%.Microcrystalsenclosedintheseinclusions(Fig.6.6d)wereidentifiedasbeing eithercalcite,siderite,Ca/Mgcalcite,pyrophylliteorparagonite/muscoviteinvarying volumefractionsandcombinations(Fig.6.7b).

H2Osaltbearinginclusions Quartzistheonlymineralthatcontainsalowsalineaqueousfluid.Thistypeoffluid inclusionsisrare,butmoreabundantinthelightrock varieties. Inclusion shape is mostly irregular and elongated and rounded inclusions rarely occur (Fig. 6.6e). Inclusionsarearrangedonintracrystallineplanesandtrails,butsingleinclusionscan bedetectedaswell.Inclusionsizerangesfrom3.0to40.0mand6.0to45.0minlight anddarkrocks,respectively.Atroomtemperature,theinclusionscontainaliquidand a vapour phase, the latter occupying about 5 to 50 vol% of the total fill. After supercoolingto120°C,meltingofthesolidaqueousphaseduringreheatingtoroom temperatureoccursatminimumtemperatureof3.5°Cinlightrocksand2.0°Cin darksamples(Fig.6.8a,b).Themeltingtemperaturescorrespondtoasalinityof5.71 and 3.34 wt% NaCleq, respectively. Eutectic melting was only hardly visible in all inclusionsunderinvestigation,andthusappropriatedataarescarce.Indarkishrocks, eutecticmeltingwasobservedat35.5and31.2°CwhichhintsatH2ONaClMgCl2as beingtheactualsaltsystem.Inlightrockvarieties,eutecticmeltingwasobservedat 29.3,26.4,and21.1°C,ofwhichthelatterclearlyindicatesthepresenceofNaClin solution. Homogenisationusuallyoccurredintotheliquidphase,withThrangingbetween 127.9°Cand370.2°Cinlightrocksand140.0to363.0°Cindarkishsamples(Fig.6.8a, b).A fewinclusionsdecrepitatedbeforefluidhomogenisation. Densities calculated fromhomogenisationtemperaturesvarybetween0.51and0.96gcm3(lightrocks)and 0.52and0.94gcm3(darkrocks),indicatingamolarvolumeof35.87and19.05cm3mol1 and 34.59 and 19.27 cm3mol1, respectively. Aqueous inclusions were inspected for tracesofgaseouscomponentslikeCO2, N2 or CH4withRamanspectrometry,butno indicationsofanyofthesegaseswerefound.Smallbirefringentcrystalsenclosedin quartzhostedaqueousinclusionsofthelightrocktypeswereidentifiedassiderite.

47 6.ThebasementlithologiesofthecentralPetermannketten

Fig. 6.8:HomogenisationandfinalicemeltingtemperaturesofquartzhostedH2Osaltinclusionsfrom lightanddarkrockvarieties.

H2OCO2±N2saltbearinginclusions Accept for one inclusion hosted by garnet (sample no. 1563), rare inclusions containingthecomplexH2OCO2±N2saltfluidmixturearehostedbyquartzofboth darkandlightrockvarieties.Thistypeofirregulartoroundishinclusionsisarranged in intracrystalline clusters or trails in direct vicinity or at intersections of fluid assemblagescontainingH2OsaltandCO2±N2.Observedinclusionsizerangesfrom6.0 to30.0m.Thepresenceofacarbonicphaseinthispredominantlyaqueousinclusions waseitherconfirmedbydirectobservationofmeltingofaCO2richphaseat58.3to 56.6°C,theobservationofclathratemelting(Tmclath.)between3.0and14.5°C,or

Ramanspectrometricinvestigation.Additionally,RamananalysisyieldN2contentsof 3to15mol%,and3to14mol%insomequartzhostedinclusionsoflightanddark

48 6.ThebasementlithologiesofthecentralPetermannketten rocks, respectively. Total homogenisation of the enclosed fluid phase was rarely observedat147.7to382.0°C,anddecrepitationoftheseinclusionswascommon.The salinityoftheaqueousphasewascalculatedfromclathratemeltingtemperaturesto vary between 0.87 and 6.74 wt% NaCleq. Bulk fluid propertieswere calculated for those inclusions, where homogenisation of the carbonic phase occurred after final clathratemeltinganddensitiesrangebetween0.73and0.98gcm1inlightrocksand 0.52and0.98gcm3indarkrocks.Anadditionalcharacteristicfeatureofthisinclusion type is the presence of birefringent microcrystals, which occur in uniform volume fraction and were identified as nahcolite by Raman spectrometry. These nahcolite crystalsdissolvedduringheatinguntilhomogenisationtemperaturewasreached(Fig. 6.6f),andarethusinterpretedtoberealdaughterminerals.

6.1.4. Mineral chemistry of feldspars, pyroxenes and garnets of samples no. 1562, 1563, 2168, 2169, and 2181 Thechemicalcompositionsofindividualfeldspars,orthopyroxenesandgarnetsof some"light"and"dark"sampleswerecalculatedfromElectronMicroprobeanalyses. Aselectionoftheresultsoffeldsparanalysesandendmembercalculationsfromthe basement rocks are illustrated in Fig. 6.9. The variation in the plagioclase and K feldspar composition of all samples, and within single samples is small. It ranges betweenAn63Ab36Or1andAn71Ab28Or1forplagioclases,andbetweenAn19.5Ab0.5Or80 and

An8Ab0Or92 for Kfeldspars. Additionally, no significant differences in feldspar compositionsofdarkandlightrocktypescanbedetected(cf.samplesno.1562and 1563,Fig.6.9).Thesometimesassumedironincorporationintofeldsparsduringthe formationofcharnockiticrocks,whichisthoughttoberesponsibleforthegreenish colouring,wasnotbeapproved. The only data on pyroxene chemistry are available from sample no. 2169. The graphic representation of the orthopyroxene compositions in the DiHdEnFs quadrilateralshows a range of En20Fs72Wo2toEn28Fs80Wo4.Thusorthopyroxenesare labelled as ferrosilitesaccording to the approved classificationschemeofMorimoto (1998).

49 6.ThebasementlithologiesofthecentralPetermannketten

Fig. 6.9:ThemaximumvariationinplagioclaseandKfeldsparcomposition(inmol%)isillustratedfor samplesno.1562and1563.(filledandopencircles).OnlyKfeldsparanalysesexistofsamplesno.2168 and2169(filledandopentriangle),whereasforsampleno.2181onlyplagioclaseanalysesareavailable (crosses).

Fig. 6.10:Orthopyroxenecompositions(inmol%)ofsinglecrystalsfromsampleno.2169("dark"rock variety).

Mostgarnetshostedbygneissicsamplesarerelativelylowingrossularcomponent, and range between Alm75Grs5Prp19Sps1 and Alm84Grs5Prp10Sps1incomposition.Only garnets of sample 2168 reveal additional low values of pyrope component

(Alm86Grs5Prp3Sps6) (Fig. 6.11a). The slight shift of Mg and Fecontent that can be derivedfromtherepresentationofthedataintheAlmGrsPrp system (Fig. 6.11.a) reflects a compositional variation from rim to core within single garnet grains. Magnesiumandironbehaveantagonistically(Fig.6.11c,d).Adiffusionalenrichment inalmandinecomponent,correspondingwithadepletioninpyropecomponentoccurs along the marginal contact of garnet with biotite. This behaviour is typical for

50 6.ThebasementlithologiesofthecentralPetermannketten retrograde reequilibration processes. The detailed analyses ("XMaps") also exhibit a growthzonationofgarnetwithenrichmentofthegrossularcomponentinthecrystal core(Fig.6.11b).Thedecreaseofcalciumfromthecoretotherim,connectedwitha nearlyconstantmagnesiumcontent(Fig.6.11d)hintsataretrogradepathinfluenced by isothermic decompression (Martignole & Nantel, 1982). An exhumation model relatedtothistypeofisothermicunloadingcanbeexplainedwithanupliftsubsequent tomagmaticunderplatingincontinent/continentcollisionzones.Asimilarmodelhas alreadybeenstatedfortheShackletonRange(Olesch,1991).

Fig. 6.11:CompositionofgarnetshostedbygrtgneissesfromcentralPetermannkettenplottetinthe AlmGrsSpstriangle,andelementdistributionmaps(Fe,MgandCa)ofonegarnetfromsampleno. 1562.

51 6.ThebasementlithologiesofthecentralPetermannketten

6.2. Syn- and postkinematic intrusions

6.2.1. Petrography (thinsections no. 1533, 1549, 2175) Samples described in the following paragraph are representatives of syn and postmetamorphic plutonic bodies that intruded into the basement lithologies (see chapter5.2). Macroscopically, the lightgrey alkalifeldspar syenite and quartzalkalifeldspar syenite(samplesno.2175and1549)arecoarsegrained,seriatetoinequigranularwith granitictypetexture.EuhedralKfeldsparphenocrystsmayreachuptoc.20.0mmin size.MajorandminormineralcomponentsareKfeldspar,plagioclase,quartz,biotite, and green hornblende. Accessory phases include muscovite, black and dark red opaquephases,apatite,zircon,rutileandtitanite. Microscopically,grainsizeofeuhedraltosubhedralKfeldsparrangesbetweenc.0.1 and20.0 mm. Somecrystalsdisplayperthiticunmixing,andmicroclinephenocrysts showtwinningafterCarlsbadtwinlaw.Fracturedcrystalsmaybealteredtosericite andcalcitealongfissures.Kfeldsparisofteninvadedby,andcontainssolid inclusionsofquartz,biotite,hornblende,apatite,plagioclaseand/oropaquephases. Euhedral to anhedral plagioclase varies between c. 0.08 to 4.0 mm in size. Fine polysynthetictwinningafteralbiteandpericlinetwinlawiscommonandmyrmekitic intergrowthwithquartzoccurs.Growthlinesandpervasivesericitisationrestrictedto crystalcoresindicatemagmaticzoning.Additionalsericitisationhasdevelopedalong intracrystallinefractures. Anhedral quartz varies from 0.1 to 6.0 mm in size and fills interstices between subhedral feldspars. It displays fissures, undulous extinction, subgrains and is vermicularlyintergrownwith,orincludedin,Kfeldsparorbiotite. The common grain size of subhedral biotite crystals is c. 0.4 to 2.4 mm and pleochroitic colouring changes from yellowish to dark brown. Mineral phases overgrownbysinglebiotitecrystalsareapatite,quartz,opaquephaseandzircon,the latter being surrounded by black pleochroitic halos. Crystal margins show opacitisationandsomegrainsareintergrownwitheithergreenhornblendeorquartz.

52 6.ThebasementlithologiesofthecentralPetermannketten

Table 6.4: Modal compositions (in vol%) of different younger plutonic rocks that intruded into the metamorphicbasementlithologiesdescribedinchapter5.2.x≤2vol%.

sample no. 1533 1549 2175 rock type mangerite qtz-alkali- alkali-feldspar- (gneissic) feldspar-syenite syenite

plagioclase 40 10 10 K-feldspar 50 60 70

quartz 6 20 7

biotite x 5 5 muscovite x x

green hornblende x 3

orthopyroxene 3 clinopyroxene 3

opaque x x x

apatite x x x zircon x x

chlorite x

rutile x x titanite x x x

Sample no. 1533 contains orthopyroxene and is therefore classified within the charnockitesuiteofrocks.Itstextureisnotunequivocalmagmaticormetamorphic. Thisischaracteristicofmetaigneouscharnockiticrocks,astheytypicallyformunder highpressures,andigneoustexturesareinevitablymodifiedinsomeway. The medium grained greenish sample macroscopically displays bimodal grain size distribution, and preferred orientation of large deformed feldspar and pyroxene crystals. Kfeldspar, plagioclase and quartz were identified as main mineral compounds,whereasorthopyroxeneandclinopyroxeneareminorphases.Thegroup ofaccessoriescomprisesmuscovite,opaquephase,apatite,rutile,titanite,zirconand chlorite. ElongatedsubhedralKfeldspargrainsshowpreferredorientation,andmaybeupto 10.0mminlength.However,themostcrystalsrangeinsizefromc.0.05to0.8mm. They are often fractured and exhibit irregular grain boundaries, subgrains, and undulousextinction.Anhedraltosubhedral plagioclasesareintherangeof0.1to0.5 mmandthusmoreevenlygrained.Theydisplaythesamedeformationfeaturesasthe Kfeldspars.Additionally,polysynthetictwinningandstraightgrainboundariesthat sometimesformdihedralanglesof120°canbedetected. Anhedralorthoandclinopyroxenecrystalsarealignedwithinthefoliation,andvary insizefromc.0.05to0.5mm(Fig.6.6f).Orthopyroxeneshowspleochroitccoloursof lightgreenandlightred.Thegrainsarefracturedandmantledbygreenhornblende

53 6.ThebasementlithologiesofthecentralPetermannketten andbiotite.Thelatteralsooccursasfracturefilling.Clinopyroxenerevealslightgreen coloursandveryweakpleochroism.Fracturingandmantlingbyhornblendeorbiotite arelessstronglydeveloped. QuartznearlyexclusivelyoccursasmyrmekiticintergrowthwithplagioclaseinK feldspar.

6.2.2. Fluid inclusion studies (thicksections no. 1533 & 2175) Theonlytypeoffluidinclusionsdetectedinthemangeritesampleno.1533contains pureCO2andishostedbyplagioclase.Theinclusionsuniformlyrevealnegativecrystal shapes and sizes ranging between 6.0 and 15.0 m. They are arranged on intracrystallineclustersandtrailsandthevolumefractionofthevapourbubblepresent atroomtemperatureis40to50vol%.Meltingofthesolidcarbonicphaseconsistently appearsat56.6°Candhomogenisationintotheliquidphaseoccursbetween16.9and 26.6°C(Fig.6.12).Calculateddensitieslieintherangeof0.68to0.80gcm3. Themajorityoffluidinclusionsobservedinquartzesofthesyeniteintrusion(sample no.2175)arearrangedonintracrystallineplanararraysandtrails,andarecharacterised bynearlyperfectnegativecrystalshapewithsizesthatrangebetween3.0and60.0m. A subordinate number of inclusions reveal similar arrangement but irregular and elongatedforms.Duringmicrothermometrymeasurements,theonlyphasetransitions observedweremeltingofapurecarbonicphaseatc.56.6°C,andhomogenisationof this fluid at temperatures between 16.3 and 28.4 °C (Fig. 6.12). In inclusions with negative crystal shape, homogenisation occurs into the liquid phase. Irregular inclusions generally display critical behaviour or homogenisation into the vapour phase.InvestigationwithRamanspectrometryhasprovedthough,thatthefluidalso containssmallamountsofH2O,andminoramountsofN2.Solidphasesenclosedwere identifiedasbeingaccidentallytrappedcrystalsofcalcite,rutileandopaquephases. Densitiescalculatedforthisinclusionsrangebetween 0.21 to 0.81 gcm3.Bulkfluid propertiesofinclusionsthathadbeenprovedtocontainH2Owerecalculatedtaking into account a maximum value of 15 vol% "hidden" H2O (cf. Roedder, 1984). The resultingdensitiesareinasimilarrangeof0.40and0.84gcm3.

54 6.ThebasementlithologiesofthecentralPetermannketten

Feldsparcrystalsrarelycontainsingle,darkfluidinclusionswithhighlyirregularto negative crystal shapes. Melting temperaturesof 56.6 °C indicatethepresenceofa purecarbonicphase,whichwasconfirmedbyRamanspectrometry.Homogenisation oftheseinclusionswasat27.9and28.5°Cintotheliquidphase,whichcorrespondsto calculateddensitiesof0.64and0.66gcm3(68.42and66.92cm3mol1).

Fig. 6.12: Homogenisationand meltingtemperaturesof the carbonicphase of quartzand plagioclase hostedinclusionsofthesyeniteandplagioclasehostedinclusionsofthemangeritesamples.

6.3. Summary and Discussion - metamorphic charnockitisation and successive leaching

Themostdominantmetamorphicfeaturespresentinthe basementlithologiesof cDML today can most probably be traced back to the broader "PanAfrican" event causedbythecollisionofEastandWestGondwana(M2&M3;cf.chapter5).High pressuregranulitefaciesconditions(6.8±0.5kbar,830±20°C)havebeensuggestedfor thefirststageofPanAfricanmetamorphism(PanAfricanI,M2),followedbyalow pressuregranuliticevent(PanAfricanII,M3;45kbar,640±10 °C), and amphibolite faciesretrogression(cf.chapter5). Inprogressivemetamorphismthetransitionfromamphibolitetogarnulitefaciesis markedbyareplacementofhydrousphases(e.g.biotitereactstoformorthopyroxene andKfeldsparpluswater)andexpulsionoftheresultingaqueousphase.Dehydration processesandthepresenceofafluidregimelargelycontrolledbytheabsenceofhigh water activities have been stated to be responsible for insitu charnockitisation (cf. chapter2). Massiveandmigmatiticgneissesofthemetamorphicbasementlithologiesthatcrop

55 6.ThebasementlithologiesofthecentralPetermannketten outinthecentralPetermannketten,cDML,showapatchy,nonpervasivegreenishhue, sometimes associated with grain coarsening. The darkish lithologies are in turn crisscrossedby a fractureand foliationcontrollednetworkof lightcolouredrocks (Fig.5.3). The field hypothesis that the darkish colouringislinkedtometamorphic charnockite formation, and that these charnockitic rocks were again subjected to leachingprocesses,hasbeenverifiedbythoroughpetrographicstudies. Thepresenceoforthopyroxeneiscrucialforaclassificationwithinthecharnockite anorthositesuiteofrocks(cf.chapter2),andthemajorityof"darkish"samplesdoes indeedcontainorthopyroxene(identifiedasbeingferrosiliteinsample2169).Twoof thesamplesdisplayingtheconspicuouscolour,andsomeofthelightrockvarieties contain a yellowish relictic phase that has also been found in conjunction with commencingorthopyroxenealteration(Fig.6.1e,f;6.3e).Henceitisconcludedthatthe samples which at presence give evidence of the relictic phase did also contain orthopyroxene at some stage of their geological evolution. This implies that the formation of the charnockitic mineral assemblage in paragneiss was followed by processes that resulted in partial to complete orthopyroxene breakdown, locally accompanied by thorough leaching of the previously greenish rocks. In lightgrey rocksthatdonotcontainarelicticphaseleachingprocessesmayeitherhavebeenmore severe,ororthopyroxenedidnotformduringgranuliticmetamorphism. Retrograde destabilisation of the anhydrous phase assemblage is indicated by orthopyroxenealterationtoformamphibole,biotiteandgarnet.Thesecondarybiotite variation displays a distinct fringy appearance and vermicular intergrowth with quartz.Detailedmicroprobeanalyseshaverevealedthatsinglegarnetcrystalsexhibit zonationcharacteristicofretrogradereequilibrationprocesses,presumablyconnected toaphaseofisothermaldecompression(cf.chapter3.2.1). Besidesthepresenceorabsenceoforthopyroxene,nofurtherconspicuousdifference in mineralogical composition of charnockitic and gneissic samples do occur. Furthermore,no valuablecorrelationcan be drawn betweenthemodalcomposition andthestateofalterationinlightanddarkrocks(Table6.2&6.3).Lightsamplesreveal slightlystrongerfeldsparalterationtocalciteandsericitethanthedarkishrocks,but the overall distribution of phases indicative for retrograde reaction (biotite, hornblende)cannotbestatedtobemoreabundantinthelightrocks. Theobservedretrogrademineralassemblage,locallyrestrictedmigmatitisationand the structurally controlled leaching, give clear evidenceof the presenceof an free aqueous phase during retrogression. For peak metamorphicconditionsColombo & Talarico(inpress)onthebaseofmineralequilibriastudiessuggestthatmetamorphism waslargelycontrolledbyverylowwateractivities.

56 6.ThebasementlithologiesofthecentralPetermannketten

Fluidinclusionstudieshaveshown,thatthemajorityofinclusionshostedbyeither quartz, plagioclase or garnet displayed phase transitions characteristic of a CO2±N2

("dry") fluid. The most CO2±N2 inclusions suitable for microthermometry investigationsweredetectedinquartz.Allinclusionsarearrangedonintracrystalline trailsorplanesandthustexturalevidenceofearlymetamorphic(primary)originis given.Carbonicinclusionsfromallhostmineralspredominantlyexhibitroundishor negative crystal shapes indicating postentrapment modification influenced by reequilibration processes. Some inclusions also contain microsolids identified as carbonates or sheet silicates. If detected in plagioclasehostedinclusions,theymost probablyresultfromchemicalinteractionsofthefluidwiththesurroundingmineral underconsumptionoftheaqueousphase(cf.chapter8).Nahcolitecrystalsinquartz, may either be an accidentally trapped phase or a real daughter phase of an H2O

CO2±N2salt fluid, whose aqueous phase proportion has been lost during reequilibration(see below). The nitrogen content is generally in the range of 2 5 mol%. Taken all together, light rocks display a slight tendency towards lower N2 contents,whereasdarkishrocksshowalargervariationofN2 composition,especially in garnet and plagioclase hosted inclusions (Fig. 6.5a,b). All homogenisation temperaturesplotinanarrowrangebetween7.5and30.7°C.Homogenisationintothe vapour phase only occurs in quartz hosted inclusions, and was less frequently observed in charnockitic samples (Fig. 6.13). Corresponding densities are homogeneousaswell.Inquartzhostedinclusions(Th(l)orTh(v))theyliebetween0.17 to0.84gcm3.Whenhostedbyplagioclasetheyareinarangefrom0.47to0.83gcm3, anddensitiesofgarnethostedinclusionsvaryfrom0.44to0.75gcm3.

Fig. 6. 13:AllhomogenisationtemperaturesmeasuredinCO2N2inclusionshostedbyquartz,garnetand plagioclaseoflightanddarkishsamples.

57 6.ThebasementlithologiesofthecentralPetermannketten

Acloserlookattheavailabledensityvalues(andisochores,Fig.6.16)revealsthat highdensities(≥ 1 gcm3)asexpectedtoresultfromgranulitefaciesmetamorphism have not been preserved during the retrograde stage. Even inclusions hosted by mechanicallystablegarnetdonotreflectpeakmetamorphicconditionsandtheoverall observation can be best explained with a modification of inclusions after their entrapment,resultingin fluidloss and/or volumechange.A diagramdepictingthe relationship between inclusion size and homogenisation temperature (independent from the host mineral) reveals that no correlation exists between homogenisation temperatures and inclusion size. A positive correlation would in general indicate preferentialdecrepitationoflargerinclusionsduetointernaloverpressureandfluid loss.TheevenscatterofThandinclusionsizebetween10and30°Cand5.0to20m (Fig6.14.),thoughsupportstheearlierpresumptionthatpostentrapmentchangewas largelycontrolledbyductiledeformationprocesses.

Fig. 6.14: RelationshipbetweenhomogenisationtemperaturesandinclusionsizeofCO2±N2inclusions.

