Design, Fabrication, and Characterization of Double

Total Page:16

File Type:pdf, Size:1020Kb

Design, Fabrication, and Characterization of Double DESIGN,FABRICATION, AND CHARACTERIZATION OF DOUBLE-NEGATIVE METAMATERIALS FOR PHOTONICS Zur Erlangung des akademischen Grades eines DOKTORS DER NATURWISSENSCHAFTEN von der Fakultat¨ fur¨ Physik der Universitat¨ Karlsruhe (TH) genehmigte DISSERTATION von Diplom-Physiker Gunnar Dolling aus Cuxhaven Tag der mundlichen¨ Prufung:¨ 20. Juli 2007 Referent: Prof. Dr. Martin Wegener Korreferent: Prof. Dr. Kurt Busch . Publications Parts of this thesis have already been published: In scientific journals: • G. Dolling, M. W. Klein, M. Wegener, A. Schadle,¨ S. Burger, and S. Linden, Nega- tive beam displacements from negative-index photonic metamaterials, in preparation (2007). • G. Dolling, M. Wegener, C. M. Soukoulis, and S. Linden, Design-related losses of double-fishnet negative-index photonic metamaterials, Opt. Express, submitted (2007). • M. Wegener, G. Dolling, and S. Linden, Plasmonics: Backward waves moving for- ward, Nature Mater. 6, 475 (2007). • G. Dolling, M. Wegener, and S. Linden, Realization of a three-functional-layer negative- index photonic metamaterial, Opt. Lett. 32, 551 (2007). • G. Dolling, M. Wegener, C. M. Soukoulis, and S. Linden, Negative-index metamaterial at 780 nm wavelength, Opt. Lett. 32, 53 (2007). • G. Dolling, M. Wegener, and S. Linden, Der falsche Knick im Licht: Metamaterialien mit negativem Brechungsindex, invited paper, Phys. Unserer Zeit 38, 24 (2006). • S. Linden, C. Enkrich, G. Dolling, M. W. Klein, J. F. Zhou, T. Koschny, C. M. Souk- oulis, S. Burger, F. Schmidt, and M. Wegener, Photonic metamaterials: Magnetism at optical frequencies, invited paper, IEEE J. Sel. Top. Quant. 12, 1097 (2006). • G. Dolling, M. Wegener, A. Schadle,¨ S. Burger, and S. Linden, Observation of mag- netization waves in negative-index photonic metamaterials, Appl. Phys. Lett. 89, 231118 (2006). • G. Dolling, S. Linden, and M. Wegener, Metamaterialien: Licht im Ruckw¨ artsgang¨ , invited paper, Phys. Unserer Zeit 37, 157 (2006). • G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, Low-loss neg- ative-index metamaterial at telecommunication wavelengths, Opt. Lett. 31, 1800 (2006). iv Publications • G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, Simultaneous Negative Phase and Group Velocity of Light in a Metamaterial, Science 312, 892 (2006). • G. Dolling, M. Wegener, S. Linden, and C. Hormann, Photorealistic images of objects in effective negative-index materials, Opt. Express 14, 1842 (2006). • G. Dolling, C. Enkrich, M. Wegener, J. F. Zhou, C. M. Soukoulis, and S. Linden, Cut- wire pairs and plate pairs as magnetic atoms for optical metamaterials, Opt. Lett. 30, 3198 (2005). At international conferences and workshops (only own presentations): • G. Dolling, M. Wegener, C. M. Soukoulis, and S. Linden, Negative-index metama- terials have reached the visible, invited talk, Progress In Electromagnetics Research Symposium (PIERS), Beijing, China, March 26-30, 2007. • G. Dolling, Negative-index metamaterials have reached the visible, invited talk, Work- shop on Nano-Photonics, Berlin, Germany, October 18-20, 2006. • G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, From “Mag- netic Atoms” to Low-Loss Negative-Index Metamaterials at Telecommunication Wave- lengths, talk QWE3, Quantum Electronics and Laser Science Conference (QELS), Long Beach, CA, U.S.A., May 21-26, 2006. Contents Zusammenfassung vii 1 Introduction 1 2 Fundamentals of linear optics 5 2.1 Electromagnetic wave propagation ...................... 5 2.1.1 Maxwell’s equations ......................... 5 2.1.2 Refractive index ........................... 7 2.1.3 Refraction at an interface ....................... 9 2.1.4 Some examples for optics with ¹ 6= 1 . 11 2.2 Natural materials ............................... 16 2.2.1 Lorentz oscillator ........................... 16 2.2.2 Drude model ............................. 17 2.2.3 Metallic nanoparticles ........................ 19 2.2.4 Magnetism .............................. 21 2.3 Metamaterials ................................. 21 2.3.1 Transmission lines .......................... 22 2.3.2 Resonant structures .......................... 24 2.3.3 Wood anomalies ........................... 25 3 Some aspects of negative refraction 27 3.1 Negative refraction in anisotropic materials . 