Erica Abietina Subsp. Abietina | Plantz Africa South African National Biodiversity Institute

Total Page:16

File Type:pdf, Size:1020Kb

Erica Abietina Subsp. Abietina | Plantz Africa South African National Biodiversity Institute PlantZAfrica - SANBI Erica abietina subsp. abietina | Plantz Africa South African National Biodiversity Institute pza.sanbi.org Erica abietina subsp. abietina | Plantz Africa Introduction Hikers walking on Table Mountain will experience the delights of the amazing diversity of plant life and the many flowers that are to be seen every month of the year. Anyone walking the higher slopes and plateaus are also likely to see a really lovely red Erica with soft fir-like leaves. Erica abietina subsp. abietina is found nestled amongst rocks or in patches of woody fynbos where it displays beautiful, waxy, red flowers. Description Description Erica abietina subsp. abietina is a sturdy shrub up to 1.5 m high. It arises from a single woody stem and branches freely to produce a dense growth. The mid to upper branches are clothed with a dense arrangement of green, needle-like, ericoid leaves. The flowers are clustered near the ends of the branches and are bright red, tubular, curved and flared at the mouth. Flowers are produced from midsummer to midwinter, i.e. from December to August, but appear occasionally throughout the year. Conservation Status Status Erica abietina subsp. abietina is common within conservation areas and so this species has been classified in the Red List as Least Concern (National Red List of South African Plants: http://redlist.sanbi.org accessed March 2009). Distribution and habitat Distribution description Printed from: http://www.plantzafrica.com 1 of 3 2017/01/09 12:33 PM PlantZAfrica - SANBI Erica abietina subsp. abietina | Plantz Africa South African National Biodiversity Institute This species is endemic to the upper slopes and plateau of Table Mountain. It is commonly found growing above the 500 m contour amongst rocks in full sunlight. Derivation of name and historical aspects History Erica abietina subsp. abietina is part of the Erica abietina complex (Oliver & Oliver 2002). Some of the subspecies in the Erica abietina complex are: E. abietina subsp. atrorosea (= E. phylicifolia ); E. abietina subsp. constantiana (= E. conica ); and E. abietina subsp. aurantiaca (= E. grandiflora ). The name abietina is derived from Latin and means like a fir tree, and refers to the leaves which resemble those of fir trees of the genus Abies. Ecology Ecology Erica abietina subsp. abietina is found in Peninsula Sandstone fynbos. This vegetation type consists of poor, well-drained, sandy and stony soils derived from the quartzites of the Table Mountain Series. This erica is one of many red flowered plants found on Table Mountain in summer, which provide food for birds and insects. Its colourful tubular flowers attract sunbirds and the 'Table Mountain Beauty' butterfly, Aeropetes tulbaghia that feeds on its nectar. Some of the other red-flowered species include Crassula coccinea , Disa uniflora and Disa ferruginea (cluster Disa), Watsonia tabularis and Chasmanthe eathiopica . Uses Use Erica abietina subsp. abietina is quite hardy in Cape Mediterranean conditions and is a useful addition to a fynbos garden. Growing Erica abietina subsp. abietina Grow Erica abietina subsp. abietina should be planted in gardens where it is in full sunlight and is well ventilated. This species performs best when planted in rockeries on sloping ground, terraces or embankments and with other fynbos plants. Companion plants may include other ericas, buchus, brunias, and restios. It will also do well in a medium-sized container in a well-drained growing medium: equal parts of composted pine bark or pine needles and river sand, and a little (20%) loam may also be added. Regular pruning is recommended to keep the plants well branched and compact. Plants that are pruned are more presentable, last longer and produce more