IrregulartoroundishH2Osaltinclusionsareonlyfoundinquartzandtheirtextural arrangement on intracrystalline clusters and trails also implies early metamorphic (primary)formation.Acomparisonofaqueousinclusionsdetectedindarkandlight rockvarietiesshowsthattheinclusionsdo notdifferwithregardtotheirfinalice meltingtemperatures,i.e.theirsaltcontent(max5.71wt%NaCleq),nortotheirwide spreadofTh.Densitycalculationsexhibitthesamesimilarity,astheyvarybetween 0.54and0.96gcm3inlightrocks,and0.52and0.94gcm3indarkishsamples.Asinthe

CO2N2 inclusions, a correlation of Th with inclusion sizes reveals a random distributionofdepictedvalues(Fig.6.15).

58 6.ThebasementlithologiesofthecentralPetermannketten

Fig. 6.16 Correlation of inclusion size and homogenisation temperatures of quartzhosted H2Osalt inclusionsfromdarkandlightrockvarieties.

Theoriginandcoexistenceofaqueousandcarbonicinclusionsingranulitefacies rockshasbeendescribedinearlierstudies.FormetasedimentarylithologiesTouret (1995) states the prevalence of a prograde fluid of aqueous composition, which is essentiallyfoundasremnantofearlybrineswithmodifiedsalinitiesanddensities.At peakmetamorphicgranulitefaciesconditions,theinfluenceofcarbonicfluidsbecomes more important. Possible origins of the CO2dominated fluid regime include metamorphic reactions in carbonatic sediments, selectiveH2O dissolution in silica melts,ortheinfluxofmagmaticCO2transportedbydeepseatedintrusions.

ThethirdtypeofH2OCO2±N2saltinclusionshasrarelybeendetectedinquartzof dark and light rocks, and only once hosted by garnet of a light coloured gneiss.

Texturallythey reveal the same primary (metamorphic)character as do the CO2±N2 and H2Osalt inclusions. Their rare occurrence and close spatial relationship to inclusionsoftheaqueousandcarbonictypeimplies,thattheymostprobablyformed by fluid mixingduringmineralreequilibration/recrystallisation.Previously formed inclusionsmighte.g.,betappedandahomogeneousorheterogeneousfluidmixture mayberesealedinanewlyformedinclusion.Thatnahcoliteformedasarealdaughter phase(Fig.6.6f)hasimportantconstraintsonthenatureoftheaqueousphasepresent intheseinclusions.Andersenetal.(1989)havesuggestedthatnahcoliteprecipitatesas realdaughtermineralfromaconcentrated,highlyalkalineaqueousinclusionwitha high HCO3 content or an excess of CO2. Even though the salinities of H2Osalt inclusionsandofH2OCO2±N2saltinclusionsdonotexceedmaximumvaluesof6.74 wt%NaCleq,theserarefindingssuggestthathighalkalinebrineshaveatleastlocally occurred.Thisagainisinaccordancewithrecentstudiesongranuliticmetamorphism

59 6.ThebasementlithologiesofthecentralPetermannketten thatstresstheimportanceofalkalimobilityandtheroleofhighlysalinefluidphases ("brines")duringcharnockitisationprocesses(cf.chapter2). None of the investigated samples shows any evidence of a late fluid phase responsibleforthefractureandfoliationcontrolledleaching.Thepresumablyaqueous fluidseemstohavebeencompletelyconsumedduringretrogrademineralreactions (e.g., resulting in sericitisation of plagioclase). Thus no further conclusions on the nature of the leaching fluid can be drawn. The actual fluidcontentofposttectonic syeniteandmangeriteintrusions,whichpossiblymight have been accompanied by largescalefluidinfiltration,doesnotallowdetailedimplicationsaswell,althoughit hasbeenprovedthatsomeofthegenerallyCO2dominatedinclusionsdocontaina maximumof10vol%H2O. Thethoroughinfluenceofreequilibrationprocessesthatactedonthemetamorphic fluidinclusionsisalsoreflectedbythepositionofisochorescalculatedfrominclusion densities.Independentoffluidcontent,rocktype(lightordark)orhostmineral,none of the analysed inclusions reflects densities that could be correlated with the Pan Africanevent.

Fig. 6.16: PTdiagramwithisochoresofminimumandmaximumdensityvaluesofH2Osalt(greylines withnumbersindicatingdensities)andCO2±N2(blacklines)inclusions.Solidlinesdepictinclusions hostedbydarkrocksanddashedlinesthosemeasuredinlightrocks.Thenatureofthehostmineraland densitiesingcm3areindicatedinthelegendinthesameorderastheisochores.M2,M3,M4andgrey boxesdepictPTconstraintsonPanAfricanIandII(Pan1,Pan2)metamorphismaccordingtoMarkl& Piazolo(1998).TwopossiblePTpaths(A,B)resultingfromcorrelationoffluiddatawithM4conditions areindicated.Seetextforexplanation.

60 6.ThebasementlithologiesofthecentralPetermannketten

All inclusions reequilibrated under retrograde conditions and highest density isochoresintersectindependentlyestimatedM4conditionsatthelowpressurerange (c.2.5kbar,550°C).Maximumdensitiesofaqueousinclusionshostedbyquartzcould beexplainedwithvolumelossunderpreservationoftheoriginalfluidcontent,which isgenerallyinterpretedtoindicatearetrogressionunderisobariccooling.Aresulting PTpath(B,inFig.6.16)thoughwouldnotbeingoodagreementwithPTconditions indicated by the isochores of carbonic inclusions. Minimum and average density isochoresofaqueousinclusions,however,correlatewiththegradualdecreaseinfluid densitiesofreequilibratedCO2±N2inclusions.Thisindicatesthatretrogressionofthe metamorphic basement lithologies of the central Petermannketten most probably startedwithaphaseofnearisothermaluplift,followedbyastageofgradualcooling anddecompressionasdepictedbypathAinFig.6.16.

61 7.TheOttovonGruberGebirgefluidcontentofamassiftypeanorthositecomplex

7. The Otto-von-Gruber-Gebirge - fluid content of a massif-type anorthosite complex Therocksunderinvestigationinthischapterwerecollectedcloseto theformer centre of the O.v.Gruber anorthosite body, where deformation features are less strongly developed than in its marginal parts. The hand specimen include five anorthosites(1581,1583,1587,15881A,2118),andtwosamplesfrommyloniticshear zonesthathavedevelopedwithintheanorthositebody(1588,15881B,2119).

Table 7.1:LocationsandrocktypescollectedfromtheO.v.Gruberanorthositecomplex.Theattributes "dark"and"light"refertomacroscopiccolouringasobservedinthefield. sample no. locality rock type colour latitude S longitude E altitude [m] 1581 Zimmermannberg anorthosite dark 71°20.5' 13°23.8' 800 1583 Zimmermannberg anorthosite light 71°20.5' 13°23.8' 820 1587 SE Untersee anorthosite with pegmatite (tonalitic) light 71°21.2' 13°25.6' 700

1588 SE Untersee mylonitic shear zone (norite) dark 71°21.2' 13°25.6' 700

1588-1A/B SE Untersee anorthosite with shear plane (tonalitic) light 71°21.2' 13°25.6' 700 2118 Zimmermannberg anorthosite light 71°21.7' 13°17.5' 1580

2119 Zimmermannberg mylonitic shear zone (norite) dark 71°21.7' 13°17.5' 1580

7.1. Massif-type anorthosite samples

7.1.1. Petrography (thinsections no. 1581, 1583, 1587A, 1587B, 1588-1A, 2118) Macroscopically, the lightgrey anorthosite rocks are fine to coarsegrained equigranular or bimodal inequigranular with nondirectional fabric and plagioclase megacrystsupto2.0cminsize(Fig.7.1).

Fig. 7.1:Photographoflightgreyanorthositeasobservedinthefield.

62 7.TheOttovonGruberGebirgefluidcontentofamassiftypeanorthositecomplex

Themajorconstituentofallsamplesisplagioclase(c.90vol%).Minorcomponents invaryingamountsareclinopyroxeneandalkalifeldspar(oftenmicrocline).Quartz, biotite, green hornblende, orthopyroxene, chlorite, black and brown to dark red opaque phases, muscovite/paragonite, zoisite, calcite, apatite, and zircon were identifiedasaccessoryphases(Table7.2).

Table 7.2:Modalcompositions(invol%)ofsamplestakenfromtheO.v.Gruberanorthositebodyx≤2 vol%.(1587A:pegmatiteveininanorthosite,1587B:anorthosite,15881A:anorthositearoundshear plane).

sample no. 1581 1583 1587A 1587B 1588-1A 2118 rock type anorthosite anorthosite tonalitic anorthosite anorthosite anorthosite pegmatite

plagioclase 90 90 60 90 90 90 alkali-feldspar 5 3 x 4 3 4

quartz 3 x 37 x x x biotite x x x x x x

muscovite/paragonite x x x x x

garnet green hornblende x x x x

orthopyroxene x x x

clinopyroxene x x 3 x opaque phase x x x x

apatite x x

zircon x x x x chlorite x x x x x

zoisite x x

calcite x x x x x x titanite x

rutile

Microscopically,somelarge(0.81.5mm)subhedraltoanhedralgrainsofplagioclase are slightly flattened and show latticepreferred orientation, but the general microfabricisnondirectional.Plagioclasecrystalsmayrevealantiperthiticunmixing, vermicular intergrowth with quartz and/or moderate alterationtosericite,chlorite, and calcite. Twinning after albite and pericline twin law is common (see Fig. 8.3). Undulousextinction,bentdeformationlamellaeandsubgrainformationgiveevidence ofintracrystallinedeformationandrecovery.Occasionally,bulgingofgrainboundaries inadditiontosubgrainrotationledtotheformationofaggregatesofsmall(c.0.20.5 mm),dynamicallyrecrystallisedplagioclasegrainsalongsidethegrainboundariesof largerfeldsparcrystals(Fig.7.2eand8.3b),thusforming“coreandmantle”structures (asdescribedbyPasschier&Trouw,1996).

63 7.TheOttovonGruberGebirgefluidcontentofamassiftypeanorthositecomplex

Fig. 7.2:(a)Clinopyroxeneofthinsectionno.15881A,showingonlyweakalterationtobiotiteandgreen hornblende;(b)Vermicularrelationofsecondarygreenhornblendeandquartzadjacenttoclinopyroxene andbiotite,sampleno.1587;(c)Pseudomorphosisofbiotite(withslightopacitication)afterhornblende. Amphibole mineral cleavage planes are still preserved (white arrow, thinsection no. 1583); (d) Crosshatched and discontinuousmicroclinetypetwinning of alkalifeldspar thinsection no. 1587; (e) polygonalfabricoftwinnedandzoned(arrows)recrystallisedplagioclasesaroundlargeoldgrainswith bentdeformationlamellaethinsectionno.1587;(f)Microfabricofpegmatiteveinofsample1587with strongsericitisationoflargeplagioclasecrystals.

64 7.TheOttovonGruberGebirgefluidcontentofamassiftypeanorthositecomplex

Within the fine to medium grained areas, a polygonal fabric with straight or smoothlycurvedgrainboundarieshasdeveloped,andplagioclasesexhibitzonation (Fig. 7.2e). Rare intercrystalline microfractures are either open or filledwith white micas and/or calcite. Alkalifeldsparcrystalsshowsimilardeformationandalteration featuresand can be distinguishedfrom plagioclaseby the characteristicdiffuseand discontinuouscrosshatchedtwinningafteralbiteandpericlinetwinlaw(Fig.7.2d),or rareperthiticunmixing. Anhedralclinopyroxenegrains,0.14.0mminsize,displaypleochroiticcoloursof lightgreenandlightred.Smallpyroxenecrystalsoccurasinclusionsinplagioclase.In different samples, the clinopyroxenes reveal varying states of alteration. Almost unmodifiedgrainsshowweakalterationtobiotiteandgreenhornblendealongmineral cleavage planes, intracrystalline microfractures or grain boundaries (Fig. 7.2a). The progressionofthisalterationresultsintheformationofsubhedraltoanhedralbiotite (0.22.0mm)withpleochroiticcoloursofdarkandlightgreen,andlarge(0.2to3.0 mm)euhedraltoanhedralhornblendecrystalsthatshowvermicularintergrowthwith quartz(Fig.7.2b).Thecompletedecompositionofamphiboleleadstotheformationof biotite, hematite and Febearing hydrous phases, calcite, and white mica. Pseudomorphicreplacementofamphibolebybiotitewith weak pleochroism is also observed(Fig.7.2c).Insomesamples,thepresenceofsuchFebearingredtoorange colouredphasestogetherwithbiotiteandcalciticaggregatesistheonlyindicatorofa formerpresenceofpyroxene.Orthopyroxeneislessabundantandsmallerinsize(c.0.1 to 0.5 mm. It shows pleochroitic colours of pale green and yellowish and is distinguishedfromclinopyroxenebyitslowbirefringenceandstraightextinction. The white and coarse grained pegmatite vein crosscutting sample 1587 is mostly comprisedoutofanhedralplagioclase(0.110.0mm)andquartz(0.044.0mm),with accessoryalkalifeldspar(microcline),biotite,muscovite/paragonite,andcalcite.White micaandcalcitehaveformedassecondaryalterationproductswithinplagioclaseand crystallisedalongintergranularmicrofractures.Sericitisationofplagioclasecrystalsof the pegmatite vein is slightly stronger than of those belonging to the adjacent anorthosite (Fig. 7.2f). Large quartz grains show undulous extinction and subgrain formation.Subgrainrotationleadstothedevelopmentofsmallrecrystallisedstrain freegrainswithstraightorsmoothlycurvedgrainboundaries.Thebimodalgrainsize distribution forms the picture of "coreandmantle" structures. Biotites with pleochroiticcoloursofdarkandlightbrownarealmostexclusivelyalignedalongthe contactzonebetweenanorthositeandpegmatitevein.

65 7.TheOttovonGruberGebirgefluidcontentofamassiftypeanorthositecomplex

Fig. 7.3:ClassificationofthesamplestakenfromtheO.v.Gruberanorthositecomplex,accordingtoLe Maitre(1989).Modalcompositionsofquartz,plagioclaseandalkalifeldspararegiveninTable5.2.The pegmatiteveinhastonalitccomposition.Allotherrocksareanorthosites.Iftheestimatedmode%of quartz was ≤ 2 vol%, the maximum value of 2 vol% was used for the recalculation to total 100%. NumbersinitalicsindicatetheQAPFfieldnumberafterLeMaitre(1989).

7.1.2. Fluid inclusion studies (thicksections no. 1583, 1587A, 1587B, 1588-1A, 1588-1B, 2118) Only one type of fluid inclusionswas identifiedwithin all anorthosite samples. Theyarehostedbyplagioclaseandrangeinsizebetweenc.5.0and12.0m(longest dimension)(Fig.7.4a,c).Sizesdownto2.5mandupto65.0mwerealsoobserved. Inclusionshapesvaryfromroundishorovaltonegativecrystalshape(Fig.7.4aand 8.4a) Fluid inclusions lie on intracrystalline planar arrays (Fig. 7.4a) and trails (Fig. 8.4d),thusgivingevidenceofpseudosecondaryorigin,astheydonotcrosscutgrain boundaries.Insomecrystals,alignmentoffluidinclusionsalongsingletwinlamellae wasobserved(Fig.8.4c).Rarely,theaccumulatedappearanceoffluidinclusionsatthe centreoflargefeldsparcrystals,bestvisibleinsectionsperpendiculartothecaxes, give evidence of relictic magmatic growth zonation in plagioclase. Inclusions, are darkishandeithercontainasingleliquidlikephaseoraliquidandavapourphaseat roomtemperature.Acommonfeatureobservedintheseinclusionsistheoccurrenceof varyingamountsandratiosofdifferentbirefringentmicrocrystalsasenclosedsolids (Fig.8.4aand8.4b). Duringmicrotherometrymeasurements,initiallyhomogeneousinclusionsnucleate agasbubbleatc.0.0°C,beforesupercoolingleadstotheformationofasolidphase around–90.0°Cinallinclusions.Duringtheheatingcycle,meltingofthesolidphase

66 7.TheOttovonGruberGebirgefluidcontentofamassiftypeanorthositecomplex occurswithinanarrowtemperaturerangeof–58.0to–56.6°C(Fig.7.5b).Thus,the inclusions are interpreted as containing a nearly pure carbonic fluid, together with smallamountsofdifferentgaseousspecies. Themajorityoffluidinclusionshomogenisebetween14.0to24.0°C(Fig.7.5a),but takentogether,homogenisationoccursoverawidetemperaturerangebetween–1.8to 30.6°C(Fig.7.5a).Ingeneral,homogenisationisintotheliquidphase.Onlyplagioclase hostedinclusionsoftheanorthositesamplethatcontains a pegmatite vein (1587B), homogeniseintothevapourphase.AsystematicrelationshipbetweenThandTmis notpresent(Fig.7.6).

Fig. 7.4: Intracrystalline plane (a) and trail (c) of darkish CO2±N2 inclusions with rectangular to negativecrystalshapeshostedbyplagioclaseofsampleno.15881.Largeinclusionsaremarkedwith arrows.(b)ClusterofroundishCO2H2O±N2fluidinclusionswithvaryingdegreeoffillrarelyhostedby intersticialquartzofsampleno.1588.(d)Clusterofroundishquartzhostedinclusionsofpegmatiticvein (thicksectionno.1587A)withconsistentdegreeoffill.

67 7.TheOttovonGruberGebirgefluidcontentofamassiftypeanorthositecomplex

Fig. 7.5:Histogramsofhomogenisation(a)andmelting(b)temperaturesfromsamplesofthemassiftype O.v.Gruberanorthositecomplex.Includedintothisdiagramareoffluidinclusionsdetectedwithinthe anorthositicpartofthicksectionno.15881B.Inclusionsfromthicksection1587B(anorthositeadjacent topegmatite)homogeniseintothevapourphase.

68 7.TheOttovonGruberGebirgefluidcontentofamassiftypeanorthositecomplex

Fig. 7.6:Relationshipbetweenhomogenisationandmeltingtemperaturesoffluidinclusionshostedby plagioclasesoftheanorthositesamples.Additionally,microthermometricaldataofquartzhostedfluid inclusionsofthepegmatite(thicksection1587A)areshownforcomparison.

RamanmicrospectrometryconfirmedCO2asbeingthemajorgaseouscomponent withinthistypeoffluidinclusions,andyieldamaximumof4.0mol%N2 asadditional gas component (Fig. 7.6a). Graphical estimations result in much higher nitrogen amountsof17mol%.CH4andH2Owereneverdetected.Densitiescalculatedaccording to the procedure described in chapter 4.6 range between 0.61 and 0.94 gcm3 for inclusionsthathomogeniseintotheliquidphase,and0.28and0.37gcm3forthosethat homogenisetothevapourphase. Due to their high refractive index compared to the surrounding plagioclase, carbonate microcrystals entrapped in fluid inclusions can facilely be identified by optical microscopy (Fig. 8.4b). With Raman spectrometry, a slight variation in carbonatecompositionswasdetectedbetweenMgrichcalcite(284,714and1087cm1) andpurecalcite(283,711and1085cm1),evenwithinsinglefluidinclusions(Fig.7.6b). Ramanspectrometryalsogaveproofofthepresenceofsheetsilicatesthatareoften locatedattheinclusionwallsoratcarbonatecrystalfacesandthereforemayeasilybe overlooked by optical microscopy in small or dark fluid inclusions. Muscovite/paragoniteandpyrophyllitewereidentifiedwithinfluidinclusionswhere theyappearasindividualcrystalsorintergrownaggregates.Anexactdifferentiation between muscovite and paragonite is not possible with this method, though. It is supposedthatparagonitemakesupmostoftheenclosedmica,aspotassiumisonlya minorcomponentoftheplagioclasehost(seeFig.8.2).

69 7.TheOttovonGruberGebirgefluidcontentofamassiftypeanorthositecomplex

Fig. 7.7: (a) Significant Raman peaks used for the differentiationofcalciteandMgcalcitefoundas enclosedsolidsinfluidinclusionshostedbyplagioclaseofsample1588;(b) TypicalRamanspectraof

CO2andN2,thefluidspeciesmostcommonlydetectedinplagioclasehostedinclusions.Thesmallarrows totheleftandtotherightofthemainCO2peaksindicatethetwocharacteristic"hotbands"ofCO2atc. 1265cm1and1410cm1.

Some of the anorthosite samples also reveal rare single inclusions hosted by accessory xenomorphic quartz. These inclusions are approximately3–10 m in size, andshowroundedtonearlyperfectnegativecrystalshapes.Ingeneraltheycomprise anaqueousliquidandacarbonicvapourphase,thelatteroccupyingfrom30vol%up toanapparenttotalfill(Fig.7.4b;8.4e).Decrepitationclustersareevidentaroundsome inclusionsthatonlycontainacarbonicvapourphase(Fig.8.4f). The only quartzhosted fluid inclusions that yielded a complete microthermometrical dataset reveals a CO2melting point of –57.7 °C and clathrate

70 7.TheOttovonGruberGebirgefluidcontentofamassiftypeanorthositecomplex

melting was observed around 7.9 °C in the presence of two CO2rich phases.

HomogenisationofCO2 occurred at 18.7 °C into the liquid phase. Salinity obtained fromtheclathratemeltingtemperatureisequivalentto4.2wt%NaCl,andthebulk fluid density was calculated to 0.88 gcm3. Analysis with Raman spectrometry gave proofofthepresenceofCO2andsmall(≤2mol%)amountsofN2.ThepresenceofH2O was even confirmed in those inclusions that did not reveal a visible aqueous rim. Entrappedmineralswerenotdetectedwithintheseinclusions. Duetothestrongalteration,nofluidinclusionsarepreservedinplagioclasecrystals ofthepegmatiteveinofsample1587(thinsection1587A).Quartzcrystalscontainfluid inclusionsthatvarybetween3.5and14.5minsizeandshowirregulartoroundishor negativecrystalshapes(Fig.7.4d).Theyarearrangedinintracrystallineclusters,and usuallyonlyasinglecarbonicphaseisvisibleatroomtemperature.Meltingofasolid phaseaftersupercoolingdownto120°Cuniformlyoccursat56.6or56.7°C,which hintsatthepresenceofapurecarbonicphase(Fig.7.6).Ramanspectrometricaldata verifiedthisinterpretation,asnoadditionalgaseousspeciescouldbedetectedbythis method.Homogenisationintotheliquidphaseconsistentlyoccursbetween17.7and 29.1°Cwithemphasison25.0to29.1°C(Fig.7.6).Calculateddensitiesrangebetween 0.63and0.80gcm3.

7.2. Shear zones within the O.-v.-Gruber anorthosite complex

7.2.1. Petrography (thinsections no. 1588, 1588-1B, 2119) In the field and in hand specimen, shear zones are characterised by brownish colouring, a distinct foliation, secondary garnet growth, and latticepreferred orientationofthemainmineralconstituents(Fig.7.9a,b). Plagioclase is the dominant mineral phase (c. 60 vol%), but in contrast to the surrounding anorthosite, these samples contain garnet, orthopyroxene and clinopyroxene, alkalifeldspar (often microcline), and quartz as minor components. Greenhornblende,biotite,chlorite,black(magnetite)andbrowntodarkredopaque phases,muscovite/paragonite,calcite,chlorite,apatite,zircon,titaniteandtourmaline were identified as accessory phases. The shear plane of sample 15881 (thinsection 15881B)isonlyonecentimetreinwidth,andmodalfractionsofthemaficmineralsare increased compared to the shear zones, with the effect that plagioclase is only a subordinatephasenexttogarnet,butbiotiteoccursasaminorphase(Table7.3).