27 3.2 Negative refraction in photonic crystals ................... 30 3.3 Negative refraction in thin, homogeneous, and isotropic materials . 31 3.3.1 Physics of a metallic mirror ..................... 31 3.3.2 Thin metal film ............................ 33 3.3.3 Thin dielectric film .......................... 34 4 Fabrication, characterization, and simulation 37 4.1 Fabrication .................................. 38 4.1.1 Scanning-electron microscope .................... 38 4.1.2 Electron-beam lithography ...................... 40 4.1.3 Sample preparation .......................... 41 4.2 Optical characterization ............................ 42 v vi Contents 4.2.1 Reflectance and angle-resolved transmittance spectroscopy . 43 4.2.2 Michelson interferometer ....................... 44 4.3 Numerical methods .............................. 45 4.3.1 MicroWave Studio .......................... 46 4.3.2 JCMsuite ............................... 47 4.3.3 Calculating an interferogram ..................... 47 4.3.4 Retrieval of the refractive index and the impedance . 48 5 From split-ring resonators to double-negative metamaterials 51 5.1 Split-ring resonators .............................. 51 5.2 Cut-wire pairs ................................. 53 5.2.1 Experimental results ......................... 54 5.3 Double-fishnet design ............................. 57 5.3.1 Influence of the hole shape ...................... 62 6 Experimental results 67 6.1 Simultaneous negative phase and group velocities of light . 67 6.1.1 Theory of negative group velocities . 69 6.1.2 Experimental data .......................... 72 6.2 Low-loss negative-index metamaterial .................... 75 6.3 Negative-index metamaterial operating in the visible . 79 6.4 Observation of magnetization waves ..................... 83 6.5 First steps towards three-dimensional photonic metamaterials . 87 7 Conclusions 95 A Transfer-matrix method for oblique incidence of light 99 Bibliography 102 Acknowledgements 111 Zusammenfassung Elektromagnetische Wellen sind ein wesentlicher Bestandteil unseres Alltags: Das mensch- liche Auge reagiert beispielsweise so auf das Licht, dass wir unsere Umgebung wahrnehmen konnen.¨ Die Bildentstehung basiert dabei auf der Brechung von Lichtstrahlen: Wenn eine elektromagnetische Welle auf eine Grenzflache¨ zwischen zwei Medien mit unterschiedlichen Brechungsindizes trifft, wird die Welle gebrochen und andert¨ ihre Ausbreitungsrichtung. Durch diesen Effekt kann Licht fokussiert und somit Objekte abgebildet werden. Ahnlich¨ wird in modernen Mikroskopen und Teleskopen die Brechung ausgenutzt, um den Mikro- kosmos oder weit entfernte Galaxien zu studieren. Neben der Brechung spielt heutzutage jedoch auch die Reflexion von elektromagnetischen Wellen eine wichtige Rolle: Unsere moderne Telekommunikation basiert beispielsweise haufig¨ auf Glasfaserkabeln. In diesen Kabeln wird das Licht durch Totalreflexion zwischen zwei Medien mit unterschiedlichen Brechungsindizes gefuhrt.¨ Die genannten Beispiele und Phanomene¨ basieren alle auf dem Brechungsindex und der resultierenden Brechung und Reflexion von Licht. Das Konzept des Brechungsindexes beruht dabei auf der Tatsache, dass die Wellenlange¨ des Lichts (einige hundert Nanometer) viel großer¨ als typische Großenskalen¨ (unter einem Nanometer bei Atomen) in naturlichen¨ Materialien ist. Aus diesem Grund kann eine elek- tromagnetische Welle die feinen Details (zum Beispiel Atome) im Material nicht auflosen.¨ Dieser Umstand vereinfacht die Beschreibung der Wechselwirkung zwischen Licht und dem Material erheblich: Wir mussen¨ nur den Brechungsindex n des Materials oder, um genau zu sein, die (elektrische) Permittivitat¨ " und die (magnetische) Permeabilitat¨ ¹ kennen. Die Permittivitat¨ beschreibt dabei die Wechselwirkung zwischen dem Material und dem elek- trischen Feld der Welle, wahrend¨ die Permeabilitat¨ die Wechselwirkung des Materials mit dem magnetischen Feld der Welle beschreibt. In der Natur existieren jedoch keine Mate- rialien mit ¹ 6= 1 bei optischen Frequenzen, so dass nur die Permittivitat¨ beziehungsweise der Brechungsindex der wichtige Parameter in der Optik ist. Diese Tatsache wird zudem p durch die bekannte Formel fur¨ den Brechungsindex wiedergegeben: n = + ". Trotzdem existieren viele Anwendungen bei optischen Frequenzen, obwohl naturliche¨ Materialien nur eine Manipulation des elektrischen Feldes des Lichtes ermoglichen.