Transmission and Reflection Method with a Material Filled Transmission Line for Measuring Dielectric Properties
Total Page:16
File Type:pdf, Size:1020Kb
University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Masters Theses Graduate School 5-2004 Transmission and Reflection method with a material filled transmission line for measuring Dielectric properties Madhan Sundaram University of Tennessee, Knoxville Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes Part of the Electrical and Computer Engineering Commons Recommended Citation Sundaram, Madhan, "Transmission and Reflection method with a material filled ansmissiontr line for measuring Dielectric properties. " Master's Thesis, University of Tennessee, 2004. https://trace.tennessee.edu/utk_gradthes/4818 This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a thesis written by Madhan Sundaram entitled "Transmission and Reflection method with a material filled ansmissiontr line for measuring Dielectric properties." I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Master of Science, with a major in Electrical Engineering. , Major Professor We have read this thesis and recommend its acceptance: ARRAY(0x7f6ff7fa1348) Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) Transmission and Reflectionmethod with a material filledtransmission line for measuring Dielectric properties A Thesis Presented forthe Master of Science Degree The University of Tennessee, Knoxville Madhan Sundaram May 2004 DEDICATION Meaning :- knowledge gained is comparable to handful of sand, knowledge to be gained is comparable to size of this world. This thesis is dedicated to my family, teachers and friends. ii Acknowledgement I would like to thank each and every one who has extended their support during my work, especially Dr. Mostofa Howlader for his guidance, patience and support right from my first day as a master's student. I am really grateful to Dr. Yoon Kang without whom this thesis would not have come to such a great shape. I personally thank my advisor Dr. Mostofa Howlader and Dr. Yoon Kang for SNS, ORNL providing financial and moral support throughout. I also thank staff at for state of the art facility and a wonderful work environment. I thank my committee members Dr. J. Reece Roth and Dr. Daniel B. Koch for their support and patience in evaluating my thesis work. I am very grateful to my parents, my brother, my sister and my friends without whom lifewould be meaningless. iii Abstract Measurement of the electromagnetic properties of a material sample with simpler procedures and greater accuracy is very desirable in the design of radio frequency and microwave equipment. Real-time complex calculations and instantaneous results are possible using modem measuring equipments such as the vector network analyzer. Measurement and analysis of various transmission lines using S-parameters have been developed by others. In this thesis we have attempted to develop a simpler method to determine the complex permittivity and permeability using the transmission and reflection method with a material filled transmission line. Schemes for simultaneous measurement of the relative permeability and permittivity are developed using a combination of hardware and software tools to make the procedure simpler and efficient. iv TABLE OF CONTENTS CHAPTER 1 ...................................................................................................................... 1 INTRODUCTION ............................................................................................................. 1 1.1 History....................................................................................................................... 2 1.2 Scope of the Thesis ................................................................................................... 3 1.3 Approach ................................................................................................................... 3 1.3.1 Mathematical formulation .................................................................................. 3 1.3.2 Simulation .......................................................................................................... 4 1.3.3 Prototype ............................................................................................................ 4 1.3.4 Analysis .............................................................................................................. 4 CHAPTER 2 •••.•••••••••••.•••••••.••••..•.•••.••...•••..•••••••••..••••••.••••.••••••.•••••.•.•••••••.••.•••••••.•••.•••.•••..•• 5 MATERIAL PROPERTIES ............................................................................................ 5 2.1 Permittivity ............................................................................................................... 5 2.2 Permeability .............................................................................................................. 7 CHAPTER 3 ...................................................................................................................... 9 TRANSMISSION LINES ................................................................................................. 9 3.1 Measurement Techniques ......................................................................................... 9 3.1.1 Rectangular waveguides and TE10 mode ........................................................... 9 3.1.2 Coaxial line and TEM mode ............................................................................ 10 3.1.3 S-parameters and measurement techniques ..................................................... 11 3.2 Mathematical Formulation ...................................................................................... 15 3.2.1 TEM mode ....................................................................................................... 16 3.2.2 TE10 mode ........................................................................................................ 19 3.3 Calibration Techniques ........................................................................................... 21 3.3.1 Definition ......................................................................................................... 21 3.3.2 De-embedding .................................................................................................. 22 3.4 Test Equipment ....................................................................................................... 24 3.4.1 Network analyzer ............................................................................................. 24 3.4.2 Dimensions of the test components ................................................................. 24 CHAYfER4 .................................................................................................................... 26 EXPERIMENTATION .................................................................................................. 26 4.1 Coaxial line ............................................................................................................. 26 4.1.1 Simulation ........................................................................................................ 26 4.1.2 Measurement .................................................................................................... 30 4.2 Rectangular Waveguide .......................................................................................... 33 4.2.1 Simulation ........................................................................................................ 33 4.2.2 Measurement .................................................................................................... 35 CHAPTER 5 .................................................................................................................... 40 ANALYSES ..................................................................................................................... 40 5.1 Coaxial Line Example............................................................................................. 40 V 5.1.1 Air sample ........................................................................................................ 41 5.1.2 Teflonsample ................................................................................................... 43 5.1.3 Ferrite sample ................................................................................................... 46 5.2 Rectangular Waveguide Example ........................................................................... 48 5.2.1 Air sample ........................................................................................................ 50 5.2.2 Teflonsample ................................................................................................... 52 5.2.3 Ferrite sample................................................................................................... 54 CHAP'fER 6 .................................................................................................................... 57 CONCLUSION ..............................................................................................................