71 7.TheOttovonGruberGebirgefluidcontentofamassiftypeanorthositecomplex

Fig. 7.8:GarnetbearingshearzonethathasformedwithinthemassiftypeO.v.Gruberanorthosite complexshowingtypicalbrownishsurfacecolour.

Grainsizedistributionofthesubhedraltoanhedralplagioclasecrystalsisbimodal inequigranular(0.110mm)toequigranular(0.050.4mm).Typicalintracrystalline deformationfeaturesincludedeformationtwinningafteralbiteandpericlinetwinlaw, bentdeformationlamellae,andundulousextinction.Subgrainformationandsubgrain rotation, grain size coarsening and bulging of grain boundaries give evidence of dynamic recrystallisation and recovery. Areas with recrystallised plagioclase grains showapolygonalfabricwithstraightgrainboundaries.Antiperthiticunmixingisoften observedinlarger(3.06.0mm)plagioclasegrains,asismyrmekitegrowthalongthe boundariesofKfeldsparporphyroclasts(Fig.7.9d).Alterationtosericitedoesoccur. Alkalifeldsparcrystalsdisplayperthiticunmixing,finedeformationlamellae,undulous extinction, and diffuse and discontinuous crosshatched twinning after albite and periclinelaw. Quartz is inequigranular (0.04 3.5 mm) and preferably occurs closetodomains dominatedbygarnet,pyroxeneandopaquephases.Opaquemineralsandtourmaline crystalsaresometimesfoundasinclusionsinquartz.Anhedralquartzgrainsmaybe discshapedanddiscquartzshowsundulousextinctionandsubgrainformation(Fig. 7.9c).Subgrainrotationrecrystallizationhasledtothedevelopmentofhighanglegrain boundaries,andtheformationofnewgrains.Insample1588,grainsizesofanhedralto subhedralquartzvariesbetween0.05to0.4mm. Thesizeofsubhedralgarnet porphyroblasts ranges from 0.1 to 4.0 mm with the majoritybeing0.1to0.4mm.Garnetsareassociatedwithablackopaquephase,biotite andgreenhornblendeandshowvermicularintergrowthwithsmallanhedralquartz grains.Themodalamountofgarnetthathasformedalongashearzoneorshearplane is inversely proportional to the amount of pyroxene as can be seen by a direct comparisonofthethinsectionsandestimatedmodalcompositions(Table7.3).

72 7.TheOttovonGruberGebirgefluidcontentofamassiftypeanorthositecomplex

Fig. 7.9:Microphotographsofthinandthicksectionsofshearzonesamples.(a)Garnetblasts,sometimes withquartzinclusions(arrows),andelongatedblackopaquephasealignedalongfoliationplaneofsample 15881B; (b) Ortho and clinopyroxene blasts of thinsection 1588 interlayered with recrystallised plagioclaseandquartzaggregates;(c)discshapedquartzwithundulousextinctionandsubgrains;(d) large alkalifeldspar crystal displaying perthitic unmixing and intracrystalline fractures filled with sericitic aggregate. Myrmekitic intergrowth of quartz and plagioclase adjacent to alkalifeldspar and plagioclasewithpolysynthetictwinning(arrows);(e&f)rodlikeandroundishCO2N2fluidinclusions hostedbygarnetofsample15881B.

73 7.TheOttovonGruberGebirgefluidcontentofamassiftypeanorthositecomplex

Table 7.3: Modal compositions (in vol%) of samples from shear zones within the O.v.Gruber anorthositecomplex.x≤2vol%(15881B:shearplaneinanorthosite).Inthinsection15881Bmodal estimationsonlyrefertotheshearplane,nottothewholethinsectionasitisac.1.0cmwidesharply definedlayerinlightgreyanorthosite.

sample no. 1588 1588-1B 2119 rock type mylonitic shear shear plane mylonitic shear zone (norite) (tonalitic) zone (norite)

plagioclase 60 25 60 alkali-feldspar 5 x 5 quartz 15 15 10

biotite x 8 x

muscovite/paragonite x x x garnet 3 25 10

green hornblende x 8 x

orthopyroxene 7 4 clinopyroxene 7 6

opaque phase x 15 x

apatite x x x zircon x

chlorite x x x

calcite x x tourmaline x x x

titanite x x

Fig. 7.10:Graphicaccountandclassificationofthesamplestakenfromshearzonesandashearplane within the O.v.Gruber anorthosite complex (according to Le Maitre, 1989). Modal compositions of quartz,plagioclaseandalkalifeldspararegiveninTable7.3.Iftheestimatedmode%ofalkalifeldspar was≤2vol%,themaximumvalueof2vol%wasusedfortherecalculationtototal100%.Samples1588 and 2119 are classified as norites, whereas the composition of the shear plane in sample 15881 is tonalitic.

74 7.TheOttovonGruberGebirgefluidcontentofamassiftypeanorthositecomplex

Orthopyroxeneiscolourlesstolightgreenwithweakpleochroism, and varies in size between0.1 to 2.0 mm. Clinopyroxenehas thesame variationin grainsize but displaysstrongerpleochroismfromlightgreentopaleredandhigherbirefringence (Fig.7.9b). Nearly all major and minor mineral constituentsshow microfractures(Fig. 7.9d). Thoseobservedinfeldsparsandgarnetareoftenrefilledwithwhitemicasandcalcite or a brownish secondary phase that can also be found as alteration product along pyroxenemineralcleavageandgrainboundaries.

7.2.2. Fluid inclusion studies (thicksections no. 1588, 1588-1B, 2119) Fluidinclusionsobservedinthesesamplesareeitherhostedbyplagioclase(sample no.2119),byplagioclaseandgarnet(sampleno.1588)orapatiteandgarnet(sampleno. 15881B).Thesizeoftheplagioclasehostedinclusionsvariesbetween3.0and33.0min sample2119andbetween2.0and8.5minsample1588.Inthelattertheyaredarker andmuchlessabundant.Inclusionspredominantlyhaveroundishtonegativecrystal shapes, but irregular forms can be observed as well. Throughout the crystals the majority of inclusions is arranged in intracrystalline clusters or trails and single inclusionsarerare.Garnethostedfluidinclusionsrangeinsizebetween3.5and26m. Exceptforafewsingleinclusions,theyaredistributedinintracrystallineclustersand showirregulartubelikeorroundishtonegativecrystalshapes. At room temperature, most plagioclase and garnet hosted inclusions contain a singleliquidlikecarbonicphase,andsomecompriseavaryingnumberofsolidphases that were identified as being calcite, Mgcalcite or pyrophyllite. Minor amounts of nitrogen (max. 4 mol%) have been detected by Raman spectrometry and rarely, amountsashighas8mol%wereestimatedusingthediagramsprovidedbyThieryet al. (1994).Homogenisation of all fluid inclusions occurs into the liquid phase. Inclusionshostedbygarnetsandplagioclasesofsample1588showawiderangeof homogenisation temperatures between 10.4 and +27.2°C and 38.6 and +22.9°C, respectively.Fluidinclusionsdetectedinsample2119showasimilarspreadofTh( 12.8to+23.8°C)(Fig.7.11a).Meltingtemperaturesareconsistent,aswell,andrange from59.1to56.6°C(Fig.7.11b).AsystematicrelationshipbetweenThandTmisnot present(Fig.7.12).Calculateddensitiesliebetween0.64and0.98gcm3insampleno. 2119,andbetween0.56and0.96gcm3(garnet)and0.52and1.07gcm3(plagioclase)in sample1588.

75 7.TheOttovonGruberGebirgefluidcontentofamassiftypeanorthositecomplex

Fig. 7.11:(a)Homogenisationtemperaturesofplagioclase,garnetandapatitehostedfluidinclusionsfrom shearzonesamplesandanarrowshearplane.Homogenisationalwaysoccursintotheliquidphase.(b)

Melting temperatures of CO2dominated fluid inclusions. Melting point depression of max. 2.5°C is causedbythepresenceofminoramountsofN2.

Garnetandapatitecrystalsofthenarrowshearplane(thinsection15881B)contain intracrystallineclustersandtrailsofsmall(2.0to9.5m)inclusionswithroundishto negativecrystalshapesthatshowmeltingofasolidphaseatanarrowtemperature interval from 57.5 to 56.8 °C. Homogenisation into the liquidphaseofinclusions hostedbyapatiteoccursat15.5to29.7°C.Ingarnethostedinclusionshomogenisation to the liquid phase was observed only once at 6.3 °C. All otherinclusionsrevealed fading of the miniscus of the vapour bubble at c. 30.1 °C, which indicates critical homogenisation.Nevertheless,duetothesmallinclusionsize,thedarkishappearance oftheinclusionsandthecolouringofthegarnet,observations are ambiguous and equivocal. Density of the garnet hosted inclusionis 0.87 gcm3, whereasdensitiesof apatitehostedinclusionsvarybetween0.74and0.77gcm3

76 7.TheOttovonGruberGebirgefluidcontentofamassiftypeanorthositecomplex

Fig. 7.12:RelationshipbetweenThandTmofplagioclasehostedinclusionsfromshearzonesamples

7.2.3. Mineral chemistry of feldspars, pyroxenes and garnets of samples no. 2118 and 2119 Electron microprobe analyses of varying mineral phases were carried out on samples2118and2119toenlightenpossiblechangesinmineralchemistryduringthe deformational event that led to the shear zone formation. The plagioclases of the anorthosite sample no. 2118 have a uniform compositional range varying between

An40Ab57Or3andAn46Ab53Or1(Fig.7.13).

Fig. 7.13:CompositionsofplagioclaseandKfeldspar(inmol%)fromanorthositeandmyloniticshear zonesamplesno.2118and2119plottedinthealbite(Ab)anorthit(An)(Or)system.

77 7.TheOttovonGruberGebirgefluidcontentofamassiftypeanorthositecomplex

Plagioclase crystals of the mylonitic shear zone sample have slightly higher An values of An51Ab47Or2 to An63Ab36Or1 (Fig. 7.13). The transition is smoothly, and compositional values may overlap, as further investigations of anorthosite hosted plagioclases (An46Ab53Or1 to An53Ab46Or1) from samples no. 1583 and 15881 have revealed(cf.chapter8,Fig.8.2).RareKfeldsparexsolutionlamellaeinplagioclasehave acompositionofAn3Ab3Or94inanorthosite,andofAn7Ab16Or77inshearzonesamples. ThisdepictsanidenticaltrendofenrichmentoftheanorthitecomponentinKfeldspars duringthedeformationalevent. Thegraphicrepresentationofpyroxenecompositionsshowsthatclinopyroxenesof sample 2118 are either Ferich diopsides with a slight shift towards Fepoor hedenbergite, or Carich augites with counterbalanced fractionsof magnesiumand iron(Fig.7.14).Insample2119,clinopyroxenecompositionsarepredominantlyinthe range of Fepoor hedenbergite with a weak tendency towards Carich augite. Clinopyroxene compositions of samples 2118 and 2119 mainly differ in higher Fe valuesofpyroxeneshostedbytheshearzonesample.Orthopyroxeneofsample2119is intherangeofferrosilite.

Fig. 7.14:Chemicalcompositionofpyroxenes(inmol%)ofanorthositeandshearzonesamples2118and 2119

Endmember calculations of secondary garnet blasts from the shear zone sample 2119exhibitthatthegarnetsolidsolutionhasarelativelynarrowcompositionalrange.

ItvariesonlyslightlybetweenAlm66Grs27Prp6Sps1 and Alm70Grs20Prp8Sps2.Andradite doesnotoccurduringendmembercalculations,astotalironwascompletelycalculated asferrouscomponentofalmandine.

78 7.TheOttovonGruberGebirgefluidcontentofamassiftypeanorthositecomplex

Fig. 7.15:Compositionsofsecondarygarnet(inmol%)ofsample2119projectedontothespessartinefree baseofthegarnetendmembersystemAlmPrpGrsSps.

7.3. Discussion

TheOttovonGruberGebirgeprovidesatypicalexampleofaProterozoicmassif typeanorthositecomplex.In thisstudy,severalsamplesfromtheweaklydeformed centralpartoftheplutonicbody,andfrommyloniticshearzonesthathaveformed within. They have been investigated with regard to their petrography, preserved microstructures,fluidinclusioncontent,andmineralchemistry. Modal analyses have reconfirmed the field observation that the voluminous intrusionpredominantlycomprisesrocksofanorthositic composition (Fig. 7.3). It is composedofupto90vol%plagioclaseintherangeofAn4046Ab5357Or13.Duringshear zoneformation,themodalcompositionchangedtowardshigherquartzcontents(plus garnetandorthopyroxeneformation),andthesampleshavebeenclassifiedasnorites (thusbelongingtothecharnockiticrocksastheycontainorthopyroxene)andtonalite (Fig. 7.10). The anorthosites display a uniform mineral assemblage of plagioclase clinopyroxeneKfeldspar, whereas the samples collected from the shear zones are characterised by the metamorphic mineral assemblage of garnetorthopyroxene clinopyroxeneplagioclasequartz. The comparison of pyroxene analyses from anorthosites and shear zones reveals that clinopyroxene becomes enriched in iron. Newly grown orthopyroxene is characterised by an irondominated ferrosilitic composition,asissecondarygarnet,whichexhibitsahomogeneous,almandinerich, composition (Figs. 7.14, 7.15). Plagioclase of both rock types ranges between

79 7.TheOttovonGruberGebirgefluidcontentofamassiftypeanorthositecomplex

An4063Ab3657Or13,withthehighestAnvaluesmeasuredintheshearzonesamples(Fig.

7.13).AveryprimitivecompositionofAn74Ab26Or0hasbeenreportedfromthecoreofa plagioclaseporphyroclastfromthecentralO.v.GruberanorthositebodybyMarklet al.(inpress).Itissuggestedthatthiscompositionreflectsthebeginningofplagioclase crystallisationfromaprimitivebasalticmagma.Ashwal(1993),whohasreportedeven more primitive plagioclase compositions from undeformed anorthosite complex, argues that compositional changes towards lower An contents are indicative for recrystallisation of plagioclase during metamorphic overprint. Based on these considerations,lowerAnvaluesof40to46mol%areinterpretedtoreflecttheeffectof metamorphicrecrystallisation.Subsequentshearzoneformationagainresultedinan increaseofanorthitecomponentinplagioclaseandKfeldspar.Thisinterpretationis also in conformity with the general observation that an enrichment in anorthite componentinplagioclaseindicatesaprogressioninpressureand/ortemperature,as already considered by Becke (1903). A comparison of pre and postmetamorphic mineralassemblagesreveals,thatthemineralreactionswouldnothavetakenplacein anisochemicalsystem.Thus,thechangeinchemicalcompositionduringthetimespan ofshearzoneformationincreaseoffemiccomponentsanddecreaseofsodiummust have been allochemical, possibly under influence of an ionrich fluid phase. The pseudomorphosis of biotite after amphibole (Fig. 7.2c) hints at a high Kmobility during retrogression. Additionally, the alteration of pyroxene to hornblende and biotite, as well as sericitisation of plagioclase observed in all samples is typical for retrogressionunderpresenceofanaqueousfluidphase. Conspicuousmicrostructuresobservedinfeldsparofanorthositesandshearzones include undulous extinction, deformational twinning, bent deformation lamellas, "coreandmantle" stuctures, myrmekite growth and the formation of real subgrain structures. Bent deformation lamellae, undulous extinction and "coreandmantle" stuctures are indicative for deformation at temperatures around 450 to 550 °C (Passchier&Trouw,1996).Quartzfromtheshearzonesrevealsadiscshapedhabit whichischaracteristicofdeformationundergranulitefaciesconditions(Shelley,1993). Thepegmatiticmobilisateoftonalitccompositionrevealsmicrostructuresverysimilar tothoseofthesurroundinganorthosite,andisthereforeconsideredtobeconcomitant tothedeformationoftheanorthositebody.Mineraldeformationisnotrestrictedto high grade conditions but continues towards lower temperatures and pressures. Processesresponsiblefor recrystallisationor brittlefracturingareimportantduring retrogression,andmaystronglyeffectfluidinclusionsthatformedduringprogradeor peakmetamorphicconditions. Thoroughfluidinclusionstudieshaverevealed,thatthecurrentfluidcontentofthe samples collected from the O.v.Gruberanorthosite complex is CO2±N2 dominated

80 7.TheOttovonGruberGebirgefluidcontentofamassiftypeanorthositecomplex

withthemeltingtemperaturesofsolidCO2varyingbetween59.1and56.6°C.The amount of nitrogen detected is mostly in the range of 24 mol%. Nearly all fluid inclusions homogenise into the liquid phase. The uniformity in fluid composition

(CO2±N2) is accompanied by largely homogeneous inclusion shapes (roundish to negativecrystalshape),andthefrequentoccurrenceofenclosedsolids.Thelatterwere identified as carbonates and/or varying sheet silicates. The microcrystals predominantlyoccurininplagioclasehostedinclusions,butsomeinclusionshostedby garnet contain solids as well. Fluid inclusions are exclusively arranged along intracrystallineclusters and trails, and no evidence of secondaryoriginorinfluxof different(lateorsecondary)fluidgenerationswasfound.Theonlyevidenceforthe presenceofanyfreeH2OderivedfrommicrothermometryandRamanspectrometrical investigationsisgivenbyextremelyrareH2OCO2bearingfluidinclusionshostedby intersticialquartzoftheanorthositesamples. Acomparisonofallplagioclasehostedinclusionsfromanorthositeandshearzone samples exhibits, that the majority of fluid inclusions from the anorthosites homogenises at higher temperatures than those hosted by plagioclase of the shear zones(Fig.7.16).

Fig. 7.16: Compilation of all homogenisation temperatures measured from plagioclasehosted fluid inclusionsfromtheO.v.Gruberanorthositecomplex

This tendency is also reflected by the results of density calculations (high Th generallycorrespondingtolowdensities).Thewholerangeofdensitiesintheshear zones spreads from 0.73 to 1.07 gcm3, with densities > 1.0 gcm3 just reached once. Consideringonlythoseinclusionsthathomogeniseintotheliquidphase,thewhole rangeofdensitiesofanorthositehostedinclusionslies between0.61 and 0.94 gcm3. Very low densities (0.28 to 0.38 gcm3)wereexclusivelycalculatedfromirregularto roundish inclusions that homogenise into the vapour phase. They are located in

81 7.TheOttovonGruberGebirgefluidcontentofamassiftypeanorthositecomplex immediatevicinityofthepegmatitevein.Quartzhostedinclusionsfromthepegmatite itself yield densities of 0.63 to 0.80 gcm3. Densities from garnet and apatite hosted inclusionsfromtheshearzonesfallintherangeof0.56to0.96gcm3(limitsdetermined from garnet hosted inclusions). Consequently, all densities calculated from homogenisationtemperatures(Th(l))measuredinothermineralsthanplagioclasefall wellintotherangealreadyencompassedbythemostabundanthostmineral. The relatively wide spread of densities and slight variationinfluidcomposition withinthehomologousinclusionassemblagescanbebestexplainedbythedifferent reactionofsingleinclusionsontheinfluenceofpostentrapmentchange.Evidencefor brittle failure during decompressional uplift is given by a positive correlation of inclusionsizeandhomogenisationtemperatures(Fig.7.17).Largeinclusionstendto decrepitateeasierthansmallinclusionswhichresultsinafluidlossandgenerationof larger inclusion volumes (e.g. Swanenberg, 1980; Bodnar et al., 1989). A further indicator is the occurrence of decrepitation clusters around rare quartz hosted inclusions (Fig. 8.4f). Evidence for postentrapment change through reequilibration processesisgivenbythepredominantlyroundishtonegativecrystalshapes,andby microstructuralfeaturesevidentinthehostminerals.Themodificationofinclusionsis oftenaccompaniedbyselectivelossofN2orH2O.Theverylowdensityofinclusions foundadjacenttothepegmatiteveinmostprobablyresultfromdestructionandfluid lossduringlocallyrestrictedmeltinjection.

Fig. 7.17:Correlationbetweenhomogenisationtemperaturesandinclusionsizesofanorthositesandshear zonesamples.Smallerinclusionsdisplay awiderangeofTh,whereaslargeinclusionsgenerallydonot reveallowhomogenisationtemperatures(withoneexception).

Theresultsfrommicrothermometricalstudies(Th,Tm)revealthatthecomposition of the actual fluid content from the O.v.Gruber anorthosite complex is relatively

82 7.TheOttovonGruberGebirgefluidcontentofamassiftypeanorthositecomplex homogeneous. In a first approach, isochores were calculatedforselectedinclusions containingamaximumamountof4mol%N2andcomparedwithpublishedPTdata deducedfromindependentthermobarometricalstudies. RepresentativeisochoresdepictedinFig.7.18indicatethemaximumandminimum PTconditions fromgarnetandplagioclasehostedinclusionsoftheshearzones,and plagioclasehostedinclusionsof the anorthositesamples, respectively. The absolute maximumPvaluesresultfromhighdensity,garnetandplagioclasehostedinclusions thatwererarelydetectedintheshearzonesamples(0.96and1.07gcm3).Theintrusion oftheanorthositebodyintothemetamorphicbasementlithologiesofcDMLoccurred atc.600Ma,subsequentlyfollowedbyafirststageofPanAfricanImetamorphismat 580550Ma(Jacobsetal.,1998).Theisochoresintersectwithmetamorphicconditionsof thePanAfricanIevent(M2)asgivenbyMarkl&Piazolo,1998(Fig.7.18).Thusitis concludedthatdespitethefrequentevidenceforpostentrapmentchange,theserare inclusionsstillreflectpeakmetamorphicconditions.

Fig. 7.18: PTdiagramwithisochoresderivedfromfluidinclusiondataofplagioclasehostedinclusionsof anorthositesandshearzonesamples.Givenisochoresrepresentmaximumandminimumdensityvalues ofCO2±N2inclusionsdetectedinplagioclaseofanorthosite(dashedlines),andplagioclase(solidlines) andgarnet(dashdotlines)ofshearzonesamples.Themajorityofisochorescalculatedfromplagioclase, garnet, apatite or quartz hosted inclusionsfall in the field encompassedby maximum and minimum isochoresfromtheanorthositesamples(dashedlines).Numbersrefertothedensitiesingcm3. Boxes indicatemetamorphicconditionsofPanAfricanI(Pan1),PanAfricanII(Pan2)andretrogression(M4) cf.chapter5.ThepossiblePTpathsresultingfromtheintersectionofisochoreswithindependentPT constraintsareindicatedbythegreyarrosw,descriptionisgiveninthetext.