¨ Die Beeinflussung des elektrischen Feldes in der Optik ist jedoch so, als wurde¨ man nur eines seiner beiden Augen verwenden. Im Jahr 1967 beschaftigte¨ sich Victor Veselago mit der Frage, was passieren wurde,¨ wenn die Permeabilitat¨ von eins verschieden ware.¨ Er fand heraus, wenn sowohl die Per- meabilitat¨ und die Permittivitat¨ negativ sind, dass dann auch der Brechungsindex negativ werden wurde.¨ In solchen Medien waren¨ die Doppler-Verschiebung und die Cherenkov- vii viii Zusammenfassung Strahlung umgekehrt. Trotz der interessanten Effekte blieb seine Idee eine Sonderlichkeit, da keine naturlichen¨ Materialien mit ¹ 6= 1 oberhalb von Gigahertz Frequenzen oder hoher¨ bekannt waren. Daher war es eine faszinierende Idee, als Sir John Pendry im Jahr 1999 kunstliche¨ Materialien vorschlug, die ¹ 6= 1 aufweisen konnen.¨ Seine Idee
Recommended publications
  • Cvel-08-011.3
    TECHNICAL REPORT: CVEL-08-011.3 Survey of Current Computational Electromagnetics Techniques and Software T. Hubing, C. Su, H. Zeng and H. Ke Clemson University June 6, 2009 This report is an update of the 2008 report, CVEL-08-011.2. This work was supported by the ARMY RESEARCH OFFICE (W. Devereux Palmer) under the auspices of the U.S. Army Research Office Scientific Services Program administered by Battelle (Delivery Order 0271, Contract No. W911NF-07-D-0001). Table of Contents I. Introduction ............................................................................................................................. 3 A. Purpose of This Report ................................................................................................................. 3 B. Categorizing CEM Modeling Tools .............................................................................................. 4 1. Time vs. Frequency Domain ........................................................................................ 4 2. IE vs. PDE .................................................................................................................... 4 3. 2D vs. 3D ...................................................................................................................... 5 4. Static, Quasi-static, Full-wave or Asymptotic .............................................................. 5 5. Circuit-based Field Solvers .......................................................................................... 6 6. Linear vs. Higher-order Methods
    [Show full text]
  • Bringing Optical Metamaterials to Reality
    UC Berkeley UC Berkeley Electronic Theses and Dissertations Title Bringing Optical Metamaterials to Reality Permalink https://escholarship.org/uc/item/5d37803w Author Valentine, Jason Gage Publication Date 2010 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California Bringing Optical Metamaterials to Reality By Jason Gage Valentine A dissertation in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Engineering – Mechanical Engineering in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Xiang Zhang, Chair Professor Costas Grigoropoulos Professor Liwei Lin Professor Ming Wu Fall 2010 Bringing Optical Metamaterials to Reality © 2010 By Jason Gage Valentine Abstract Bringing Optical Metamaterials to Reality by Jason Gage Valentine Doctor of Philosophy in Mechanical Engineering University of California, Berkeley Professor Xiang Zhang, Chair Metamaterials, which are artificially engineered composites, have been shown to exhibit electromagnetic properties not attainable with naturally occurring materials. The use of such materials has been proposed for numerous applications including sub-diffraction limit imaging and electromagnetic cloaking. While these materials were first developed to work at microwave frequencies, scaling them to optical wavelengths has involved both fundamental and engineering challenges. Among these challenges, optical metamaterials tend to absorb a large amount of the incident light and furthermore, achieving devices with such materials has been difficult due to fabrication constraints associated with their nanoscale architectures. The objective of this dissertation is to describe the progress that I have made in overcoming these challenges in achieving low loss optical metamaterials and associated devices. The first part of the dissertation details the development of the first bulk optical metamaterial with a negative index of refraction.