83 7.TheOttovonGruberGebirgefluidcontentofamassiftypeanorthositecomplex

Theisochorecalculatedfrommaximumdensityvaluesoftheanorthositeinclusion (0.94gcm3)isinterpretedtorepresentmaximumpressureconditionsprevailingduring afurthermetamorphicevent,asthevastmajorityofinclusionsrevealsimilarorlower densities (0.71 to 0.84 gcm3 in anorthosites and 0.81 and 0.92 gcm3 in shear zone samples). The resultingpressureestimationis in accordance with independentPT conditions,givenforthesecondstageofPanAfricanmetamorphism(Pan2,M3from Markl&Piazolo,1998). Amultitudeofcalculatedisochores(notdepictedinFig.7.18)fallsintotherange encompassedbytheisochorereflectingM3conditions(0.94gcm3)andminimumvalue isochoresderivedfromplagioclaseandgarnethostedinclusionsofanorthositesand shear zones (0.73, 0.56 and 0.61 gcm3). Density values (and indicated pressures) decreasegraduallyandterminateattheminimumvalueisochores. Near isobaric cooling (PT path B in Fig. 7.18) from highgrade granulite facies conditionswouldresultinvolumedecreasewithoutmajorlossoffluidcontent,and abundanceofhighdensityinclusions(≥1.0gcm3),evenwhenfollowedbyastageof rapidisothermaldecompression(Lamb&Morrison,1997;Touret,2001).Theabsence ofanysignificantamountsofhighdensityinclusionsintheO.v.Gruberanorthosite complex,inadditiontoevidenceofdecrepitation(Fig.7.17)thoughisinfavourofa periodeofisothermaldecompressionfortheretrogradestagebetweenthePanAfrican IandPanAfricanIImetamorphicstage(pathAinFig.7.18).Fluidinclusiondensities were"reset"atM3conditionsandasecondperiodofretrogressionfollowed. DensityvaluesreflectingthepostM3phase(rangingbetween0.94and0.56gcm3) decreasegraduallyandoccurratherevenlydistributedthroughoutallsamples.This indicatesaneveninfluenceofreequilibrationprocessesactingoveralongperiodof time.Thus,agradual(nearlylinear)decreaseinPTconditionsisproposed(pathA') forthepostM3retrogradestage,whichhasonlyveryroughlybeenconfinedbyother thermobarometricstudies(M4takenfromMarkl&Piazolo,1998;Colombo&Talarico, inpress).Thepresenceofslightlyhigheraveragedensityvaluesinshearzonesamples is probably an effect of shear zone reactivation or a less pronounced influence of retrogradefluidinclusionmodification.Again,theabsenceofasignificantnumberof highdensityinclusions(≥0.92gcm3)speaksagainstamodeofisobariccooling(path B'). Itisevidentfromthefluidinclusionstudies,thatthemajorityofinclusionsunder investigation have changed their initial volumetric and compositional properties towardslowerdensities.Apartiallossofthefluidphaseduringchangeafterinclusion formationoftenhasthecharacterofselectivelossofonefluidcomponent(e.g.H2Oor

N2).Fluidpressureindicatedbyisochorescalculatedfrominclusionshostedbywell identifiedmetamorphicminerals(e.g.garnet)isalmostsystematicallyloweredabout1

84 7.TheOttovonGruberGebirgefluidcontentofamassiftypeanorthositecomplex

2kbar,comparedtometamorphicpressuresderivedfromsolidequilibriaestimations (Touret & Huizenga, 1999). This feature has often been reported from granulite lithologiesandmaybeexplainedbysystematicH2Olossthroughwaterleakage(e.g. Touret, 2001). Heinrich & Gottschalk (1995) have suggested that peak metamorphic fluids that were captured in prograde metamorphic minerals react with the surroundinghostsomewherealongtheretrogradepath,leadingtoaseverechangein volumeandlossofsomefluidcomponents.Thatafreeaqueousphasemusthavebeen present at some stage of the geologic evolution of the O.v.Gruber anorthosite complexisunequivocallydocumentedbyextremelyrarequartzhostedinclusionsthat contain a CO2H2O fluid. Further indicators are sericitisation and calcitisation of plagioclase(mostdominantlydevelopedinthepegmatitevein),andslightalterationof pyroxene to biotite and amphibole. That up to 15 vol% H2O, forming a small rim aroundthevapourbubble,mightbeoverlookedduringmicrothermometrystudieshas alreadybeenreportedbyearlyworkers(cf.Roedder,1984).Furthermore,besidesthe modelsthatlargelyconnectgranulitepetrogenesisto"dry"conditionswithlowwater activities(e.g. Newton etal., 1980; Santosh etal., 1990), more recent studies do not preclude the presence or even participation of an aqueous phase during granulite faciesmetamorphism(e.g.vandenKerkhof,&Grantham,1999;Newtonetal.,1998). The initial anorthositic magma system must have contained certain amounts of dissolvedH2OandCO2,andasnoevidencefortheinfluxofsignificantamountsofa laterfluidphasewasdetecteditispresumedthattheinitialfluidwascomprisedoutof

CO2±H2O±N2. ThoroughRamanspectrometryanalyseshaveruledoutthepossiblepresenceofany

"hidden" water in the plagioclase and garnet hosted CO2±N2 inclusions under investigation.Basedonthefrequentfindingsofhydrousmicrosolids(sheetsilicates) andcarbonatesinplagioclaseandgarnethostedinclusions,itissuggestedthattheH2O component of the initial fluid reacted with the surrounding mineral host under formation of socalled "stepdaughter" phases. The mechanism of postentrapment changethroughthereactionofanentrappedfluidwithitsmineralhost,hasonlybeen reported by a few workers, so far (e.g. Heinrich & Gottschalk, 1995; Svensen etal., 2001). The effect of volumetric and compositional change on plagioclase hosted inclusionshasnotbeendescribedbefore.Thustheexamplestudiedwasusedtomodel and evaluate the modifications a CO2N2bearingfluidhostedbyplagioclasewould undergoduringretrogrademetamorphism,andtheeffectonisochorecalculationsifit couldbeprovedthattheinitialinclusioncontainedsignificantamountsofH2O.

85 7.TheOttovonGruberGebirgefluidcontentofamassiftypeanorthositecomplex

The followingchapterconsistsof an individualpaperonmodellingoffluidhost interactions of plagioclase with an enclosed H2OCO2bearing fluid, leading to the formation of "stepdaughter" microcrystals within fluid inclusions under complete consumption of the aqueous phase. It contains own chapters on introduction, geologicalsetting,discussion,andconclusions,andseparatereferences.Alldataused arepresentedeitherinthetextortheappendicesAandB.Withthedetailedstudyof fluidinclusionsofanorthositesamples1583and15881,theresultsofthepublication haveacloserelationshiptothedatadiscussedinchapter7ofthisthesis.

86 8.Fluidinclusionsasmicrochemicalsystems

Chapter 8

Fluid inclusions as micro-chemical systems: evidence and modelling of fluid-host interactions in plagioclase

BärbelKleinefeld*&Ronald.J.Bakker°

*FacultyofGeosciences,UniversityofBremen,Postfach330440, D28334Bremen(Germany),bkleinefeld@unibremen.de

°InstituteofGeosciences,Mineralogy&Petrology, UniversityofLeoben,PeterTunnerStr.5,A8700Leoben(Austria)

”BlackwellScienceInc.,UK

Abstract

Dense,CO2richfluidinclusionshostedbyplagioclases,An45toAn54,oftheO.v. Gruberanorthositebody,centralDronningMaudLand,EastAntarctica,haveshownto contain varying amounts of small calcite, paragonite and pyrophyllite crystals, as detectedbyRamanmicrospectrometry.Thesecrystalsarereactionproductsthathave formed during cooling of the host and the original CO2rich H2Obearingenclosed fluid.Variableamountsofthesereactionproductsillustrate,thatthereactiondidnot takeplaceuniformlyinallfluidinclusions,possiblyduetodifferencesinkineticsas caused by differences in shape and size, or due to compositional variation in the originallytrappedfluid.ThereactionAlbite+2Anorthite+2H2O+2CO2=Pyrophyllite+ Paragonite+2Calcitewasthermodynamicallymodelledwithconsiderationofdifferent originalfluidcompositions.AlthoughfreeH2Oisnotdetectableinplagioclasehosted inclusions,theoccurrenceofOHbearingsheetsilicatesindicatesthattheoriginalfluid wasnotpureCO2,butcontainedsignificantamountsofH2O.Comparedtoanactual fluidinclusionitisobvious,thatvolumeestimationsofsolidphasescanbeusedasa startingpointtoreversetheretrogradereactionandrecalculatethecompositionaland volumetricalpropertiesoftheoriginalfluid.Isochoresforanunmodifiedinclusioncan thusbereconstructed,leadingtoamorerealisticestimationofPTconditionsduring earliermetamorphicstagesorfluidcapturing.

87 8.Fluidinclusionsasmicrochemicalsystems

Introduction

Theinterpretationofmanyfluidinclusionstudiesisbasedontheassumptionthat the entrapped fluid has not changed its composition and density during the long exhumation history. Fluid inclusions, both primary and secondary, form during precipitationprocessesofamineralhost.Atthisstage,theenclosedfluidanditshost crystalarenotchemicallyreactive.However,attemperaturesandpressuresdifferent fromtheformationconditions,themicrosystemmaybecomeunstableandtherefore react.Quartz,themoststudiedhostmineral,isnotchemicallyreactivewithmostofthe enclosed fluids over a wide range of PT conditions. The occurrence of chemical reactionsbetweentheentrappedfluidandareactivemineralhost(e.g.feldsparand pyroxene)hasbeenreportedsofarbyonlyafewworkers. Andersenetal.(1984)describedinclusionsinpyroxenefrommantlexenolithswitha residualcompositionofnearlypureCO2andtwosecondarysolidsofcarbonateand amphibole. It was suggested that both phases resulted from reaction between the pyroxene host and an original H2OCO2rich entrapped fluid. They used SEM and microprobetechniquestoidentifythevaryingentrappedmineralsinfluidinclusions, and Raman microspectrometry for the analysis of fluid components. The density changeoftheremainingfluidwasmodelledagainstthevolumechangeofthesolid phaseinvolvedinthereaction.Thereactionofmeltinclusionswithagarnethostwas describedbySchulze(1985).Includedolivineissupposedtoreactwithgarnettoform spinelandpyroxene,whicharelatertransformedintoserpentine.Davisetal. (1990) reported the reaction of a saltsaturated aqueous solutioninfluidinclusionswitha halite host during a freezingheating experiment. A rim presumably composed of hydrohalite formed just after the melting of ice. Heinrich & Gottschalk (1995) introducedtheterm“backreactions”fordecarbonationreactionduringretrogression inwollastonitehostedfluidinclusionsleadingtotheformationofquartzandcalcite. On heating in the microstage, the progress of the prograde reaction is estimated visuallyandthenthermodynamicallymodelled,usingcompositionsanddensitiesof similarbutunmodifiedfluidsentrappedinneighbouringquartz.Svensenetal.(1999, 2001)consideredthatsomeofthemanyentrappedcrystals(e.g.calcite,quartzandK feldspar)withinfluidinclusionsinomphaciteandgarnetmaybereactionproductsof fluidandhost(“stepdaughtercrystals”),whereastheotherswereaccidentallytrapped duringmultiplereopening,orprecipitatedoutofasupersaturatedfluid. Thermodynamic modelling of fluidhost reactions as applied to wollastonite by Heinrich&Gottschalk(1995)allowsamorepreciseandrealisticinterpretationoffluid inclusionsanalysedinmetamorphicrocks.Inthisstudywehavecombinedthevarying approachesofthepreviouslydescribedstudies,includingtheexactanalysisofreaction

88 8.Fluidinclusionsasmicrochemicalsystems products as well as the thermodynamic evaluation of the stability field of phases involvedandtheirpropermassbalance.PlagioclasefromtheO.v.Gruberanorthosite complex, central Dronning Maud Land, East Antarctica, contains CO2rich fluid inclusionswithseveralsolidphases,whichwereidentifiedascarbonatesandsheet silicates by Raman microspectrometry. The aim of this study is to prove, that the enclosedsolidsformedbychemicalreactionbetweenthefluidandthehostmineral.

Geological Setting

CentralDronningMaudLand(cDML)issituatedwithintheEastAntarctic/African Orogen, the Late NeoproterozoicLowerPalaeozoic collision zone between East and WestGondwana (Jacobs et al., 1998). One striking feature of this region is the occurrenceofamassiftypeanorthositebodythatcropsoutoverapproximately250 km2withintheOttovonGruberGebirge,EastAntarctica(Fig.1).

Fig. 1: Geological overview map of the Wohlthatmassiv, central Dronning Maud Land (cDML) and samplelocalities(modifiedafterJacobsetal.,1998).

The volcanic and sedimentary basement rocks of cDML experienced an early Grenvilleage metamorphic overprint at high to mediumpressure granulite facies conditions(D1andM1accordingtoBaueretal.,inpress),thatwasassociatedwiththe syntectonicintrusionofgranitesheetsandplutonsatc.1085to1075Ma(Jacobsetal., 1998).Voluminousanorthositicmagmaswereemplacedatc.600Maandthemargins oftheanorthositebodywerestronglydeformedatc.580550Ma(Jacobsetal.,1998). Deformationtookplaceatmediumpressuregranulitefaciesconditionsofabout6.8± 0.5kbarand830±20°Candisinterpretedasrepresentingthecollisionalstagebetween

89 8.Fluidinclusionsasmicrochemicalsystems

EastandWestGondwana,i.e.PanAfricanI(Markl&Piazolo,1998;D2andM2in Bauer etal.,inpress).Duringdeformationtheanorthositebodybehavedlikealarge deltaclastthatstillexhibitsundeformedmagmatictexturesinitscentralparts(Baueret al.,inpress). A subsequent tectonometamorphic event (PanAfrican II) started with the syntectonicintrusionofgranitoidsandgabbrosatapproximately530Maandfinally culminatedinvoluminousanorogeniccharnockiteandsyenitemagmatismat510Ma (Mikhalsky et al., 1997; Jacobs et al., 1998). Metamorphic conditions were at low–pressure granulite facies of 4 5 kbar and temperatures of about 640 ± 10 °C (Markl&Piazolo,1998;D3/M3inBaueretal.,inpress).Apoorlydevelopedandyet undatedretrogressionatpressuresofapproximately25kbarand480580°Cpost datesthevoluminousintrusionofgranitoidsat510Ma(Markl&Piazolo,1998;D4in Baueretal.inpress). Thermobarometric studies indicate a clockwise PTpath characterised by an isothermal decompression evolution for the early PanAfrican I event, whereas the structures of the PanAfrican II event are ascribed to a lateorogenic extensional collapseoftheEastAntarcticAfricanOrogen(Jacobsetal.,inpress).

Analytical Methods

Thin and thicksections were made from selected samples, and investigated by optical petrography, electron microprobe analysis, microthermometry and Raman microspectrometry.MicrothermometricmeasurementswerecarriedoutwithaLinkam MDS600stageoperatingoveratemperaturerangefrom190to35°C.Withinthese limitsitwascalibratedusingsyntheticfluidinclusionsprovidedbyFluidInc.at56.6 and0.0°C,i.e.meltingofpureCO2andpureH2O,respectively.Theanalyticalaccuracy is ± 0.1 °C. The stage is mounted on an Olympus BX 60 microscope, modified and suppliedbyFluidInc.ADilorLABRAMconfocalRamanspectrometerequippedwith afrequencydoubledNdYAGlaser(100mW,532.2nm)withaLMPlanFI100x/0.80 objectivelens(Olympus)wasusedtoidentifyfluidandsolidphasesininclusions. Wavenumber measurementshave an accuracy of 1.62 cm1 at low Dn (Raman shift around0cm1)and1.1cm1athighDn(around3000cm1).Toanalyseahomogeneous carbonic gas mixture by microspectrometry, samples were held at controlled temperaturesofc.+33°CwithaLinkamTHMSG600heatingfreezingstage.Asthe Ramansignalforiceismorepronouncedthanforwater,inclusionsareanalysedat

120°CtoverifythepresenceorabsenceofinvisiblesmallamountsofH2O.

As the amount of N2 detected by Raman microspectrometry does not exceed 2 mol%,fluidpropertieswerecalculatedasbeingequivalenttopureCO2.Theerrorin molarvolumeestimationresultingfromthisassumptionisbyfarsmallerthanliquid

90 8.Fluidinclusionsasmicrochemicalsystems vapour equilibrium calculations with published equations of state. Thus, molar volumesofthesefluidinclusionsareobtainedfromthehomogenisationtemperatures usingtheequationofDuscheketal.(1990)forpureCO2andisochorecalculationsare based on the equation of state of Span & Wagner (1996). Isochores for H2OCO2 mixturesarecalculatedwiththeequationofstateofHolloway(1977,1981).Thefluid propertiesofhomogeneousH2OCO2NaClmixturesarecalculatedwiththeequation ofstateofAnderko&Pitzer(1993)andDuanetal.(1995).ThesalinityofrareH2OCO2 NaClfluidinclusionshostedbyquartziscalculatedusingtheprogramQ2fromthe software package CLATHRATES (Bakker, 1997). All other fluid properties were computedwiththesoftwarepackageFLUIDS(Bakker,inpress). An ARLSEMQ 30 microprobe equipped with four wavelengthdispersive spectrometers (WDS) with TAP, LiF and PET diffraction crystals, and a LINK AN 10/25S energydispersive spectrometer (EDS) was used to measure plagioclase compositions.Beamconditionswere20kVand15nA.Aplagioclasestandardfromthe LeobenUniversitywasusedforcalibration.TheBastincorrectionwasappliedtothe obtaineddata.

Petrography and Electron Microprobe Analysis

The lightgrey anorthosite rocks are fine to coarsegrained equigranular and bimodalinequigranularwithplagioclasemegacrystsupto1.5cminsize.Themajor constituentisplagioclase(c.90vol%)ofAn45toAn54 (Fig.2). Minorcomponentsin varying occurrence are Kfeldspar (microcline) and clinopyroxene. Quartz, biotite, hornblende,orthopyroxene,chlorite,opaque(oxidesandsulfides),sheetsilicates,and carbonatesformaccessories,someofwhicharerelatedtothemetamorphicoverprint.

Fig. 2: Feldspar compositionsobtained fromelectron microprobeanalysis plottedintheternary OrAbAndiagram.

91 8.Fluidinclusionsasmicrochemicalsystems

Large subhedral to euhedral grains of plagioclase are slightly flattened and may showlatticepreferredorientation.Antiperthiticunmixingisoftenobservedinlarger grains. Twinning on albite and pericline law planes is common (Fig. 3a). Bent deformationlamellaeandunduloseextinctioninadditiontosubgrainformationand subgrain rotation and bulging of grain boundaries give evidence of intracrystalline deformationandrecovery,probablyrelatedtothePanAfricanImetamorphicevent. Aggregates of small, dynamically recrystallised grains surroundthelargerfeldspar clasts(Fig.3b)andthusform“coreandmantle”structures(asdescribedbyPasschier & Trouw, 1996). Within these finegrained areas a polygonal fabric with relatively straightgrainboundarieshasdeveloped.Rareintercrystallinemicrofracturesareeither openorfilledwithsheetsilicatesand/orcalcite.Someplagioclasecrystalsshowstrong alterationtosericiteandcalcite,whereasorthoandclinopyroxenemaybealteredto hornblendeandbiotitealongsmallintracrystallinefracturesandgrainboundaries.

Fig. 3:Microphotographsofalbiteandpericlinetwinsinplagioclaseofsample1583(a)and“coreand mantle”structuresofsample15881(b).

Results of fluid inclusion studies

Fluid inclusion petrography

Onesingletypeoffluidinclusionshostedbyplagioclasewasidentifiedwithinall anorthosite samples. Inclusions have an average length of 7 15 m (longest dimension),butsizesdownto2.5mandupto65mwerealsoobserved(Table1). Inclusionshapesvaryfromroundishorovaltonegativecrystalshapes(Fig.4a).At room temperature,theycontaina singleliquidlikecarbonicphaseand occasionally several birefringent solid phases (Fig. 4b). The solid/fluid ratio varies significantly among adjacent inclusions. Fluid inclusions are arranged asintracrystallineclusters (Fig.4c)andtrails(Fig.4d),thusgivingevidenceofpseudosecondaryorigin,asthey donotcrosscutgrainboundaries.

92 8.Fluidinclusionsasmicrochemicalsystems

Table 1:Microthermometricaldata,length(inm)andmolarvolume(incm3mole1)ofcarbonic(car) fluidinclusions.Melting(Tm)andhomogenisationtemperatures(Th)aregivenin°C.Homogenisationis alwaysintotheliquidphase.Thesolidphasescalcite(cal),Mgcalcite(mgcal),dioctaedralmica(dm)and pyrophyllite(prl)wereidentifiedwithRamanspectrometry.Numbersinbracketsindicatethevolume percentageofthespecificsolidphase.Theoccurrenceofatleastonesolidphasethatwasnotfurther identifiedisindicatedby"+".

3 - Inclusion no. Length (µm) Solid Phases Tm (car) °C Th (car) °C VM (cm mole- 1583-1-01 14.3 + -57.1 14.3 53.201) 1583-1-02 7.5 + -57.2 12.2 52.13 1583-1-03 9.0 + -57.3 6.6 49.71 1583-1-04 4.5 + -57.3 10.2 51.20 1583-1-05 5.0 + -57.3 5.8 49.41 1583-1-06 13.0 mg-cal -57.1 7.5 50.06 1583-1-07 9.0 + -57.3 27.3 65.64 1583-1-08 11.0 mg-cal -57.3 10.6 51.38 1583-1-09 30.0 mg-cal -57.0 22.8 59.39 1583-1-10 9.0 -57.0 7.9 50.22 1583-1-11 9.0 -57.0 6.3 49.60 1583-1-12 9.0 mg-cal -57.0 1.1 47.80 1583-1-13 7.5 + -57.2 15.6 53.93 1583-1-14 14.0 cal (25), dm (12) -56.7 7.1 49.91 1583-1-15 11.0 + -56.8 10.8 51.47 1583-1-16 5.0 + -56.8 4.6 48.97 1583-1-17 10.0 -56.8 17.5 55.11 1583-1-18 14.0 cal -57.2 16.5 54.47 1583-1-19 11.0 + -56.9 18.5 55.79 1583-1-20 7.0 mg-cal -56.9 19.2 56.29 1583-1-21 65.0 mg-cal (11), dm (3) -56.8 18.5 55.79 1583-3-03 15.0 mg-cal (5), dm-prl (6) -57.1 8.7 50.55 1583-3-04 27.0 mg-cal (34), dm-prl (9) -57.1 20.9 57.64 1583-3-05 7.0 mg-cal (6), dm-prl (6) -57.1 11.4 51.74 1583-3-06 30.0 mg-cal (34), dm-prl (4) -57.0 17.0 54.79 1583-3-07 17.0 Mg-cal (34) -57.2 -1.8 46.92 1583-3-08 8.0 mg-cal (5), dm-prl (7) -57.3 1.0 47.77 1588-1A-1-01 13.0 -56.8 19.4 56.44 1588-1A-1-02 9.5 + -56.9 16.8 54.66 1588-1A-1-03 9.5 -56.8 19.9 56.82 1588-1A-1-04 11.0 -56.8 19.9 56.82 1588-1A-1-05 8.0 -57.0 14.5 53.31 1588-1A-1-06 5.5 -57.0 17.3 54.98 1588-1A-1-07 5.5 + -56.9 17.1 54.85 1588-1A-1-08 2.5 -57.1 17.4 55.04 1588-1A-1-09 7.0 -57.1 18.0 55.44 1588-1A-1-10 2.5 + -57.0 17.2 54.91 1588-1A-1-11 3.5 -57.1 18.9 56.07 1588-1A-1-12 6.0 -57.1 16.6 54.54 1588-1A-2-13 22.0 cal, mg-cal (2) -57.5 15.7 53.99 1588-1A-2-14 8.5 + -57.5 14.4 53.26 1588-1A-2-15 15.0 mg-cal -57.5 18.0 55.44 1588-1A-2-16 18.5 cal, prl -57.5 17.4 55.04 1588-1A-2-17 6.5 mg-cal -57.5 18.4 55.72 1588-1A-2-18 10.0 mg-cal -57.5 17.4 55.04 1588-1A-2-19 8.5 mg-cal -57.4 18.2 55.58 1588-1A-2-20 8.5 cal -57.5 16.2 54.29 1588-1B-3-22 30.0 mg-cal (8), prl (4) -57.3 14.1 53.1 1588-1B-3-23 7.0 -57.3 15.9 54.11 1588-1B-3-24 10.0 -57.3 17.2 54.91 1588-1B-3-25 15.5 -57.3 12.5 52.27 1588-1B-3-26 14.5 mg-cal -57.3 20.6 57.38 1588-1B-3-27 14.5 -57.6 18.1 55.51 1588-1B-3-28 16.5 -57.8 17.2 54.91 1588-1B-3-29 15.0 -57.6 15.7 53.99

93 8.Fluidinclusionsasmicrochemicalsystems

Rarely, the accumulated appearance of fluid inclusions at the centre of large feldsparcrystals,bestvisibleinsectionsperpendiculartothecaxis,giveevidenceof relicticmagmaticgrowthzonationinplagioclase.Insomecrystals,alignmentoffluid inclusionsalongsingletwinlamellaewasobserved. Asidefromthisdominanttypeoffluidinclusionshostedbyplagioclase,accessory xenomorphicquartzalsocontainssomeinclusions.Theseareapproximately3–10m insize,roundedtonegativecrystalshape.Ingeneraltheycompriseanaqueousliquid andacarbonicvapourphase,thelatteroccupyingfrom30vol%uptoanapparenttotal fill(Fig.8.4e).Decrepitationclustersoccuraroundsomeinclusionsthatcontainonlya carbonicvapourphase(Fig.4f).

Composition of plagioclase adjacent to fluid inclusions

Electron microprobe analysis reveals that there is no evidence for significant chemical gradients in feldspar around single fluid inclusions (Fig. 5). Potassium variationisclosetonilwhereasforAl,CaandNashowrangesofc.2wt%(Fig.5).No systematic relationship between composition and distance from inclusion could be detected.The average compositionof plagioclasearound thisparticularinclusionis

An46Ab53Or1toAn53Ab46Or1(seeAppendixA,TableA1).

Microthermometry and Raman microspectrometry of the enclosed fluid

Upon coolingfrom room temperature,theinclusionsfirst nucleate a gas bubble around0°Cbeforesupercoolingleadstotheformationofasolidphasearound–90°C. Uponheating,meltingofthesolidphaseoccurswithinanarrowtemperaturerangeof

–57.8to–56.8°C(Fig.6andTable1).CO2wasconfirmedbyRamanmicrospectrometry as being the major gaseous component within all fluid inclusions hosted by plagioclase.TheloweringofthefinalmeltingtemperatureofpureCO2iscausedbythe additionofsmallamountsofN2(maximally2mol%)whereasCH4andH2Owerenever detected. All fluid inclusions homogenise into the liquid phase over a broad temperatureintervalof–1.8to27.3,withthemajorityhomogenisingbetween14to20 °C(Fig.6andTable1).ThereisnosystematicrelationshipbetweenThandTm.

QuartzhostedfluidinclusionsrevealasimilarCO2meltingpointof–57.7°Cand additional clathrate melting was observed around 7.9 °C. Homogenisation of CO2 occurred at 18.7 °C into the liquid phase. The calculated salinityobtainedfromthe clathratemeltingtemperatureisequivalentto4.2wt%NaCl.InadditiontoCO2,small amountsofN2wereidentifiedwithRamanmicrospectrometry.ThepresenceofH2O wasevenconfirmedinthoseinclusionsthatdidnotshowavisibleaqueousrim(e.g. Fig.4f).Entrappedmineralswerenotdetectedwithintheseinclusions.

94 8.Fluidinclusionsasmicrochemicalsystems

Fig. 4: MicrophotographsofCO2richfluidinclusionshostedbyplagioclase:(a)negativecrystalshaped inclusionscontainingcarbonatecrystals;(b)containingvariousbirefringentcrystals;(c)clusterbetween albitetwins;(d)pseudosecondarytrails;(e)twophaseinclusioninquartz,containingaCO2richbubble and a H2Orich rim; (f) decrepitation cluster around an apparently carbonicrichfluid inclusion in quartz.

95 8.Fluidinclusionsasmicrochemicalsystems

Fig. 5:Al2O3,CaO,Na2OandK2Oconcentrations(inwt%)alongtwoprofilesaroundafluidinclusion. "0m"markstheinclusionwall.Profiles“p”and“q”areperpendiculartoeachother.Theorientationof albiteandpericlinetwinsisschematicallyindicatedbythinlines.

Fig. 6:ThTmplotofCO2dominatedfluidinclusionshostedbyplagioclase.Freezingpointdepressionis causedbyN2contentsofupto2mol%;allinclusionshomogeniseintotheliquidphase.

Raman microspectrometry of enclosed solids

Becauseof theirhighrefractiveindexcomparedto the surrounding plagioclase, carbonate crystals entrapped in fluid inclusions can easily be identified by optical microscopy(Fig.8.4b).Ramanspectrometryisabletodetectevenslightvariationsin carbonatecomposition(Bischoff,1985),andashiftofRamanpeaksfrom284,714and 1087cm1to283,711and1085cm1shows,thattheenclosedmineralsareMgenriched

(<10mol%MgCO3)orpurecalcite(Table1),respectively. Sheetsilicatesareoftenlocatedattheinclusionwallsoratcarbonatecrystalfaces andmayeasilybeoverlookedinsmallordarkfluidinclusions.TheRamanpeaksof muscovite and paragonite are similar, not further differentiated in this study and thereforemoregenerallyreferredtoasdioctahedralmica.Nevertheless,paragoniteis

96 8.Fluidinclusionsasmicrochemicalsystems thoughttomakeupmostoftheenclosedmica,aspotassiumisonlyaminorcomponent ofthefeldsparhost.TheRamanspectrafordioctahedralmicaandpyrophylliteare similaruptoaRamanshiftofabout1200cm1(Fig.7).Bothhaveanintensepeakat264 cm1,whereasthesecondpeakisslightlyhigherforpyrophyllite(708cm1)thanfordi octahedral mica (702 cm1). Most diagnostic peaks appear at higher wavenumbers, between 3600 and 3700 cm1, where different types of OH bonds in the mineral structurearedetectable.Thesharppeakforpyrophylliteat3674cm1isclearlydistinct fromthebroadpeakfordioctahedralmicaat3626cm1(Fig.7b).Bothmineralswere identified within fluid inclusions where they appear as individual crystals or intergrownaggregates(Fig.7,Table1).

Fig. 7.Ramanspectraofsheetsilicatesfromsample1583indifferentrangesoftheRamanshiftDn:(a) 200to1000cm1;(b)3500to3800cm1.Standardspectraofmuscovite(ms)(substitutionalforthedi octahedralmicas)andpyrophyllite(prl)areindicatedasareference.pl=backgroundpeakofplagioclase host.

97 8.Fluidinclusionsasmicrochemicalsystems

Discussion

The microchemical reaction

FluidinclusionstudieshaveprovedthatfeldsparhostedinclusionsfromtheO.v.

Gruber anorthositebody commonly contain a dense CO2richgas mixturetogether withdifferentvolumefractionsofsolids,i.e.calcite,pyrophylliteandadioctahedral mica.Thefrequentoccurrenceofthischaracteristicfeaturethroughoutthesamples rulesoutthepossibilityofaccidentaltrapping(capturing).Additionally,thelackof

H2O,andthevaryingamountsofsolidspresentsuggestthatitisveryunlikelythatthe solidsformedasdaughtercrystalsoutofasupersaturatedfluid/melt.Itistherefore assumedthatthesolidshavedevelopedasproductsofreaction(1)or(2).

plag fluid [NaAlSi3O8 + 2CaAl2Si2O8 ] + [2H2O + 2CO2 ] ¤ prl pg (1) 2 cal [Al2Si4O10 (OH ) 2 ] + [NaAl2Si3AlO10 (OH )2 ] + [CaCO3 ]

plag fluid [KAlSi3O8 + 2CaAl2 Si2O8 ] + [2H2O + 2CO2 ] ¤ prl ms (2) 2 cal [Al2Si4O10 (OH ) 2 ] + [KAl2 Si3 AlO10 (OH )2 ] + [CaCO3 ]

As the plagioclase is low in potassium (Fig. 2), it is more likely that reaction (1) predominated during the interaction between the host mineral and the fluid. The thermodynamicdataoftheindividualcomponentsinvolvedinthereactionweretaken intoaccounttodeterminethePTstabilityfieldofproductsandreactants(Appendix B).TheproposedreactionwithinfluidinclusionstakesplaceiftherockPTconditions moveintothestabilityfieldoftheproducts.ThepositionofthereactioncurvesinaPT diagramisdependentontheinitialfluidcomposition(Fig.8).Amixtureof50mol%

H2Oand50mol%CO2definesthemaximumreactiontemperatureintheamphibolite facies, whereas the reaction temperatures are lower for all other mixtures. The immiscibilityfieldsofH2OCO2mixtures,accordingtoTödheide&Franck(1963),do notinterferewiththereactionforanyfluidcomposition(Fig.8andAppendixB).The immiscibilityfieldsofCO2richfluidsintheH2OCO2NaClsystemalsodonothave interferencewiththereaction(AppendixB).Reaction(1)occursattemperatureswell belowthosegivenformetamorphicconditionsincDMLbyMarkl&Piazolo(1998)and thereforeitmusthavetakenplaceatalatestageofcrustalevolution(postM4).The presenceofcarbonateandsheetsilicatesinmostfluidinclusionsindicatesthatthe reactionhasindeedproceeded.Theoccurrenceofsheetsilicatesrequiresthepresence ofH2Owithintheinclusionsbeforethereactiontookplace.

98 8.Fluidinclusionsasmicrochemicalsystems

Fig. 8:Temperaturepressurediagramwithreactioncurvescalculatedforfluidcompositionsof50,80,

90,99and99.9mol%CO2.TheimmiscibilityfieldofthecorrespondingH2OCO2fluidmixtureafter Tödheide&Franck(1963)isillustratedatrelativelylowtemperatures(L+V).M2,M3andM4indicate themetamorphicconditionsasdescribedinthetext.Pan1andPan2illustratethePTconditionsofthe PanAfricanevent,collisionalstageIandII,respectively.Isochoresforhypotheticalinclusionsfi1andfi2 thatformedatM2,andthepathofreactionprogressaccordingtothechangeinfluidcompositionduring interactionbetweenfluidandhostmineralareshownbythickblacklines.Theisochoreforinclusion

1583308,presentlycontainingpureCO2 is indicated by dashed curve a. Also shown are corrected 3 1 isochoresaccordingtoourmodel(curvebfor97.2mol%CO2and45.55cm mole ,andcurvecfor93.6 3 1 mol%CO2and42.66cm mole ).Theshadedareabetweencurvebandcrepresentstheuncertaintyinthe reconstructionofthisspecificinclusion.TheapproximateliquidiofthesystemsAnAbH2OandAnAb

QtzH2O,accordingtoJohannes(1978,1989)areillustratedatrelativelyhightemperatures(thickgrey lines),indicatingpossibleformationconditionsoffluidinclusionsincrystallisingplagioclase.

The quartz hosted fluid inclusions have a comparable distribution and contain similar gaseous components. Therefore it is suggested that both, quartz and plagioclasehostedinclusions, have a common origin. As quartz is nonreactiveand these inclusions still contain small amounts of H2O (Fig. 4e), the original fluid composition in plagioclase is considered to have had a water component, too. We proposethataCO2H2Orichfluidwasoriginallytrappedasfluidinclusions,andthat this reacted with its plagioclase host, leading to complete consumption of the subordinateaqueousfluidcomponent,theformationofaresidualcarbonicliquidand the crystallisation of carbonates and sheet silicates (Fig. 9a, c). The actual fluid preserved in quartz must not unequivocally reflect the original fluid properties as quartzhostedinclusionsmighthavechangedbymechanicalanddiffusionalprocesses sincetheirformation.Thesereequilibrationprocessesmayresultindecrepitationand preferential water loss as has been proved by experimental work (e.g. Sterner &

99 8.Fluidinclusionsasmicrochemicalsystems

Bodnar, 1989; Bakker & Jansen, 1991). Decrepitation clusters and a variationinthe enclosedamountofwaterhavebeenobservedinfluidinclusionsinquartz(Fig.4f).

ThelackofanycarbonatesorsheetsilicatesinsomeoftheplagioclasehostedCO2 rich inclusions and the variable volume fraction of the reaction products can be explained by a variation in the original fluid composition. Furthermore, the same reequilibrationprocesses that have previously been described for quartz may have effectedtheplagioclase.Microstructurespreservedinplagioclasecrystalsimply,that these processes have occurred (Fig. 3). Kinetics may be responsible for the non completionofreactionswhichagainresultsinadiversityofinclusioncontents.

Fig. 9:Schematicreactionprogressinaclosedfluidinclusionsystemwithanoriginallyhomogeneous

H2OCO2fluidnotcontaininganysolidphasesathighPT.a)Noreactionforinclusionsinquartzand partoftheplagioclase.b)Afteroccurrenceofpartofthereactioninonlyplagioclase.c.Aftercomplete consumptionofH2Oandformationoflargercalcite,paragoniteandpyrophyllitevolumefractions.

100 8.Fluidinclusionsasmicrochemicalsystems

The model

Considering a fluid inclusion as a closed system, a quantitative model was establishedtodescribevolumetricandcompositionalchangescausedbyreaction(1).

TwohypotheticalfluidinclusionsoftheH2OCO2 binary (fi1andfi2 in Fig. 8) are assumed to have been trapped at M2 metamorphic conditions, with initial fluid compositionsof80mol%CO2and50mol%CO2,respectively(molarvolumesare38.93 cm3mol1 and 33.32 cm3mol1respectiveley).Withfavourablekinetics,bothinclusions starttoreactwhenthesystemreachesthecorrespondingreactioncurvesatabout450 °C.Withprogressivereaction,theseinclusionsdevelopindifferentways.Themolar volumeoffi1reachesamaximumvalueofabout59.5cm3mol1atlowertemperatures, which is a nearly pure CO2 liquidlike fluid, whereasfi2continuouslyincreasesits molarvolumeuptoavapourlikefluid(Fig.10a).Thefluidcompositioninfi2doesnot change. The Fi1 volume percentages will be 10.7 calcite, 18.5 pyrophyllite and 19.1 paragoniteafterthereactionisnearlycompleteatlowertemperatures(Fig.10b).The volumepercentagesofsolidreactionproductsinfi2arehigher,i.e.16.9calcite,29.3 pyrophylliteand30.3paragonite.Theseamountsmaynotbereachedifthereaction ceaseswhenthekineticsbecomesunfavourableatlowertemperatures.Viceversa,the evaluation of the amount of reaction products allows the recalculation of the compositionandmolarvolumeoftheinitialfluid. Using a natural example, fluid inclusion1583308(Table1)presentlycontainsa densepureCO2liquid,c.5vol%calciteandc.7vol%ofparagoniteandpyrophylliteas visuallyestimated,correspondingto1.355mmoleand0.54mmole,respectively,ina 3 hypothetical fluid inclusion of 1 cm total volume. At 1.0 °C, its CO2 content homogenises to the liquid phase, which corresponds to a molar volume of 47.77 3 1 3 cm mol ,oratotalmountof18.42mmoleCO2in1cm totalvolume.Inordertomodel thedensitychangeofthefluidphase,theequationfromAndersenetal.(1984)hasbeen slightlymodifiedtotakeintoconsiderationthetemperatureandpressureeffecton molarvolumesofthesolidphases(fromBerman,1988).Toreversereaction(1)and recalculate the original fluid composition and density, there are two possible formulationswithwhichtostart.First,theestimatedamountofboundH2Oinsheet silicates(7vol%)isusedasfixedparameter.Inthiscase,0.54mmoleofH2OandCO2is calculatedtohavebeenconsumedbythereactionwiththeformationof0.54mmole calciteandsheetsilicates.Thereforetheoriginalinclusionmusthavecontained0.54 mmoleH2Oand18.96mmoleCO2(i.e.2.8mol%H2Oand97.2mol%CO2)resultingina molarvolumeofthisfluidof45.55cm3mol1.However,theactualinclusioncontainsa totalamountof1.355mmolecalcite,meaningthatthereis0.815mmolecalciteinexcess (i.e. 3 vol%). This suggests that part of the observed carbonate may have been accidentallytrappedduringinitialinclusionformation,orperhapsthemeasurementof

101 8.Fluidinclusionsasmicrochemicalsystems

7vol%ofsheetsilicatesisinerror. Inthesecondapproach,calculationswereperformedassumingthatcalcitewillbe consumed completely during the inversion of reaction (1). In this case, more sheet silicatesthantheamountestimatedbyopticalobservationsmustbetakenintoaccount for the reaction to proceed, i.e. 0.6775 mmole paragonite and 0.6775 mmole pyrophyllite. Sheet silicates often form as thin layers on inclusion walls and on carbonates,andmightthereforebeeasilyoverlookedduringopticalmicroscopy.As illustrated in Fig. 10b, the calculated amount of sheet silicates produced by the progressofreaction(1)isalwayshigherthantheamountofcarbonates.Thissituation isinagreementwiththeobservedroomtemperaturevolumeratiosofcarbonatesto sheetsilicates.Theinitialfluidderivedinthiswaycontains6.4mol%H2O and 93.6 3 1 mol%CO2,withamolarvolumeof42.66cm mol . After reaction (1) has completed, the maximum amount of calcite within fluid inclusionsthatformedatM2conditionsisabout16.9vol%(seeFig.10b).However, several observed inclusions are estimated to contain up to 34 vol% calcite, e.g. inclusionno.1583307(Table1).Takingintoaccountdifficultiesinvolumefraction estimationsofsheetsilicates,thisinclusionwouldhaveoriginallycontained28.6mol% 3 1 H2O and 71.4 mol% CO2, with an extremely high molar volume of 24.99 cm mol . Thesereconstructedfluidpropertiesareunrealisticwithintheknownframeworkof geological events for the samples. It is therefore likely that part of the calcite was indeedaccidentallytrapped.Astheplagioclasealsocontainssmallsolidinclusionsof pure carbonate, it is possible that the fluid inclusions are pinned to its grain boundaries. Althoughthemodelresultsdivergeslightlyfromtheestimatedvolumepercentages ofthesolidphasesatroomtemperature,theyaccordwithrespecttothecharacteristics oftheoriginalfluidinclusion:itmusthavecontained some water, it was of higher density, and the formation of solid phases via reaction with the inclusion walls reducedthetotalfreefluidvolumebyabout1to2.5vol%.Thus,coolingofthehost rockfromM2metamorphicconditionscausedasimultaneousdecreaseindensityand total volume, while at the same time various solids formed upon complete consumptionoftheaqueouscomponent.

102 8.Fluidinclusionsasmicrochemicalsystems

Fig. 10: Influenceoftheretrogradereactiononhypotheticalfluidinclusionsfi1(initially80mol%CO2) andfi2(initially50mol%CO2).Thesoliddotsindicatethestartingpointofthereactions.a)Thechange inmolarvolumeandfluidcompositioncausedbycoolingafterthereactioncurvesarereachedatabout 450°C.b)Amountofsolidreactionproductsformingduringcooling.

103 8.Fluidinclusionsasmicrochemicalsystems

Reconstructed isochores

Recalculatedisochoresoftheassumedoriginalfluidcompositionsanddensities,e.g. linesbandcinFig.8,areshiftedtowardshigherpressuresthanthoseestimatedforthe presentstateofinclusionsatroomtemperature(line a in Fig. 8.8). Considering the fluidinclusionsformedat an earlystageof therockdevelopment, they may have originatedimmediatelyaftercrystallisationofaplagioclaserichmeltofintermediate composition.The pseudosecondarycharacterof most inclusiontrails confirms this early formation at granulite facies conditions. As the presence of a host crystal is a necessityfortheformationoffluidinclusions,theliquidusoftheplagioclasesystem theoreticallydefinesthemaximumformationconditions.However, it is more likely thatinclusionsformedshortlyaftercompletionofthecrystallisationofthemagma,i.e. at solidus conditions. The original magma systems must have contained certain amountsofdissolvedCO2andH2O.ThesystemalbiteanorthiteH2O(Johannes,1978) hasaliquidusatabout1100°Cat500MPawaterpressure(Fig.8.8).Theadditionof smallamountsofquartztothissystemcandrasticallylowertheliquidustemperature toabout800°Cat500MPaandtoabout900°Cat200MPa(Johannes,1978,1989).Data for a CO2 bearing system are not available, but it will transpose bothliquidusand solidustohigherpressuresataselectedtemperature. Theintersectionofthecorrectedisochoresfromfluidinclusion1583308(Fig.8.8) with the albiteanorthiteH2O liquidus are at about 1080 °C and 650730 MPa. However,muchhigherpressureswillbeobtainedfromthoseinclusionsthatcontaina highervolumepercentageofreactionproducts.Thismaygiveimportantconstraintson possiblePTconditionsfortheemplacementoftheanorthositicmagmasbetweenM1 and M2 metamorphism (Jacobs et al., 1998), which could not be estimated by other means.

Conclusions

The combined use of laserRaman spectrometry and microthermometry has characterised a complete microchemical reaction system hosted by plagioclase. Submicroscopicphases(fluidandsolid)coveringinclusionwalls,andopticallyvisible solidswereidentifiedascarbonates,muscovite/paragoniteandpyrophyllite,together withanearlypure,denseCO2fluidphase.Thesesolidsareassumedtohavedeveloped asproductsofreactionbetweenthefluidanditshost.TheOHbearingsheetsilicates are interpreted as proof of an aqueous component within the originally entrapped fluid. The amount of H2O initially available in the trapped fluid is consideredto controltheextentoftheretrogradereaction.Withallinvolvedphasesidentified,the reactionwasthermodynamicallymodelledandthePTstabilityconditionsofproducts

104 8.Fluidinclusionsasmicrochemicalsystems andreactantsweredetermined,asafunctionofthefluidcompositions.Quantitative analysis on the basis of volume estimates of the solid reactionproducts found in plagioclasehostedfluidinclusionswereusedtorecalculatethecompositionandmolar volumeoftheoriginalfluid.Thedeviationintheratioofcarbonatetosheetsilicates formed within the hypothetical and the real inclusions lies within the uncertainty limitsofthemethod.Thinlayersofsheetsilicatescanbeeasilyoverlookedduring microscopyanditispossiblethatpartofthecarbonatewasaccidentallytrappedatthe time of inclusion formation. The results have shown that detailed fluid inclusion studies combined with thermodynamic modelling can be used to trace back and evaluatethechangesthatafluidinclusionhasundergonesinceitsformation.Thus, valuablepetrogeneticinformationcanbederivedandusedformorepreciseestimation ofPTconditionsduringearliermetamorphicstagesorfluidentrapment.