    [Show full text]
  • Chapter 5 Optical Properties of Materials
    Chapter 5 Optical Properties of Materials Part I Introduction Classification of Optical Processes refractive index n() = c / v () Snell’s law absorption ~ resonance luminescence Optical medium ~ spontaneous emission a. Specular elastic and • Reflection b. Total internal Inelastic c. Diffused scattering • Propagation nonlinear-optics Optical medium • Transmission Propagation General Optical Process • Incident light is reflected, absorbed, scattered, and/or transmitted Absorbed: IA Reflected: IR Transmitted: IT Incident: I0 Scattered: IS I 0 IT IA IR IS Conservation of energy Optical Classification of Materials Transparent Translucent Opaque Optical Coefficients If neglecting the scattering process, one has I0 IT I A I R Coefficient of reflection (reflectivity) Coefficient of transmission (transmissivity) Coefficient of absorption (absorbance) Absorption – Beer’s Law dx I 0 I(x) Beer’s law x 0 l a is the absorption coefficient (dimensions are m-1). Types of Absorption • Atomic absorption: gas like materials The atoms can be treated as harmonic oscillators, there is a single resonance peak defined by the reduced mass and spring constant. v v0 Types of Absorption Paschen • Electronic absorption Due to excitation or relaxation of the electrons in the atoms Molecular Materials Organic (carbon containing) solids or liquids consist of molecules which are relatively weakly connected to other molecules. Hence, the absorption spectrum is dominated by absorptions due to the molecules themselves. Molecular Materials Absorption Spectrum of Water
    [Show full text]
  • Quantum Metamaterials in the Microwave and Optical Ranges Alexandre M Zagoskin1,2* , Didier Felbacq3 and Emmanuel Rousseau3
    Zagoskin et al. EPJ Quantum Technology (2016)3:2 DOI 10.1140/epjqt/s40507-016-0040-x R E V I E W Open Access Quantum metamaterials in the microwave and optical ranges Alexandre M Zagoskin1,2* , Didier Felbacq3 and Emmanuel Rousseau3 *Correspondence: [email protected] Abstract 1Department of Physics, Loughborough University, Quantum metamaterials generalize the concept of metamaterials (artificial optical Loughborough, LE11 3TU, United media) to the case when their optical properties are determined by the interplay of Kingdom quantum effects in the constituent ‘artificial atoms’ with the electromagnetic field 2Theoretical Physics and Quantum Technologies Department, Moscow modes in the system. The theoretical investigation of these structures demonstrated Institute for Steel and Alloys, that a number of new effects (such as quantum birefringence, strongly nonclassical Moscow, 119049, Russia states of light, etc.) are to be expected, prompting the efforts on their fabrication and Full list of author information is available at the end of the article experimental investigation. Here we provide a summary of the principal features of quantum metamaterials and review the current state of research in this quickly developing field, which bridges quantum optics, quantum condensed matter theory and quantum information processing. 1 Introduction The turn of the century saw two remarkable developments in physics. First, several types of scalable solid state quantum bits were developed, which demonstrated controlled quan- tum coherence in artificial mesoscopic structures [–] and eventually led to the devel- opment of structures, which contain hundreds of qubits and show signatures of global quantum coherence (see [, ] and references therein). In parallel, it was realized that the interaction of superconducting qubits with quantized electromagnetic field modes re- produces, in the microwave range, a plethora of effects known from quantum optics (in particular, cavity QED) with qubits playing the role of atoms (‘circuit QED’, [–]).