Acknowledgements

ThisworkispartofthePhDthesisofB.KleinefeldfundedbytheFNK,University of Bremen, Germany, referencenumber 05/134/7. The samples and field data were collected during the GeoMaud Expedition 95/96, directed bytheBundesanstaltfür GeowissenschaftenundRohstoffe(BGR),Germany,andkindlyprovidedbyM.Olesch. ThetechnicalsupportofV.Kolb,H.MühlhansandP.Witteisgreatlyappreciated.L. Diamondkindlymadeconstructiveremarksonthemanuscriptandimprovementson the English. B.K. is grateful for the use of technical facilities of the Institute of Geosciences,Mineralogy&Petrology,UniversityofLeoben,Austria.T.Andersenand W.Heinricharethankedforconstructivereviewing.

105 8.Fluidinclusionsasmicrochemicalsystems

Appendix A

Table A1.:MicroprobeanalysisofplagioclasearoundthefluidinclusionillustratedinFig.5.

Sample O.-v.-Gruber anorthosite - sample no.1583 Mineral Plagioclase

Analysis p.1 p.2 p.3 p.4 p.5 p.6 p.7 p.8 p.9 q.1 q.2 q.3 q.4 q.5 q.6

SiO2 54.57 55.05 55.15 56.03 54.73 54.50 56.34 55.66 56.36 56.19 55.52 56.01 56.31 53.97 54.97

TiO2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Al2O3 27.40 27.23 27.11 27.14 28.27 28.23 26.48 26.58 25.89 27.02 27.01 26.63 26.67 27.20 27.04

Cr2O3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 FeO 0.10 0.17 0.17 0.10 0.07 0.15 0.10 0.12 0.07 0.05 0.17 0.05 0.07 0.17 0.10

Fe2O3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 MgO 0.05 0.05 0.05 0.00 0.00 0.00 0.10 0.00 0.05 0.00 0.05 0.05 0.00 0.05 0.10 MnO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 CaO 10.13 10.01 10.24 10.05 9.63 9.69 9.19 9.22 8.92 9.96 10.30 10.31 10.15 10.30 10.28

Na2O 5.18 5.37 5.37 5.45 5.26 5.26 5.70 5.08 5.70 5.62 5.19 5.45 5.36 5.37 4.92

K2O 0.21 0.27 0.25 0.22 0.23 0.23 0.26 0.22 0.27 0.17 0.25 0.23 0.25 0.24 0.21 Total 97.64 98.15 98.34 98.99 98.19 98.06 98.17 96.88 97.26 99.01 98.49 98.73 98.81 97.30 97.62

Si 2.51 2.52 2.52 2.54 2.50 2.50 2.57 2.57 2.59 2.55 2.53 2.55 2.56 2.50 2.53 Al(IV) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Al 1.49 1.47 1.46 1.45 1.52 1.52 1.42 1.45 1.40 1.44 1.45 1.43 1.43 1.49 1.47 Ti 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Cr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Fe2+ 0.00 0.01 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.00 Fe3+ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Mg 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 Mn 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Ca 0.50 0.49 0.50 0.49 0.47 0.48 0.45 0.46 0.44 0.48 0.50 0.50 0.49 0.51 0.51 Na 0.46 0.48 0.48 0.48 0.47 0.47 0.50 0.45 0.51 0.49 0.46 0.48 0.47 0.48 0.44 K 0.01 0.02 0.01 0.01 0.01 0.01 0.02 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.01

Ab 0.513 0.499 0.505 0.498 0.496 0.497 0.464 0.494 0.456 0.490 0.515 0.504 0.504 0.507 0.529 An 0.474 0.485 0.479 0.489 0.490 0.489 0.521 0.492 0.528 0.500 0.470 0.482 0.481 0.479 0.458 Or 0.013 0.016 0.016 0.013 0.014 0.014 0.015 0.014 0.016 0.010 0.015 0.014 0.015 0.014 0.013

106 8.Fluidinclusionsasmicrochemicalsystems

Appendix B Thermodynamics of Reaction Thecoefficientsintheformulaforheatcapacityandstandardstatepropertiesofthe mineralsand gasesinvolvedinreaction1 and 2 aretakenfromBerman(1988).The temperatureandpressuredependencyofmolarvolumesofmineralsisalsotakenfrom Berman(1988).TheGibbsfreeenergycalculation(Eq.B1)wasusedtodeterminethe reactioninpTVxspace.

D RG = Âni Gi = 0 (B1a) i 2 2 2 0 D RG = Gprl + Gpg + Gcal - Gab - Gan - GH 2O - GCO2 = (B1b)

wherenandGarethestoichiometriccoefficientandthemolarGibbsfreeenergyof theindicatedphase,respectively.ForeachphasethechangeofGibbsfreeenergywith temperature,pressureandcompositionisexpressedaccordingtoequation(B2).

Ê ∂Gˆ Ê ∂Gˆ Ê ∂Gˆ dG = dT + dP + Á ˜ dn (B2a) Ë ¯ Ë ¯  i ∂T P, n ∂P T ,n i Ë ∂ni ¯ i i T , P,n j Ê∂Gˆ Á ˜ Á ˜ = mi (B2b) Ë∂ni T , P,n j

whereT,P,andnaretemperature,pressureandtheamountofcomponentigiven in moles, respectively.iisthechemicalpotentialofcomponent i. The reaction (1) involves a fluid mixture and a plagioclase mixture, whereas the reaction products pyrophyllite, paragonite and calcite are pure phases. Although, paragonite may includeacalciumcomponentandcalcitemayincludeasodiumcomponent,themass balanceeasilyindicatesthatbothmargariteandsodiumcarbonatecannotbeobtained from the specific reactants in reaction (1), which is confirmed by Raman microspectrometry.Thechemicalpotentialofacomponentiinamixtureiscalculated accordingtoequation(B3).

pure mi (T, P, x) = mi (T,P) + RT ln(ai ) (B3)

wherexandaarethemolefractionandtheactivityofcomponenti,respectively. This equation is also valid for pure phases, where the activity equals unity. The standardstateconditionforthefluidmixtureisthethermodynamicpropertiesofthe pure components at the given temperature and 0.1 MPa, whereaspropertiesofthe

107 8.Fluidinclusionsasmicrochemicalsystems purecomponentsatthegiventemperatureandpressureisthestandardconditionfor the plagioclase.The chemical potential at standard conditions is obtainedfromthe integrationofthetemperatureandpressuredependentparametersinequation(B2a) (eq.B4),

T T T Ê∂Gˆ 0 ÊCpˆ dT = (Cp ) dT S ⋅(T T0 ) T ⋅ dT (B4a) Ú Ú P0 ,n i Ú Ë∂T , Ë T , T0 P0 n i T0 T0 P0 ni

P P Ê∂Gˆ dP = (V )T ,n dP (B4b) Ú Ú i Ë∂P , P0 T n i P0

whereS0isthestandardstateentropy,Cpistheheatcapacityatconstantpressure,V isthemolarvolume,andT0andP0arethestandardconditions,respectively.

Theactivityoffluidcomponentsisdefinedbythefugacities(f)ofH2OandCO2(eq.B5),

fi (T, P) ai = pure (B5) fi (T, P)

where iiseitherH2O or CO2. The fugacity of H2O and CO2 in gas mixtures was calculatedwiththemodifiedRedlichKwongequationofstateaccordingtoHolloway (1977, 1981) and Flowers (1979). This equation is the most accurate available thermodynamicmodelrepresentingexperimentalfugacitiesofCO2H2Ofluidswithin thetemperatureandpressurelimitsofthereaction.Thefugacityoffluidcomponents intheternaryH2OCO2NaCl system are calculated with the equation of state from Anderko&Pitzer(1993)andDuanetal. (1995). The boundariesof the immiscibility field of CO2richfluidmixturesarehighlyinaccuratelyestimated by this equation. Therefore,itisonlyappliedtohomogeneousmixtures. Theactivitiesofalbiteandanorthiteintheplagioclaseareobtainedfromanonideal mixingmodelforternaryfeldsparaccordingtoElkins&Grove(1990).Thismodelisan empiricalfittoexperimentaldataonthefeldsparcompositionattemperaturesbetween

600and900ºC,andatpureH2Opressuresbetween100MPaand300MPa.Although reaction(1)occursattemperatureswellbelowthisfit,itisassumedthattheestimated ternaryMargulesexpressionisalsovalidatlowertemperatures. Theeffectofseveralmixingmodelsonthefluidandtheplagioclaseofreaction(1)is illustratedinFig.B1.

108 8.Fluidinclusionsasmicrochemicalsystems

Fig. B1:Fluidcomposition(CO2H2O)temperaturediagramswithreaction(1)accordingto differentmixingmodelsfortheplagioclaseat0.1MPa(a),theinfluenceof5and10wt%NaCl solutionat0.1MPa(b),andthereactioncurveat300MPawith5and10wt%NaClsolution

(c).ThesalinityisexpressedrelativetotheamountofH2O.

109 8.Fluidinclusionsasmicrochemicalsystems

For any pressure, the maximum reaction temperature is defined at a fluid compositionofapproximately50mol%CO2and50mol%H2O.Theidealmixingmodel forplagioclasecausesadecreaseofabout10°Cofthereactiontemperatureforany fluidcompositioncomparedtoamodelwithunmixedplagioclase(Fig.B1a).Thenon idealmixingmodelofplagioclaseaccordingtoElkins&Grove(1990)putsthereaction curveabout5°Chigherthantheidealmixingmodel.Additionofsmallamountsof NaCltothefluidmixturehasaminoreffectonthereactiontemperature(Fig.B1b).In

H2Orichfluidsthereactiontemperatureisdecreasedby0.2and0.5°fora5wt%anda

10wt%NaClsolution,respectively.AdditionalNaClinCO2richfluidsisanegligible factor. At higher pressures (Fig. B1c), the reaction curve is asymmetrical in a Tx diagramduetodifferencesintheactivitiesofH2OandCO2.Theimmiscibilityfieldof

H2OCO2mixturesiselevatedtohigherpressuresandtemperaturesifcertainamounts ofNaClareaddedtothesystem(Fig.B2).

Fig. B2:TemperaturepressurediagramwiththesolviofH2OCO2fluidmixtures(dashedcurves)and thesolviofH2OCO2fluidmixtureswith6wt%NaCl(solidcurves).Thenumbers80,50,and20denote S themolepercentageofCO2.Thesuperscript indicatestheadditionof6wt%NaCltothecorresponding fluid.TheopencirclesareexperimentaldatafromGehrig(1984).KDmarksthecorrectedsolvusofa

21.01mol%CO2,77.47mol%H2Oand1.52mol%NaClfluidmixture(i.e.6wt%NaCl)accordingto

Krüger&Diamond(2001).Thereactionisillustratedfora20,50and80mol%CO2fluidmixture.

110 8.Fluidinclusionsasmicrochemicalsystems

ExperimentaldatafromTödheide&Franck(1963)andGehrig(1980)illustrate,that theadditionof6wt%NaCltoafluidmixtureof50mol%H2Oand50mol%CO2raises its solvus about 100 °C at variable pressures. A H2Orichfluidmixturehasalarge expansionofitsimmiscibilityfieldtolowpressuresandhighertemperatures(seealso Krüger&Diamond,2001),whereastheeffectoftheadditionofNaCldiminisheswith higherCO2contents.Thereaction(1)betweentheentrappedfluidsandtheplagioclase appearstoproceedmainlyoutsidetheimmiscibilityfieldsofsaltfreesystems.Ina6 wt%NaClsolution,onlyH2Orichfluids,i.e.>50mol%H2O,interferewiththereaction atabout380°C,whereasCO2richfluidsremainhomogeneousatreactionconditions. Within fluid inclusions in quartz salinities of < 6 wt% NaCl have been measured. Therefore,itcanbeconcludedthatthereisnointerferencebetweenthereactionand theimmiscibilityfieldatanyconditions.

111 8.Fluidinclusionsasmicrochemicalsystems

References Anderko,A.&Pitzer,K.J.,1993.Equationofstaterepresentationofphaseequilibria

and volumetric properties of the system NaClH2O above 573 K. Geochimica et CosmochimicaActa,57,16571680. Andersen,T.,O'Reilly,S.Y.&Griffin,W.L.,1984.Thetrappedfluidphaseinupper mantle xenolithsfrom Victoria, Australia; implicationsfor mantle metasomatism. ContributionstoMineralogyandPetrology,88,7285. Bakker,R.J.&Jansen,J.H.B.,1991.Experimentalpostentrapmentwaterlossfrom

syntheticCO2H2Oinclusionsinnaturalquartz.GeochimicaetCosmochimicaActa,55, 22152230. Bakker, R. J., 1997. Clathrates: Computer Programs to calculate fluid inclusion VX propertiesusingclathratemeltingtemperatures.Computers&Geosciences,23,118. Bakker,R.J.,inpress.PackageFluids1 Computer programs for the analysis of fluid inclusiondataandgeneralfluidpropertiesresearch.ChemicalGeology. Bauer, W., Jacobs, J. & Paech, H.J., in press. Structural evolutionoftheCrystalline BasementofcentralDronningMaudLand,EastAntarctica.GeologischesJahrbuch,96. Berman, R. G., 1988. Internallyconsistent thermodynamic data for minerals in the

system Na2OK2OCaOMgOFeOFe2O3Al2O3SiO2TiO2H2OCO2. Journal of Petrology,29,445522. Bischoff,W.D.,Sharma,S.K.&Mackenzie,F.T.,1985.carbonatedisorderinsynthetic andbiogeneticmagnesiancalcites:aRamanspectralstudy.American Mineralogist, 70,581589. Davis, D. W., Lowenstein, T. K. & Spencer, R. J., 1990. Melting behaviourof fluid

inclusionsinlaboratorygrownhalitecrystalsinthesystemsNaClH2O,NaClKCl

H2O, NaClMgCl2H2O and NaClCaCl2H2O.Geochimica et Cosmochimica Acta,54, 591601. Duschek,W.,Kleinrahm,R.&Wagner,W.,1990.Measurementandcorrelationofthe (pressure,density,temperature)relationofcarbondioxide.II.Saturatedliquidand saturatedvapour density and the vapour pressure along the entire coexistence curve.JournalofChemicalThermodynamics,22,841864.

Duan, Z., Moller, N. & Weare, J.H., 1995. Equation of state for the NaClH2OCO2 system: Prediction of phase equilibria and volumetric properties. Geochimica et CosmochimicaActa,59,28692882. Elkins, L.T. & Grove, T.L., 1990. Ternary feldspar experiments and thermodynamic models.AmericanMineralogist,75,544559. Flowers,G.C.,1979.CorrectionofHolloway’s(1977)adaptionofthemodifiedRedlich Kwong equation of state for calculation of fugacities of molecular species in supercriticalfluidsofgeologicalinterest.ContributionstoMineralogyandPetrology, 69,315318. Gehrig, M., 1980. Phasengleichgewichte und PVTdaten ternärer Mischungen aus Wasser, Kohlendioxid und Natriumchlorid bis 3 kbar und 550 °C. PhD Thesis, UniversityKarlsruhe,Hochschulverlag,Freiburg. Heinrich,W.&Gottschalk,M.,1995.Metamorphicreactionsbetweenfluidinclusions

andmineralhosts;I,Progressofthereactioncalcite+quartz=wollastonite+CO2in natural wollastonitehosted fluid inclusions. Contributions to Mineralogy and Petrology,122,5161.

112 8.Fluidinclusionsasmicrochemicalsystems

Holloway,J.R.,1977.Fugacityandactivityofmolecularspeciesinsupercriticalfluids. In: Fraser D. G. (ed.), Thermodynamics in geology. NATO ASI, Series D. Reidel, Dordrecht,pp161182. Holloway,J.R.,1981.Compositionsandvolumesofsupercriticalfluidsintheearth’s crust.In:Hollister,L.S.&Crawford,M.L.(ed.),ShortCourseinFluidinclusions: ApplicationtoPetrology,pp1338. Jacobs,J.,Fanning,C.M.,Henjes,K.F.,Olesch,M.&Paech,H.J.,1998.Continuationof the Mozambique Belt into East Antarctica; Grenvilleage metamorphism and polyphasePanAfricanhighgradeeventsincentralDronningMaudLand.Journalof Geology,106,385406. Jacobs,J.,Klemd,R.,Fanning,C.M.,Bauer,W.&Colombo,F,(inpress).Extensional collapse of the Late Neoproterozoic/Early Palaeozoic East African/Antarctic OrogenincentralDronningMaudLand.JournaloftheGeologicalSocietyofLondon. SpecialPublications.

Johannes,W.,1978.MeltingofplagioclaseinthesystemAbAnH2OandQzAbAn

H2O at PH2O = 5 kbars, an equilibrium problem. Contributions to Mineralogy and Petrology,66,295303. Johannes, W., 1989. Melting of plagioclasequartz assemblages at 2 kbar water pressure.ContributionstoMineralogyandPetrology,103,270276.

Krüger,Y.&Diamond,L.W.,2001.PVTXpropertiesoftwoH2OCO2NaClmixtures upto850°Cand500MPa:Asyntheticfluidinclusionstudy.XVIECROFI,Faculdade deCiênciasdoPorto,DepartamientodeGeologia,Memória,7,241244. Markl, G. & Piazolo, S., 1998. Halogenbearing minerals in syenites and highgrade of Dronning Maud Land, Antarctica; monitors of fluid compositional changes during latemagmatic rockrock interaction processes. Contributions to MineralogyandPetrology,132,246268. Mikhalsky,E.V.,Beliatsky,B.V.,Savva,E.V.,Wetzel,H.U.,Federov,L.V.,Weiser,T. &Hahne,K.,1997.ReconnaissanceGeochronologicDataonPolymetamorphicand Igneous rocks of the Humboldt Mountains, central Queen Maud Land, East Antarctica.In:The AntarcticRegion:GeologicalEvolutionand Processes(ed.Ricci,C. A.),pp.4553,TerraAntarcticaPublication,Siena,Italy. Passchier,C.W.&Trouw,R.A.J.,1996.Microtectonics.SpringerVerlag,Berlin. Schulze, D. J., 1985. Evidence for primary kimberlite liquids in megacrysts from kimberlitesinKentucky,USA.JournalofGeology,93,7580. Svensen,H.,Jamtveit,B.,Yardley,B.,Engvik,A.K.,Austrheim,H.&Broman,C.,1999. Leadandbromineenrichmentineclogitefaciesfluids:Extremefractionationduring lowercrustalhydration.Geology,27,467470. Svensen, H., Jamtveit, B., Banks, D. A. & Austrheim, H., 2001. Halogen contentsof eclogitefaciesfluidinclusionsandminerals;Caledonides,westernNorway.Journal ofMetamorphicGeology,19,165178. Span,R.&Wagner,W.,1996.Anewequationofstateforcarbondioxidecoveringthe fluidregionfromthetriplepointtemperatureto1100Katpressuresupto800MPa. JournalofPhysicalChemistryReferenceData,25,15091596. Sterner,S.M.&Bodnar,R.J.,1989.Syntheticfluidinclusion;VII,Reequilibrationof fluid inclusions in quartz during laboratory simulated metamorphic burial and uplift.JournalofMetamorphicGeology,7,243260. Tödheide,K.&Franck,E.U.,1963.DasZweiphasengebietunddiekritischeKurveim SystemKohlendioxidWasserbiszuDruckenvon3500bar.Zeitschrift Physikalische Chemie.NeueFolge,37,387401.

113 9.Conclusions

9. Conclusions Theresultsofthisstudyarediscussedattheendoftherespectivechapters. Chapter 6:Thepetrographyandfluidimprintofthebasementlithologiesexposedin the central Petermannketten, and the resulting implications for secondary charnockitisation,leachingprocesses,andtheretrogradePTpath Chapter7:ThepetrographyoftheO.v.Gruberanorthositebody,theassessmentofthe actualfluidcontentincontextofpossiblesecondary modificationoftheoriginal fluidcomposition Chapter 8: The possible post peakmetamorphic and retrograde PTpath, and the

modellingofmicrochemicalreactionsofaCO2H2Ofluidwithitsplagioclasehost underformationof"stepdaughter"phases,toevaluatetheresultingvolumetrical andcompositionalchangeanditsimplicationsforisochorecalculations. Inthefollowing,theresultsoftheprecedingchaptersaresummarised.

ThenatureofrocksexposedincentralDronningMaudLand

IthasbeenshownthatthegranulitefaciesbasementofthecentralPetermannketten, and OttovonGruberGebirge is largely composed of lithologies belonging to the charnockiteanorthosite suite of rocks. Gneisses that were locally transformed into arrestedtype charnockites represent the (relatively) more superficial part, and the anorthositebodythemoreigneous,intrusivedeeperpartoflateNeoproterozoic/early Palaeozoicgranuliticcontinentalcrust. Subsequent to charnockite formation, gneisses were subjected to alteration processes leading to partial or complete orthopyroxene breakdown. This was accompaniedbytheformationofhydrousmineralassemblagesandsevereleachingof the previously darkish/greenish rocks. However, the complete orthopyroxene decompositionwasnotnecessarilyconnectedtointenseleaching.Somegneissesthat stilldisplaythetypicalcharnockitecolouringdonotcontainorthopyroxeneanymore, andcanthusnotbeincludedinaclassificationofcharnockiticrocksinthenarrowest sense.Thisimpliesthatdeclarationsoftheoccurrenceofcharnockites,givenbyfield observationsof"typical"rockcolouring,havetobecarefullyreviewedandattestedon the basis of further scientific investigations. Magmatic bodies of charnockitic and syenitic compositions remained nearly undeformed and unaltered. Their intrusion couldnotunequivocalbelinkedwithlargescalealterationmechanisms(e.g.,invasion ofafluidphaseresponsibleforleaching). The anorthosite body reveals features typical of Precambrian massiftype anorthositecomplexes.Itiscomposedof>90vol%plagioclase,andthehomogeneous rockcompositionexhibitsmajorchangesonlyindiscretemyloniticshearzones.The latter are characterised by secondary garnet growth and noritic or tonalitic

114 9.Conclusions composition.Thenoritesbelongto thegroupof charnockiticrocks. Thus a further exampleof"arrestedtype"charnockitisation,connectedwithshearzoneformation,is shown to occur in central Dronning Maud Land. Additionally, ironenrichment of pyroxenesandthelocalconcentrationofopaquemineralphasesmostprobablyhintat shearzoneformationundertheinfluenceofanironrichfluidphase.

Thefluidspreservedingneissicandanorthositicrocks

Allfluidinclusionsunderinvestigationinthisstudyrevealtexturalevidenceof primary(metamorphic)origin.Noindicationofsecondaryfluidinfluxorthepresence ofvariousfluidgenerationsisgiven.Themostabundanttypeoffluidsenclosedinall samplesunderinvestigationiscomprisedofaCO2±N2mixture.Thenitrogencontent generallyrangesbetween25mol%.This"dry"characteroffluidinclusionshosted eitherbyplagioclase,quartzorgarnetisinaccordancewithfluidinclusionstudiesthat havebeenperformedonrocksfromPrecambriangranulitefaciesterranesworldwide. Fortheanorthositecomplexandshearzones,carbonicinclusionsaretheonlytype offluidspresent,andnoconspicuousdifferencewithregardtothefluidcomposition canbedetected.Itisconcludedthatthepreservedfluidhasitsorigininthemagmatic sourceofthe"anorthositic"melts.Inclusionshapesandcrystalmicrostructuresimply thatthefluidinclusionsandhostmineralshaveundergonepostpeakmetamorphic changes through reequilibration and recrystallisation processes. Furthermore, a detailedexaminationofmicrosolidsenclosedinsomefluidinclusionshasledtothe assertion that inclusions were also modified by backreactionsoftheenclosedfluid withitsmineralhost.Thus,thepresentdayCO2±N2fluidonlyrepresentstheresidual proportionofamorecomplexCO2±H2O±N2fluid.

ACO2H2Ofluidthatistrappedinmineralscrystallisingfromanascendingmagma, or during prograde metamorphism (mechanisms accompanied by dehydration and decarbonation)willmostlikelyreactwithitshostduringretrogression,provided,that thehostisareactivemineral.Thisresultsintheformationofmicrocrystals,whichmay be detected as solid inclusions in fluid inclusions, and the partial or complete consumption of the fluid components. In the O.v.Gruber anorthosite body the enclosed solids are carbonates and sheet silicates. As it can be precluded that the crystals were accidentally trapped they are presumed to have formed by "back reactions".Theycanonlyhaveformedifanaqueousphasehadbeenpresentinthe inclusionatsomestageinthepast. A detailed examinationof fluid inclusion densities exhibits that plagioclase and garnetfromtheshearzoneshavepreservedthehighestinclusiondensities,whereas lowestdensityvalueswerefoundtobeevenlydistributedthroughoutallsamplesand host minerals. High density isochores are in accordance with independent PT constraintsonpeakmetamorphicconditions.Consequently,metamorphicmineralsare

115 9.Conclusions abletopreservetheoriginalmetamorphicfluid,eventhoughtheinfluenceofpost entrapmentchangesaresevere.ThestatementthatCO2±N2inclusionshavepreserved the originalfluid density is only seeminglycontradictorytotheargumentthatthe originalfluidmusthavehadaH2Ocomponent.Fluidcompositionscanvaryonasmall localscaleaseachinclusionreactsindividuallyonappliedmodificationprocesses.The fact thathighdensitieswereexclusivelyfoundin shear zone samples support this observation,asthedestructionandtappingofinclusionsgenerallyleadstoapreferred lossofH2OandN2. In the light and dark coloured gneissic/charnockitic lithologies of the central Petermannkettentheoverallfluidimprintismorecomplex. Besides inclusionsthat containaCO2±N2mixture,H2OsaltinclusionsandCO2H2O±N2saltfluidshavebeen detected. As they all give textural prove of primary (metamorphic) origin it is concludedthatnoneofthepreservedfluidsisconnected with the late, structurally controlledleachingprocesses.Salinitiesoftheaqueousinclusionsdonotexceed6.74 wt% NaCleq. Nevertheless, the occurrence of nahcolite as a real daughter mineral indicatesthathighalkalinebrineshaveatleastlocallybeenpresentatanearlierstage ingeologicevolution.Thisisingoodagreementwithstudiesfromdifferentgranulite terraneswhereratherrecentfindingsofhighlysalinefluidphasesareinterpretedto playan importantrolein charnockiteformation,and questionsthewidelyaccepted modelthatgranulitisationismainlygovernedbyCO2dominatedfluids.Theaqueous phase was most probably captured during the prograde path, whereas the carbonic fluid is suggested to originate from influx of external fluids during peak metamorphism.Howeveramorepreciseexplanationoftheoriginofthefluidcannot begivenonthebaseoftheavailabledata. Thefluidinclusionswhicharepredominantlyhostedbyquartzhavebeensubjected to substantial retrograde reequilibration processes, and no densities reflecting Pan African highgrade metamorphism were found. The position of isochores only correlates with the rough PT estimates on retrograde conditions available from independentPTdata.

ImplicationsforapossibleretrogradePTpath

Aselectionofrepresentativeisochoresfromthedifferentbasementlithologieshave beencorrelatedwithPTconstraintsbasedonmineralequilibriadataavailablefrom otherstudies.Takingintoaccounttheevidenceofreequilibrationprocessesprevailing during the retrograde evolution, the gradual decrease in fluid densities best fits a clockwise PT path and mineralfluid equilibration during near isothermal decompression.

116 9.Conclusions

Fig.9.1:PTpathsasderivedfromisochoredatafromthevaryinglithologiesinvestigatedduringthis study.PathAisbasedondatafromtheO.v.Gruberanorthositebodyandassociatedshearzones.PathB is based upon fluid inclusion data gathered from gneissic and charnockitic samples from the central Petermannketten.BoxesindicatePTconditionsofthesuccessivemetamorphicstagesasproposedby Markl&Piazolo(1998).Numbersindicatedensities(ingcm3)offluidsusedforisochorecalculations.

Dashedlines:H2Osaltinclusions;dashdotline:qtzhostedCO2N2inclusionsfromPetermannketten; solidlines:plhostedCO2N2inclusionsfromanorthositeandshearzones.

AcompilationofthetwoindependentPTpaths(Fig.9.1)describedandfavoured inchapters6.3and7.3illustratesthatthemodeandPTconditionsofretrogressionare ingoodaccordanceforbothsamplelocalitiesastobeexpectedfromdatagatheredina close spatial relationship. Additionally, pressure estimates of c. 2.5 kbar for the beginningofM4aredepicted,whichargueforthelowpressurerangeproposedby Markl&Piazolo(1998).AsimilarPTpathhasbeenpostulatedfromtheLützowHolm Bayregion,EastAntarcticabySantosh&Yoshida(1992).Thetendencyofisochores from the Petermannketten towards lower densities and theabsenceofhighdensity isochores from that region also illustrates the different potential of varying host mineralstopreservepeakmetamorphicfluids.Thehigherresistanceofplagioclaseto theapplicationofstressseemstobereflectedinthebetterabilityofrocksthatnearly completelyconsistoutofplagioclasetopreservemetamorphicfluids.Inthegneissic basement lithologies, mechanically less stable quartz is much more abundant and modificationoffluidinclusionsismuchmoreprofound.

117 References

References Andersen, T., O'Reilly, S. Y. & Griffin, W. L., 1984. The trapped fluid phase in upper mantle xenoliths from Vicotria, Australia: implications for mantle metasomatism. Contributions to MineralogyandPetrology,88,7285. Andersen,T.,Burke,E.A.J.,Austrheim,H.,1989.Nitrogenbearing,aqueousfluidinclusionsin someeclogitesfromtheWesternGneissRegionoftheNorwegianCaledonides.Contributionsto MineralogyandPetrology,103,153165.

Aranovich,L.Y.&Newton,R.C.,1998.H2OactivityinconcentratedKClandKClNaClsolutionsat hightemperaturesandpressuresmeasuredbythebrucitepericlaseequilibrium.Contributionsto MineralogyandPetrology,127,261271. Ashwal,L.D.,1993.Anorthosites.Springer,Berlin,Heidelberg,NewYork,422pp.

Audétat, A. & Günher, D., 1999. Mobility and H2Olossfromfluidinclusionsinnaturalquartz crystals.ContributionstoMineralogyandPetrology,137,114. Bakker,R.J.,&Jansen,J.B.H.,1994.Preferentialwaterleakagefromfluidinclusionsbymeansof mobiledislocations.Nature,345,5860. Bakker,R.J.,1997.Clathrates:ComputerProgramstocalculatefluidinclusionVXpropertiesusing clathratemeltingtemperatures.Computers&Geosciences,23,118.

Bakker, R. J., 1998. Improvements in clathrate modelling; II, The H2OCO2CH4N2C2H6 fluid system.In:Gashydrates;relevancetoworldmarginstabilityandclimatechange.(eds.Henriet,J.P.& Mienert, J.) Geological Society Special Publications, pp. 75105, Geological Society of London, London,UnitedKingdom.

Bakker,R.J.,1999.AdaptionoftheBowers&Helgeson(1983)equationofstatetotheH2OCO2CH4

N2NaClsystem.ChemicalGeology,154,225236. Bakker,R.J.&Mamtani,M.A.,2000.Fluidinclusionsasmetamorphicprocessindicatorsinthe SouthernAravaliMountainBelt(India).ContributionstoMineralogyandPetrology,139,163179. Bakker,R.J.,inpress.PackageFluids1Computerprogramsfortheanalysisoffluidinclusiondata andgeneralfluidpropertiesresearch.ChemicalGeology. Bauer, W., Jacobs, J. & Paech, H. J., 1996. Structural evolution of polyphase metamorphosed basementrocksincentralDronningMaudLand,EastAntarctica.In:ProceedingsoftheUNESCO IUGSIGCP368 international field workshop on the ProterozoiccontinentalcrustofsouthernIndia. (eds.Santosh&M;Yoshida)GondwanaResearchGroupMiscellaneousPublication,46,OsakaCity University,DepartmentofGeosciences,FacultyofScience,GondwanaResearchGroup,Osaka, Japan. Bauer,W.,Jacobs,J.&Paech,H.J.,2003.StructuralevolutionoftheCrystallineBasementofcentral DronningMaudLand,EastAntarctica.GeologischesJahrbuch,B96. Becke,F,1903.ÜberMineralbestandundStrukturderkristallinenSchiefer.IX.SessionduCongres geologiqueinternationaux,Compterendu.Part2,553570.

Berman,R.G.,1988.InternallyconsistentthermodynamicdatasetformineralsinthesystemNa2O

K2OCaOMgOFeOFe2O3Al2O3SiO2TiO2H2OCO2.JournalofPetrology,29,445552.

118 References

Bhattacharya, A. & Sen, S. K., 1986. Granulite metamorphism, fluid buffering, and dehydration meltingintheMadrascharnockitesandmetapelites.JournalofPetrology,27,11191141. Black,R.&Liegeois,J.P.,1993.Cratons,mobilebelts,alkalinerocksandcontinentallithospheric mantle;thePanAfricantestimony.JournaloftheGeologicalSocietyofLondon,150(Part1),8998. Blom,K.A.,1988.FluidinclusionsfromtheSuosmujarviarea,SouthwestFinland.Lithos,21,263 278. Bodnar,R.J.Binns,P.R.&Hall,D.L.,1989.Syntheticfluidinclusions;VI,Quantitativeevaluation of the decrepitation behaviour of fluid inclusions in quartz at one atmosphere confining pressure.JournalofMetamorphicGeology.7;2,Pages229242. Bodnar,R.J.,1993.Revisedequationandtablefordeterminingthefreezingpointdepressionof

H2ONaClsolutions.GeochimicaetCosmochimicaActa,57,683684. Bodnar, R. J. & Vityk, M. O., 1994. Applications of fluid inclusions in tectonic reconstruction; microthermometric analysis. In: Fifth biennial PanAmerican conference on Research on fluid inclusions.(eds.IzquierdoM.G.,SuarezA.M.C.,GuevaraG.M.,VankoD.,ViggianoG.J.C.), ProgramandAbstracts;BiennialPanAmericanConferenceonResearchonFluidInclusions,5, 10. Bond,G.C.,Nickeson,P.A.&Kominz,M.A.,1984.Breakupofasupercontinentbetween625Ma and555Ma;newevidenceandimplicationsforcontinentalhistories.EarthandPlanetaryScience Letters,70(2),325345. Borg, S. G. & DePaolo, D. J., 1994. Laurentia, Australia, and Antarctica as a late Proterozoic supercontinent;constraintsfromisotopicmapping.Geology22,307310. Bowers, T. S. & Helgeson, H. C., 1983. Calculation of the thermodynamic and geochemical

consequencesofnonidealmixinginthesystemH2OCO2NaClonphaserelationsingeologic

systems; equation of state for H2OCO2NaCl fluids at high pressures and temperatures. GeochimicaetCosmochimicaActa,47,12471275. Brewster,D.,1823.Noticerespectingtheexistenceofthenewfluidinalargecavityinaspecimen ofsapphire.EdinburghJournalofScience,6,155156. Bruce,R.M.,Nelson,E.P.&Weaver,S.G.,1989.Effectsofsynchronousupliftandintrusionduring magmatic arc construction. In: Growth of the continental crust. (eds. Ashwal & Lewis) Tectonophysics,317329,Elsevier,Amsterdam,Netherlands. Bucher,K.&Frey,1994.Petrogenesisofmetamorphicrocks.Springer,Berlin,318pp. Burke, E. A. J., 2001. Raman microspectrometry of fluid inclusions. In: Fluid inclusions; phase relationshipsmethodsapplications;special volume in honour ofJacquesTouret. (eds. Andersen, T.; Frezzotti,M.L.;BurkeE.),139158,Elsevier.Amsterdam. Burruss,R.C.1981.AnalysisofphaseequilibriainCOHSfluidinclusions.In:Short Course in Fluidinclusions:ApplicationtoPetrology,(eds.Hollister,L.S.&Crawford,M.L.),pp3974. Burton, K. W. & O'Nions, R. K., 1990. The timescale and mechanism of granulite formation at Kurunegala,SriLanka.ContributionstoMineralogyandPetrology,106,6689.

Collins,P.,L.,F.,1979.GashydratesinCO2bearingfluidinclusionsandtheuseoffreezingdatafor estimationofsalinity.EconomicGeology,74,14351444.

119 References

Colombo,F.&Talarico,F.,2003.Regionalmetamorphisminthehighgradebasementofcentral DronningMaudLand,EastAntarctica.GeologischesJahrbuch,B96. Dalziel,I.W.D.,1991.PacificmarginsofLaurentiaandEastAntarcticaAustraliaasaconjugaterift pair;evidenceandimplicationsforanEocambriansupercontinent.Geology,19,598601. DeWaard,D.,1968a.Annotatedbibliographyofanorthositepetrogeneses.In:Originofanorthosite andrelatedrocks(ed.Isachsen,Y.W.),111,NewYorkStateMuseumScienceServiceMemoir, Albany,N.Y. DeWaard,D.,1968b.TheAnorthositeProblem:Theproblemoftheanorthositecharnockitesuiteof rocks.In:Originofanorthositeandrelatedrocks(ed.Isachsen,Y.W.),7191,N.Y.StateMuseum ScienceServiceMemoir,Albany,N.Y. Demaiffe,D.,Moreau,C.&Brown,W.L.,1991a.RingcomplexesofOfoudtypeinAïr,Niger:a newanorogenictypeanorthositeassociation.In:Magmatisminextensionalstructuralsettings.(eds. Kampunzu,A.B.&Lubala,R.T.),353376,Springer,Berlin,Heidelberg,NewYork. Demaiffe,D.,Moreau,C.,Brown,W.L.&Weis,D.,1991b.Geochemicalandisotopiccomposition (Sr, Nd and Pb) and the origin of the anorthositebearinganorogenic complexes of the Aïr Province,Niger.EarthandPlanetaryScienceLetters,105,2846.

Diamond,L.W.,1992.StabilityofCO2clathratehydrate+CO2liquid+CO2vapour+aqueousKCl NaCl solutions.: Experimental determination and application to salinity estimates of fluid inclusions.GeochimicaetCosmochimicaActa,56,1941.

Diamond,L.W.,2001.ReviewofthesystematicsofCO2H2Ofluidinclusions.Lithos,55,6999. Dirks,P.H.G.M.&Wilson,C.J.L.,1995.CrustalevolutionoftheEastAntarcticmobilebeltin PrydzBay;continentalcollisionat500Ma?In:TectonicsofEastAntarctica.PrecambrianResearch, 75,209230. Dobmeier,C.&Raith,M.M.,2000.Ontheoriginof"arrested"charnockitizationintheChilkaLake area,EasternBelt,India;areappraisal.GeologicalMagazine,137,2737.

Duan,Z.H.;Moller,N.&Weare,J.H.,1992.AnequationofstatefortheCH4CO2H2Osystem:2. Mixturesfrom50°Cto1000°Cand0to1000bar.GeochimicaCosmochimicaActa,56,26192631. Duan, Z. H., Moller, N. & Weare, J. H., 1996. A generalequationof stateforsupercriticalfluid mixtures and molecular dynamics simulation of mixture PVTX properties. Geochimica CosmochimicaActa,60,12091216. Dubessy, J., Poty, B. & Ramboz, C., 1989. Advances in COHNS fluid geochemistrybasedon microRamanspectrometricanalysisoffluidinclusions.EuropeanJournalofMineralogy,1,517 534. Duchesne,J.C.,Liégeois,J.P.,VanderAuwera,J.&Longhi,J.,1999.Thecrustaltonguemelting modelandtheoriginofmassiveanorthosites.TerraNova,11,100105. Duschek,W.,Kleinrahm,R.&Wagner,W.,1990.Measurementandcorrelationofthe(pressure, density, temperature) relation of carbon dioxide. II. Saturatedliquid and saturatedvapour density and the vapour pressure along the entire coexistence curve. Journal of Chemical Thermodynamics,22,841864.

120 References

Emslie,R.F.,1985.ThedeepProterozoiccrustinthenorthatlanticprovinces(eds.Tobi,A.C.& Touret,J.L.R.),3960,Reidel,Dordrecht. Emslie, R. F., Hamilton, M. A. & Théiault, R. J., 1994. Petrogenesis of a MidProterozoic AnorthositeMangeriteCharnockiteGranite(AMCG)complex:Isotopicandchemicalevidence fromtheNainPlutonicSuite.JournalofGeology,102,539558. Fyfe,W.S.,1973.DehydrationReactions.TheAmericanAssociationofPetroleumGeologistsBulletin,57, 190197.

Glassley, W. E., 1983. The role of CO2 in the chemical modificationof deep continentalcrust. GeochimicaetCosmochimicaActa,47,597616. Goldschmidt,V.M.,1916.GeologischpetrographischeStudienimHochgebirgedessüdlichenNorwegens. IV. Übersicht der Eruptivgesteine im kaledonischen Gebirge zwischen Stavanger und Trondhjem. Vidensk.Selsk.KristianiaSkrifter.I.Mat.Naturvidenskaften. Goldstein,R.H.&Reynolds,T.J.,1994.SystematicsofFluidInclusionsinDiageneticMinerals.SEPM Shortcourse,31,198pp. Grunow,A.M.,Hanson,R.&Wilson,T.J.,1996.WereaspectsofPanAfricandeformationlinkedto Iapetusopening?Geology,24,10631066. Grunow,A.M.,1999.Gondwanaeventsandpalaeogeography;apalaeomagneticreview.In:Alex duToitspecialissue;Gondwana10;eventstratigraphyofGondwana;keynotepresentations.(eds.De Wit&Maarten)JournalofAfricanEarthSciences,5369,Pergamon,LondonNewYork. Hall, D. L. & Sterner, S. M. 1993. Preferential water loss from synthetic fluid inclusions. ContributionstoMineralogyandPetrology,114,489500. Hansen,E. C., Janardhan,A. S., Newton,R. C., Prame,W. K. B. N. & Ravindra,K. G. R., 1987. ArrestedcharnockiteformationinsouthernIndiaandSriLanka.ContributionstoMineralogyand Petrology,96,225244. Heinrich,W.&Gottschalk,M.,1995.Metamorphicreactionsbetweenfluidinclusionsandmineral

hosts; I, Progress of the reaction calcite+quartz = wollastonite+CO2 in natural wollastonite hostedfluidinclusions.ContributionstoMineralogyandPetrology,122,5161. Hoffman,P.F.,1991.DidthebreakoutofLaurentiaturnGondwanalandinsideout?Science,252, 14091412. Holland,T.H.,1900.Thecharnockiteseries,agroupofArcheanhyperstenicrocksinpeninsular India.GeologicalSurveyofIndiaMemorandum,28,119249. Holloway,J.R.,1977.Fugacityandactivityofmolecularspeciesinsupercriticalfluids.In:FraserD. G.(ed.),Thermodynamicsingeology.NATOASI,SeriesD.Reidel,Dordrecht,pp.161182. Holness, M. B., 1993. Temperature and pressure dependence of quartzaqueous fluid dihedral

angles;thecontrolofadsorbedH2Oonthepermeabilityofquartzites.EarthandPlanetaryScience Letters,117,363377. Hosieni,K.R.,Howald,R.A.&Scanlon,M.W.,1985.Thermodynamicsofthelambdatransition andtheequationofstateofquartz.AmericanMineralogist,70,782793. Isachsen,Y.W.,1968.Originofanorthositesandrelatedrocks;asummarization.MemoirNewYork StateMuseumandScienceService,18,435445.

121 References

Jacobs, J., Ahrendt, H., Kreutzer, H. & Weber, K., 1995. KAr, 40Ar39Arandapatitefissiontrack evidenceforNeoproterozoicandMesozoicbasementrejuvenationeventsintheHeimefrontfjella andMannefallknausane(EastAntarctica).In:TectonicsofEastAntarctica.(eds.Dirks,P.H.G.M., Passchier, C. W. & Hoek, J. D.) Precambrian Research, 251262, Elsevier, Amsterdam, International. Jacobs, J., Fanning, C. M., Henjes, K. F., Olesch, M. & Paech, H. J., 1998. Continuation of the MozambiqueBeltintoEastAntarctica;GrenvilleagemetamorphismandpolyphasePanAfrican highgradeeventsincentralDronningMaudLand.JournalofGeology,106,385406. Jacobs, J. & Thomas, R. J., in press. The Mozambique Belt from an East Antarctic perspective. ProceedingsoftheVIIIInternationalSymposiumonAntarcticEarthSciences.

Janardhan,A.S.,Newton,R.C.&Smith,J.V.,1979.AncientcrustalmetamorphismatlowpH2O; charnockiteformationatKabbaldurga,SouthIndia.Nature,278,511514. Joshi,A.,Pant,N.C.&Parimoo,M.L.,1991.ofPetermannRanges,EastAntarctica,and implicationsontheirgenesis.JournaloftheGeologicalSocietyofIndia,38,169181. Kämpf, H & Stackebrandt, W., 1985. Geologic investigations in the EliseevAnorthositeMassif, CentralDronningMaudLand,EastAntarctica.ZeitschriftderGeologischenWissenschaft,13, 321333. Kolker,A.&Lindsley,D.H.,1989.GeochemicalevolutionoftheMaloinRanchpluton,Laramie AnorthositeComplex,Wyoming:petrologyandmixingrelations.AmericanMineralogist,74,307 324. Krause,O.,Dobmeier,C.,Raith,M.M.&Mezger,K.,2001.Ageofemplacementofmassiftype anorthositesintheEasternGhatsBelt,India;constraintsfromUPbzircondatingandstructural studies.PrecambrianResearch,109,2538. Kröner,A.,Sacchi,R.,Jaeckel,P.&Costa,M.,1997.KibaranmagmatismandPanAfricangranulite metamorphisminnorthernMozambique;singlezirconagesandregionalimplications.Journalof AfricanEarthSciences,25,467484. Küster, M. & Stöckhert, B., 1997. Density changes of fluid inclusions in highpressure low temperaturemetamorphicrocksfromCrete:Athermobarometricapproachbasedonthecreep strengthofthehostmineral.Lithos,41,151167. Lafrance,B.;John,B.E.&Scoates,J.S.,1996.Synemplacementrecrystallizationanddeformation microstructuresinthePoeMountainAnorthosite,Wyoming. Contributions to Mineralogy and Petrology,122,431440.