    [Show full text]
  • Negative Refractive Index in Artificial Metamaterials
    1 Negative Refractive Index in Artificial Metamaterials A. N. Grigorenko Department of Physics and Astronomy, University of Manchester, Manchester, M13 9PL, UK We discuss optical constants in artificial metamaterials showing negative magnetic permeability and electric permittivity and suggest a simple formula for the refractive index of a general optical medium. Using effective field theory, we calculate effective permeability and the refractive index of nanofabricated media composed of pairs of identical gold nano-pillars with magnetic response in the visible spectrum. PACS: 73.20.Mf, 41.20.Jb, 42.70.Qs 2 The refractive index of an optical medium, n, can be found from the relation n2 = εμ , where ε is medium’s electric permittivity and μ is magnetic permeability.1 There are two branches of the square root producing n of different signs, but only one of these branches is actually permitted by causality.2 It was conventionally assumed that this branch coincides with the principal square root n = εμ .1,3 However, in 1968 Veselago4 suggested that there are materials in which the causal refractive index may be given by another branch of the root n =− εμ . These materials, referred to as left- handed (LHM) or negative index materials, possess unique electromagnetic properties and promise novel optical devices, including a perfect lens.4-6 The interest in LHM moved from theory to practice and attracted a great deal of attention after the first experimental realization of LHM by Smith et al.7, which was based on artificial metallic structures
    [Show full text]
  • To Super-Radiating Manipulation of a Dipolar Emitter Coupled to a Toroidal Metastructure
    From non- to super-radiating manipulation of a dipolar emitter coupled to a toroidal metastructure Jie Li,1 Xing-Xing Xin,1 Jian Shao,1 Ying-Hua Wang,1 Jia-Qi Li,1 Lin Zhou,2 and Zheng- Gao Dong1,* 1Physics Department and Jiangsu Key Laboratory of Advanced Metallic Materials, Southeast University, Nanjing 211189, China 2School of Physics and Electronic Engineering, Nanjing Xiaozhuang University, Nanjing 211171, China * [email protected] Abstract: Toroidal dipolar response in a metallic metastructure, composed of double flat rings, is utilized to manipulate the radiation pattern of a single dipolar emitter (e.g., florescent molecule/atom or quantum dot). Strong Fano-type radiation spectrum can be obtained when these two coupling dipoles are spatially overlapped, leading to significant radiation suppression (so-called nonradiating source) attributed to the dipolar destructive interference. Moreover, this nonradiating configuration will become a directionally super-radiating nanoantenna after a radial displacement of the emitter with respect to the toroidal flat-ring geometry, which emits linearly polarized radiation with orders of power enhancement in a particular orientation. The demonstrated radiation characteristics from a toroidal- dipole-mediated dipolar emitter indicate a promising manipulation capability of the dipolar emission source by intriguing toroidal dipolar response. ©2015 Optical Society of America OCIS codes: (160.3918) Metamaterials; (250.5403) Plasmonics. References and links 1. L. B. Zel’dovich, “The relation between decay asymmetry and dipole moment of elementary particles,” Sov. Phys. JETP 6, 1148 (1958). 2. T. Kaelberer, V. A. Fedotov, N. Papasimakis, D. P. Tsai, and N. I. Zheludev, “Toroidal dipolar response in a metamaterial,” Science 330(6010), 1510–1512 (2010).
    [Show full text]
  • And Ku-Band Application
    applied sciences Article Compact Left-Handed Meta-Atom for S-, C- and Ku-Band Application Md. Mehedi Hasan 1,*, Mohammad Rashed Iqbal Faruque 1,* and Mohammad Tariqul Islam 2,* ID 1 Space Science Centre (ANGKASA), Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia 2 Department of Electrical, Electronic and Systems Engineering, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia * Correspondence: [email protected] (M.M.H.); [email protected] (M.R.I.F.); [email protected] (M.T.I.); Tel.: +60-102938061 (M.R.I.F.) Received: 10 August 2017; Accepted: 10 October 2017; Published: 23 October 2017 Abstract: A new compact left-handed meta-atom for S-, C- and Ku-band applications is presented in this paper. The proposed structure provides a wide bandwidth and exhibits left-handed characteristics at 0◦, 90◦, 180◦ and 270◦ (xy-axes) rotations. Besides, the left-handed characteristics and wide bandwidth of 1 × 2, 2 × 2, 3 × 3 and 4 × 4 arrays are also investigated at the above-mentioned rotation angles. In this study, the meta-atom is designed by creating splits at the outer and inner square-shaped ring resonators, and a metal arm is placed at the middle of the inner ring resonator. The arm is also connected to the upper and lower portions of the inner ring resonator, and later, the design appears as an I-shaped split ring resonator. The commercially available, finite integration technique (FIT)-based electromagnetic simulator CST Microwave Studio is used for design and simulation purposes. The measured data comply well with the simulated data of the unit cell for 1 × 2, 2 × 2, 3 × 3 and 4 × 4 arrays at every rotation angle.