Lamb,W.M.&Valley,J.W.,1984.MetamorphismofreducedgranulitesinlowCO2vapourfree environment.Nature,312,5658.

Lamb,W.M.,Valley,J.W.&Brown,P.E.1987.PostmetamorphicCO2inclusionsingranulites. ContributionstoMineralogyandPetrology,96,485495. Lamb,W.M.,1990.Fluidinclusionsingranulites:peakversusretrogradeformation.In:Granulites andcrustalevolution.(eds.Vielzeuf,D.&Vidal,P.)NATOASISeries.SeriesC:Mathematicaland PhysicalSciences,419433,D.ReidelPublishingCompany,DordrechtBoston.

122 References

Lamb, W. M. & Morrison, J., 1997. Retrograde fluids in the Archean Shawmere anorthosite, KapuskasingStructuralZone,Ontario,Canada.ContributionstoMineralogyandPetrology,129, 105119. Lawver,L.A.&Scotese,C.R.1987.ArevisedreconstructionofGondwanaland.In:Gondwanasix: Structure,Tectonics,andGeophysics(ed.G.D.McKenzie),40,1720.AmericanGeophysicalUnion GeophysicalMonographs. Le Maitre, R. W., 1989. A classification of igneous rocks and glossary of terms. Blackwell Science Publications,Oxford,139pp. Lee,B.I.&Kesler,M.G.,1975.Ageneralizedthermodynamiccorrelationbasedonthreeparameter correspondingstates.AmericanInstituteofChemicalEngeneeringJournal,21,510527. Li, Z. X. & Powell, C. M., 1993. Late Proterozoic to early Paleozoic paleomagnetism and the formation of Gondwanaland. In: Assembly, evolution and dispersal; proceedings of the Gondwana eight symposium.(eds.Findlay,H.;Unrug,R.;Banks,D.&Veevers,R.)InternationalGondwana Symposium,921,InternationalGondwanaSymposium. LINKAM,ScientificInstruments,Ltd.,1993.StageReferenceManual(GeologyVersion).18pp. LINKAM,ScientificInstruments,Ltd.,1993.TP92ReferenceManual.9pp. Longhi, J., Van der Auwera, J., Fram, M. S. & Duchesne, J. C., 1999. Some phase equilibrium constraintsontheoriginofProterozoic(massif)typeanorthositesandrelatedrocks.Journalof Petrology,40,339362. Markl, G. & Piazolo, S., 1998. Halogenbearing minerals in syenites and highgrade marbles of Dronning Maud Land, Antarctica; monitors of fluid compositional changes during late magmaticrockrockinteractionprocesses.ContributionstoMineralogyandPetrology,132,246268. Markl,G.,Piazolo,S.,Bauer,W.,Paech,H.J.,Krauß,U.&Mikhalsky,E.V.,2003.Panafricanmassif typeanorthositesfromcentralDronningMaudLand,Antarctica.GeologischesJahrbuch,B96,in press. Martignole,J.&Nantel,S.,1982.Geothermobarometryofcordieritebearingmetapelitesnearthe Morinanorthositecomplex,GrenvilleProvince,Quebec.TheCanadianMineralogist,20,307318. McLelland, J. M., 1989. Crustal growth associated with anorogenic, midProterozoicanorthosite massifsinnortheasternNorthAmerica.In:Growthofthecontinentalcrust,(ed.Ashwal,L.D.), Tectonophysics,34,331341,Elsevier,Amsterdam,Netherlands. McMenamin, M. A. S. & McMenamin, D. L. S., 1990. The emergence of animals; the Cambrian breakthrough.ColumbiaUniv.Press,NewYork,NY,UnitedStates. Meert,J.G.,Van,d. V.R., Pisarevsky,S. A., Komissarova,R. A. & Khramov,A. N.,2001. New palaeomagnetic results from Vendian red sediments in Cisbaikalia and the problem of the relationshipofSiberiaandLaurentiaintheVendian;discussionandreply.GeophysicalJournal International,146,867873. Mikhalsky,E.V.,Beliatsky,B.V.,Savva,E.V.,Wetzel,H.U.,Federov,L.V.,Weiser,T.&Hahne, K.,1997.ReconnaissanceGeochronologicDataonPolymetamorphicandIgneousRocksofthe Humboldt Mountains, Central Queen Maud Land, East Antarctica. In: The Antarctic Region:

123 References

GeologicalEvolutionandProcesses.ProceedingsoftheVIIInternationalSymposiumonAntarcticEarth Sciences,Siena,1995(ed.Alberto,R.C.),4554,TerraAntarcticaPublication,Siena. Milisenda,C.,Liew,T.C.,Hofmann,A.W.&Kroener,A.,1991.Isotopes,elementmobilityand mineralstabilityduringcharnockiteformationinSriLanka. In: Sixth meeting of the European Union of Geosciences. (ed. Anonymous) TerraAbstracts, 437, Blackwell Scientific Publications, Oxford,International. Moores,E.M.,1991.SouthwestU.S.EastAntarctic(SWEAT)connection;ahypothesis.Geology,19, 425428. Morimoto,N.,1988.Nomenclatureofpyroxenes;SubcommiteeonPyroxenes,CommissiononNew Minerals and Mineral Names (CNMMN), International Mineral Association (IMA). SchweizerischeMineralogischeundPetrographischeMitteilungen=BulletinSuissedeMineralogieet Petrographie,68,95111. Newton,R.C.,Smith,J.V.&Windley,B.F.,1980.Carbonicmetamorphism,granulitesandcrustal growth.Nature,288,4550. Newton,R.C.,Aranovich,L.Y.,Hansen,E.C.&Vandenheuvel,B.A.,1998.Hypersalinefluidsin Precambrian deepcrustal metamorphism. In: Earth's evolution through the Precambrian. (eds. Percival,J.&Ludden,A.)PrecambrianResearch,4163,Elsevier,Amsterdam. Olesch,M.,1991.MetamorphismofbasementrocksfromthesouthernShackletonRange.In:Sixth internationalsymposiumonAntarcticearthsciences.(ed.Anonymous),InternationalSymposiumon AntarcticEarthSciences,6,456. Paech,H.J.,1997.CentralDronningMaudLand;itshistoryfromamalgamationtofragmentationof Gondwana.In:EuropeanUnionofGeoscience;EUG9,symposiumonAntarcticEarthsciences.(eds. Kleinschmidt,G.,Ricci,C.A.,Storey,B.C.,Tessensohn,F.&van,d.W.F.M.)TerraAntartica,41 49,UniversitadiSiena.DipartimentodiScienzedellaTerra,Siena,Italy. Parimoo, M. L., Joshi, A. & Pant, N. C., 1988. Petrogenesis of the anorthosite suite of central Dronning Maud Land, East Antarctica. In: Penrose Conference on the origin and evolution of anorthositeandassociatedrocks,38,Wyoming,U.S. Passchier,C.W.&Trouw,R.A.J.,1996.Microtectonics.SpringerVerlag,Berlin,289pp. Pelechaty,S.M.,Grotzinger,J.P.,Kashirtsev,V.A.&Zhernovsky,V.P.,1996.Chemostratigraphic and sequence stratigraphic constraints on VendianCambrian basin dynamics, Northeast SiberianCraton.JournalofGeology,104,543563. Perchuk,L.,Gerya,T.&Nozhkin,A.,1989.PetrologyandretrogradePTpathingranulitesofthe KanskayaFormation,YeniseyRange,easternSiberia.JournalofMetamorphicGeology,7,599617. Perchuk, L. L. v. & Gerya, T. V., 1992. The fluid regime of metamorphismandthecharnockite reactioningranulites;areview.InternationalGeologyReview,34,158. Perchuk,L.L.&Gerya,T.V.,1993.Fluidcontrolofcharnockitization.In:Fluidrockinteractioninthe deeper continental lithosphere.(eds.Touret,J.,R.&Thompson,A.)Chemical Geology, 175186, Elsevier,Amsterdam,Netherlands.

124 References

Perchuk,L.L.,Safonov,O.G.,Gerya,T.V.,Fu,B.&Harlov,D.E.,2000.Mobilityofcomponentsin metasomatic transformation and partial melting of gneisses; an example from Sri Lanka. ContributionstoMineralogyandPetrology,140,212232. Phillipot, P. & Selverstone, J., 1991. Traceelementrichbrinesineclogiteveins:Implicationsfor fluid composition and and transport during subduction. Contributions to Mineralogy and Petrology,106,417430. Piazolo, S. & Markl, G., 1999. Humite and bearing assemblages in marbles and calcsilicates of Dronning Maud Land, Antarctica; new data for Gondwana reconstructions. JournalofMetamorphicGeology,17,91107. Pichamuthu,C.S.,1960.Charnockiteinthemaking.Nature,188(4745),135136. Pineau,F.,Javoy,M.Behar,F.&Touret,J.,1981.Lagéochimieisotopiquedufaciesgranulitedu Bamble(Norvège)etl'originedesfluidescarbonésdanslacroteprofonde.BulletindeMineralogie, 104,630641. Pinna,P.,Jourde,G.,Calvez,J.Y.,Mroz,J.P.&Marques,J.M.,1993.TheMozambiqueBeltin northern Mozambique; Neoproterozoic (1100850 Ma) crustal growth and tectogenesis, and superimposedPanAfrican(800550Ma)tectonism.PrecambrianResearch,62,159. Powell, C. M., Li, Z. X., McElhinny, M. W., Meert, J. G. & Park, J. K., 1993. Paleomagnetic constraintsontimingoftheNeoproterozoicbreakupofRodiniaandtheCambrianformationof Gondwana;withSuppl.Data9335.Geology,21,889892. Raith, M., Hoernes, S., Klatt, E. & Staehle, H. J., 1989. Contrasting mechanisms of charnockite formation in the amphibolite to granulite grade transition zones of southern India. In: Fluid movements;elementtransportandthecompositionofthedeepcrust.(eds.Bridgwater&David)NATO ASI Series. Series C: Mathematical and Physical Sciences, 2938, D. Reidel Publishing Company, DordrechtBoston,International. Raith,M.,Srikantappa,C.,Ashamanjari,K.G.&Spiering,B.,1990.Thegranuliteterraneofthe NilgiriHills(southernIndia);characterizationofhighgrademetamorphism.In:Granulitesand crustalevolution. (eds. Vielzeuf, D. & Vidal, P.) NATO ASI Series. Series C: Mathematical and PhysicalSciences,339365,D.ReidelPublishingCompany,DordrechtBoston. Raith,M.&Srikantappa,C.,1993.ArrestedcharnockiteformationatKottavattam,southernIndia. In:SpecialissueonSouthIndiangranulites.(ed.Mohan,A.)JournalofMetamorphicGeology,815832, Blackwell,Oxford,UnitedKingdom. Ravich,M.G.&Kamenev,E.N.,1975.Crystallinebasementof theAntarcticplatform. Wiley, New York. RavindraKumar,G.R.,Srikantappa,C.&Hansen,E.,1985.CharnockiteformationatPonmudiin southernIndia.Nature,313,207209. Roedder,E.,1984.Fluidinclusions.MineralogicalSocietyofAmerica. Rogers,J.J.W.,Miller,J.S.&Clements,A.S.,1995a.APanAfricanzonelinkingEastandWest Gondwana.In:IndiaandAntarcticaduringthePrecambrian.(eds.Yoshida&M;Santosh)Memoir GeologicalSocietyofIndia,1123,GeologicalSocietyofIndia,Bangalore,India.

125 References

Rogers, J. J. W., Unrug, R. & Sultan, M., 1995b. Tectonic assembly of Gondwana. Journal of Geodynamics,19,134. Santosh, M., Harris, N. B. W., Jackson, D. H. & Mattey, D. P., 1990. Dehydrationandincipient charnockiteformation;aphaseequilibriaandfluidinclusionstudyfromSouthIndia.Journalof Geology,98,915926. Santosh,M.&Yoshida,M.,1991.TrappedcarbondioxideinEastAntarcticgranulites:Evidence fromfluidinclusions.ProceedingsoftheNIPRSymposiumonAntarctcGeosciences,5,136145. Santosh,M.&Yoshida,M.,1992.Apetrologicandfluidinclusionstudyofcharnockitesfromthe LützowHolmBayregion,EastAntarctica;evidenceforfluidrichmetamorphisminthelower crust.Lithos,29,107126. Schiellerup,H.,Lambert,D.D.,Prestvik,T.,Robins,B.,McBride,J.S.&Larsen,R.B.,2000.ReOs isotopicevidenceforalowercrustaloriginofmassiftypeanorthosites.Nature,405,781784. ScientificCommitteeonAntarcticResearch(SCAR)WorkingGrouponGeodesyandGeographic Information.CompositeGazetteerofAntarctica"(www.pnra.it/SCAR_GAZE). Scoates,J.S.,2000.Theplagioclasemagmadensityparadoxreexaminedandthecrystallisationof Proterozoicanorthosites.JournalofPetrology,41,627649. Shackleton,R.M.,1996.ThefinalcollisionzonebetweenEastandWestGondwana;whereisit?In: IGCP 348 (Mozambique and related belts). (eds. Thomas, J, Shackleton R. M. & Muhongo, A.) JournalofAfricanEarthSciences,271287,Pergamon,LondonNewYork. Shelley,D.,1993.Igneousandmetamorphicrocksunderthemicroscope.Chapman&Hall,London. Sheperd,T.J.,Rankin,A.H.&Alderton,D.H.M.,1985.Apracticalguidetofluidinclusionstudies. Blackie&Son,LondonandGlasgow. Shiraishi, K., Ellis, D. J., Hiroi, C., Fanning, C. M., Motoyoshi, Y. & Nakai, Y., 1994.Cambrian Orogenic Belt in East Antarctica and Sri Lanka: Implications for Gondwana Assembly. The JournalofGeology,102,4765.

Shmulovich,K.&Graham,C.M.,1996.MeltingofalbiteanddehydrationofbruciteinH2ONaCl fluidsto9kbarsand700900°C;implicationsforpartialmeltingandwateractivitiesduringhigh pressuremetamorphism.ContributionstoMineralogyandPetrology,124,370382. Soave,G.,1972.EquilibriumconstantsfromamodifiedRedlichKwongequationofstate.Chemistry inEnglishScience,27,11971203. Sorby,H.C.,1858.Onthemicroscopicalstructureofcrystals,indicatingtheoriginofmineralsand rocks.JournaloftheGeologicalSocietyofLondon,14,453500. Span,R.&Wagner,W.,1996.Anewequationofstateforcarbondioxidecoveringthefluidregion from the triple point temperature to 1100 K at pressures up to 800 MPa. Journal of Physical ChemistryReferenceData,25,15091596. Spear,F.S.,Rumble,D.,III&Ferry,J.M.,1982.Linearalgebraicmanipulationofndimensional compositionspace.In:Characterizationofmetamorphismthroughmineralequilibria.(eds.Ferry& John)ReviewsinMineralogy,53104,MineralogicalSocietyofAmerica,Washington,DC,United States.

126 References

Spear, F. S., 1993. Metamorphic phase equilibria and pressuretemperaturetimepaths. Mineralogical SocietyofAmerica,Washington,D.C.,799pp. Srikantappa, C., Raith, M. & Spiering, B., 1985. Progressive charnockitization of a leptynite suite in southern Kerala, India; evidence for formation of charnockites through decreaseinfluidpressure?JournaloftheGeologicalSocietyofIndia,26,849872. Stähle,H.J.,Raith,M.,Hoernes,S.&Delfs,A.,1987.Elementmobilityduringincipientgranulite formationatKabbaldurga,southernIndia.JournalofPetrology,28,803834. Stern,R.J.,1994.ArcassemblyandcontinentalcollisionintheNeoproterozoicEastAfricanOrogen; implications for the consolidation of Gondwanaland. Annual Review of Earth and Planetary Sciences,22,319351. Sterner, S. M. & Bodnar, R. J., 1989. Synthetic fluid inclusion; VII, Reequilibration of fluid inclusions in quartz during laboratory simulated metamorphic burial and uplift. Journal of MetamorphicGeology,7,243260. Streckeisen,1976.Toeachplutonicrockitspropername.EarthScienceReview,12,133. Svensen,H.,Jamtveit,B.,Yardley,B.,Engvik,A.K.,Austrheim,H.&Broman,C.,1999. Leadand bromine enrichment in eclogitefacies fluids: Extreme fractionation during lower crustal hydration.Geology,19,165178. Svensen, H.,Jamtveit,B.,Banks,D.A.&Austrheim,H.,2001.Halogencontentsofeclogitefacies fluedinclusionsandminerals;Caledonites,westernNorway.JournalofMetamorphicGeology,19, 165178. Swanenberg, H. E. C., 1980. Fluid inclusions in highgrade metamorphic rocks from Southern Norway.GeologiaUltraiectina,25,147pp.

Thiery,R.,vandenKerkhof,A.M.&Dubessy,J.,1994.VXpropertiesofCH4CO2andCO2N2fluid inclusions;modellingforT<31degreesCandP<400bars.EuropeanJournalofMineralogy,6,753 771. Torsvik,T.H.,Smethurst,M.A.,Meert,J.G.,Van,d.V.R.,McKerrow,W.S.,Brasier,M.D.,Sturt, B.A.&Walderhaug,H.J.,1996.ContinentalbreakupandcollisionintheNeoproterozoicand Palaeozoic;ataleofBalticaandLaurentia.EarthScienceReviews,40,229258.

Touret,J.L.R.,1971.ControledufaciesgranulitedansleBambleparleCO2delaphasefluide. BulletindelaSocieteGeologiquedeFrance,3,143145. Touret, J. L. R. 1995. The role and nature of fluids in the continental lower crust. In: India and Anatarctic during the precambrian, (eds. Yoshida, M. & Santosh, M.), 143160, Memoir 35, GeologicalSocietyofIndia,Bangalore. Touret,J.L.R.&Huizenga,J.M.,1999.Precambrianintraplatemagmatism:hightemparture,low pressurecrustalgranulites.JournalofAfricanEarthSciences,28,367382. Touret,J.L.R.,2001.Fluidsinmetamorphicrocks.Lithos,55,125. UnitedStatesGeologicalSurvey(U.S.G.S),1988.FluidInclusionInstructionManual.U.S.G.S.,USA,34 pp. Unrug, R., 1996. The assembly of Gondwanaland; Scientific results of IGCP Project 288; Gondwanalandsuturesandmobilebelts.Episodes,19,1120.

127 References

vandenKerkhof,A.M.,1988.ThesystemCO2CH4N2influidinclusions:theoreticalmodelling andgeologicalapplications.Ph.D.thesis,Amsterdam(FreeUniversity),pp206. vandenKerkhof,A.M.&Grantham,G.H.,1999.Metamorphiccharnockiteincontactaureoles aroundintrusiveenderbitefromNatal,SouthAfrica.ContributionstoMineralogyandPetrology, 137,115132. Vityk, M. O. & Bodnar, R. J., 1998. Statisticalmicrothermometryofsyntheticfluidinclusionsin quartzduringdecompressionreequilibration.ContributionstoMineralogyandPetrology,132,149 162. Vry,J.K.&Brown,P.E.,1991.Texturallyearlyfluidinclusionsingarnets:evidenceoftheprograde metamorphicpath?ContributionstoMineralogyandPetrology,108,271282. Waters, D. J., 1988. Partial melting and the formation of granulite facies assemblages in Namaqualand,SouthAfrica.In:Studiesinthegenesisanddeformationofmigmatites.(eds.Tracy, Robert, J ; Day & Howard)JournalofMetamorphicGeology,387404,Blackwell,Oxford,United Kingdom. Weil,A.B.,VanderVooR.,MacNiocall,C.&Meert,J.G.,1998.TheProterozoicsupercontinent Rodinia; paleomagnetically derived reconstructions for 1100 to 800 Ma. Earth and Planetary ScienceLetters,154,1324. Wilson,T.J.,Grunow,A.M.&Hanson,R.E.,1997.Gondwanaassembly:Theviewfromsouthern AfricaandEastGondwana.JournalofGeodynamics,23,263286. Zhang,Y.G.&Frantz,J.D.1987.Determinationofthehomogenisationtemperaturesanddensities

of supercritical fluids in the system NaClKClCaCl2H2O using synthetic fluid inclusions. ChemicalGeology,64.335350.

128 Acknowledgements

Acknowledgements

AtfirstIwouldliketothankProf.Dr.M.Oleschforgivingmetheopportunityto carryoutthethesis,providingmewiththesamplesandfielddata,andsupervisingmy work.IalsothankProf.Dr.R.X.Fischerfortakingonthesecondexpertreport. The work was funded by the FNK, University of Bremen, Germany, reference number 05/134/7. The samples and field data were collected duringtheGeoMaud Expedition 95/96, directed by the Federal Institute for Geosciences and Natural Resources(BGRHanover)(expeditionleaderProf.Dr.H.J.Paech,BGRHanover).This study is part of the project OL 25/10 which was funded by the Deutsche Forschungsgemeinschaft(DFG).TheAlfredWegenerInstitute for Polar and Marine Researchisalsothankedforprovidingpolarequipmentandlogisticsupportduring theGeoMaud1995/96expedition. IamgratefultoDr.habil.R.J.BakkerwhointroducedmetoRamanspectrometry, thermodynamicmodellingandtheartofpaperwriting.Hispatience,encouragement andwillingnessforextendeddiscussionsonfluidinclusions(andallthereistothem) are very well appreciated. The hospitality of the staff the of the Institute of Geosciences,Mineralogy& Petrology,Universityof Leoben, Austria, is also kindly acknowledged. V.Kolb,B.SchröderP.Witteprovidedimportantsupportinpractical,technicaland bureaucraticalmatters,anditwasalwaysgoodtoknowthattheywerearoundincase ofneed. MycurrentandformercolleguesDipl.Geol.B.Emmel,Dipl.Geol.M.Gorke,Prof. Dr.R.Klemd,Dr.F.Lisker,Dr.habil.J.Jacobs,Dr.S.MeierandDr.B.Venturaare thanked for helpful suggestions, corrections, advice, mental support, company and socialdistractionduringmytimeattheUniversityofBremen. Last but not least I want to say thanks to my companion, my close and closest friends,myparents,andsisterwhoseperatelyandconcertedlyprovideanetworkand socialbackgroundthatIknow,Icanalwaysrelyupon.