    [Show full text]
  • Course Description Learning Objectives/Outcomes Optical Theory
    11/4/2019 Optical Theory Light Invisible Light Visible Light By Diane F. Drake, LDO, ABOM, NCLEM, FNAO 1 4 Course Description Understanding Light This course will introduce the basics of light. Included Clinically in discuss will be two light theories, the principles of How we see refraction (the bending of light) and the principles of Transports visual impressions reflection. Technically Form of radiant energy Essential for life on earth 2 5 Learning objectives/outcomes Understanding Light At the completion of this course, the participant Two theories of light should be able to: Corpuscular theory Electromagnetic wave theory Discuss the differences of the Corpuscular Theory and the Electromagnetic Wave Theory The Quantum Theory of Light Have a better understanding of wavelengths Explain refraction of light Explain reflection of light 3 6 1 11/4/2019 Corpuscular Theory of Light Put forth by Pythagoras and followed by Sir Isaac Newton Light consists of tiny particles of corpuscles, which are emitted by the light source and absorbed by the eye. Time for a Question Explains how light can be used to create electrical energy This theory is used to describe reflection Can explain primary and secondary rainbows 7 10 This illustration is explained by Understanding Light Corpuscular Theory which light theory? Explains shadows Light Object Shadow Light Object Shadow a) Quantum theory b) Particle theory c) Corpuscular theory d) Electromagnetic wave theory 8 11 This illustration is explained by Indistinct Shadow If light
    [Show full text]
  • Transmission and Reflection Method with a Material Filled Transmission Line for Measuring Dielectric Properties
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Masters Theses Graduate School 5-2004 Transmission and Reflection method with a material filled transmission line for measuring Dielectric properties Madhan Sundaram University of Tennessee, Knoxville Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes Part of the Electrical and Computer Engineering Commons Recommended Citation Sundaram, Madhan, "Transmission and Reflection method with a material filled ansmissiontr line for measuring Dielectric properties. " Master's Thesis, University of Tennessee, 2004. https://trace.tennessee.edu/utk_gradthes/4818 This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a thesis written by Madhan Sundaram entitled "Transmission and Reflection method with a material filled ansmissiontr line for measuring Dielectric properties." I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Master of Science, with a major in Electrical Engineering. , Major Professor We have read this thesis and recommend its acceptance: ARRAY(0x7f6ff7fa1348) Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) Transmission and Reflectionmethod with a material filledtransmission line for measuring Dielectric properties A Thesis Presented forthe Master of Science Degree The University of Tennessee, Knoxville Madhan Sundaram May 2004 DEDICATION Meaning :- knowledge gained is comparable to handful of sand, knowledge to be gained is comparable to size of this world.
    [Show full text]
  • Bulk Negative Index Photonic Metamaterials for Direct Laser Writing
    Bulk Negative Index Photonic Metamaterials for Direct Laser Writing Durdu Ö. Güney1,*, Thomas Koschny1,2, Maria Kafesaki2, and Costas M. Soukoulis1,2 1Ames National Laboratory, USDOE and Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA 2 Institute of Electronic Structure and Laser, Foundation for Research and Technology Hellas (FORTH), and Department of Materials Science and Technology, University of Crete, 7110 Heraklion, Crete, Greece *Corresponding author: [email protected] Abstract: We show the designs of one- and two-dimensional photonic negative index metamaterials around telecom wavelengths. Designed bulk structures are inherently connected, which render their fabrication feasible by direct laser writing and chemical vapor deposition. ©2008 Optical Society of America OCIS Codes: (350.3618) Left-handed materials; (260.2065) Effective medium theory 1 Simultaneously negative effective magnetic permeability and electric permittivity of metamaterials gives rise to exotic electromagnetic phenomena [1—4] not known to exist naturally and these materials enable a wide range of new applications as varied as cloaking devices and ultrahigh-resolution imaging systems. All photonic metamaterials at THz frequencies have been fabricated by well-established 2D fabrication technologies such as electron-beam lithography and evaporation of metal films, and most of them are only one or two functional layers [5—13]. A few efforts have been made to fabricate three to five layers [14— 16], but this is also a 1D design. However, isotropic 3D bulk negative index metamaterial (NIM) designs with low absorption and high transmission that operate at THz and optical frequencies are needed to explore all the potential applications of NIMs.
    [Show full text]
  • Metamaterials with Magnetism and Chirality
    1 Topical Review 2 Metamaterials with magnetism and chirality 1 2;3 4 3 Satoshi Tomita , Hiroyuki Kurosawa Tetsuya Ueda , Kei 5 4 Sawada 1 5 Graduate School of Materials Science, Nara Institute of Science and Technology, 6 8916-5 Takayama, Ikoma, Nara 630-0192, Japan 2 7 National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, 8 Japan 3 9 Advanced ICT Research Institute, National Institute of Information and 10 Communications Technology, Kobe, Hyogo 651-2492, Japan 4 11 Department of Electrical Engineering and Electronics, Kyoto Institute of 12 Technology, Matsugasaki, Sakyo, Kyoto 606-8585, Japan 5 13 RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan 14 E-mail: [email protected] 15 November 2017 16 Abstract. This review introduces and overviews electromagnetism in structured 17 metamaterials with simultaneous time-reversal and space-inversion symmetry breaking 18 by magnetism and chirality. Direct experimental observation of optical magnetochiral 19 effects by a single metamolecule with magnetism and chirality is demonstrated 20 at microwave frequencies. Numerical simulations based on a finite element 21 method reproduce well the experimental results and predict the emergence of giant 22 magnetochiral effects by combining resonances in the metamolecule. Toward the 23 magnetochiral effects at higher frequencies than microwaves, a metamolecule is 24 miniaturized in the presence of ferromagnetic resonance in a cavity and coplanar 25 waveguide. This work opens the door to the realization of a one-way mirror and 26 synthetic gauge fields for electromagnetic waves. 27 Keywords: metamaterials, symmetry breaking, magnetism, chirality, magneto-optical 28 effects, optical activity, magnetochiral effects, synthetic gauge fields 29 Submitted to: J.
    [Show full text]
  • Design of an Ultrahigh Birefringence Photonic Crystal Fiber with Large Nonlinearity Using All Circular Air Holes for a Fiber-Optic Transmission System
    hv photonics Article Design of an Ultrahigh Birefringence Photonic Crystal Fiber with Large Nonlinearity Using All Circular Air Holes for a Fiber-Optic Transmission System Shovasis Kumar Biswas 1,* ID , S. M. Rakibul Islam 1, Md. Rubayet Islam 1, Mohammad Mahmudul Alam Mia 2, Summit Sayem 1 and Feroz Ahmed 1 ID 1 Department of Electrical and Electronic Engineering, Independent University Bangladesh, Dhaka 1229, Bangladesh; [email protected] (S.M.R.I.); [email protected] (M.R.I.); [email protected] (S.S.); [email protected] (F.A.) 2 Department of Electronics & Communication Engineering, Sylhet International University, Sylhet 3100, Bangladesh; [email protected] * Correspondence: [email protected]; Tel.: +880-1717-827-665 Received: 11 August 2018; Accepted: 29 August 2018; Published: 5 September 2018 Abstract: This paper proposes a hexagonal photonic crystal fiber (H-PCF) structure with all circular air holes in order to simultaneously achieve ultrahigh birefringence and high nonlinearity. The H-PCF design consists of an asymmetric core region, where one air hole is a reduced diameter and the air hole in its opposite vertex is omitted. The light-guiding properties of the proposed H-PCF structure were studied using the full-vector finite element method (FEM) with a circular perfectly matched layer (PML). The simulation results showed that the proposed H-PCF exhibits an ultrahigh birefringence of 3.87 × 10−2, a negative dispersion coefficient of −753.2 ps/(nm km), and a nonlinear coefficient of 96.51 W−1 km−1 at an excitation wavelength of 1550 nm. The major advantage of our H-PCF design is that it provides these desirable modal properties without using any non-circular air holes in the core and cladding region, thus making the fiber fabrication process much easier.
    [Show full text]