flowers. Erica plants are adapted to living in poor soils and therefore should be regularly fed with diluted organic liquid or small Printed from: http://www.plantzafrica.com 2 of 3 2017/01/09 12:33 PM PlantZAfrica - SANBI Erica abietina subsp. abietina | Plantz Africa South African National Biodiversity Institute amounts of organic pellet fertilizers. It is propagated vegetatively by rooting fresh semi-hardwood tip or heel cuttings. Cuttings are rooted in multi-trays on heated benches under mist spray. Cuttings are rooted in autumn or spring in a rooting medium of equal parts bark and polystyrene chips. A semi-hardwood rooting hormone is used to aid the rooting process. This species grows easily from seed sown in well-drained, acidic, sandy soil and subjected to smoke treatment. Seed is normally sown from late summer into autumn, i.e. March to May. References Adamson, R.S. & Salter, T.M. 1950. Flora of the Cape Peninsula. Juta, Cape Town and Johannesburg. Goldblatt, P. & Manning, J. 2000. Cape plants. A conspectus of the Cape flora of South Africa. Strelitzia 9. National Botanical Institute, Cape Town and Missouri Botanical Garden. Oliver, E.G.H. & Oliver, I.M. 2002. The genus Erica (Ericaceae) in southern Africa: taxonomic notes 1. Bothalia 32: 37-61. Schumann, D. & Kirsten, G. 1992. Ericas of South Africa. Fernwood Press, Vlaeberg, Cape Town. Smith, C.A. 1966. Common names of South African plants. Memoirs of the Botanical Survey of South Africa No. 35. website: The National Red List of South African Plants (March 2009): http://www.sanbi.org/biodiversity/reddata.htm. Credits Anthony Hitchcock Kirstenbosch National Botanical Garden June 2009 Printed from: http://www.plantzafrica.com 3 of 3 2017/01/09 12:33 PM.
Recommended publications
  • Phylogenetics, Flow-Cytometry and Pollen Storage in Erica L
    Institut für Nutzpflanzenwissenschaft und Res sourcenschutz Professur für Pflanzenzüchtung Prof. Dr. J. Léon Phylogenetics, flow-cytometry and pollen storage in Erica L. (Ericaceae). Implications for plant breeding and interspecific crosses. Inaugural-Dissertation zur Erlangung des Grades Doktor der Agrarwissenschaften (Dr. agr.) der Landwirtschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn von Ana Laura Mugrabi de Kuppler aus Buenos Aires Institut für Nutzpflanzenwissenschaft und Res sourcenschutz Professur für Pflanzenzüchtung Prof. Dr. J. Léon Referent: Prof. Dr. Jens Léon Korreferent: Prof. Dr. Jaime Fagúndez Korreferent: Prof. Dr. Dietmar Quandt Tag der mündlichen Prüfung: 15.11.2013 Erscheinungsjahr: 2013 A mis flores Rolf y Florian Abstract Abstract With over 840 species Erica L. is one of the largest genera of the Ericaceae, comprising woody perennial plants that occur from Scandinavia to South Africa. According to previous studies, the northern species, present in Europe and the Mediterranean, form a paraphyletic, basal clade, and the southern species, present in South Africa, form a robust monophyletic group. In this work a molecular phylogenetic analysis from European and from Central and South African Erica species was performed using the chloroplast regions: trnL-trnL-trnF and 5´trnK-matK , as well as the nuclear DNA marker ITS, in order i) to state the monophyly of the northern and southern species, ii) to determine the phylogenetic relationships between the species and contrasting them with previous systematic research studies and iii) to compare the results provided from nuclear data and explore possible evolutionary patterns. All species were monophyletic except for the widely spread E. arborea , and E. manipuliflora . The paraphyly of the northern species was also confirmed, but three taxa from Central East Africa were polyphyletic, suggesting different episodes of colonization of this area.
    [Show full text]
  • The Structure of the Perennial Growth of Disa Un/Flora Berg
    THE STRUCTURE OF THE PERENNIAL GROWTH OF DISA UN/FLORA BERG. ( ORCHIDACEAE) HONOURS SYSTEMATICS PROJECT JANET THOMAS OCTOBER 1990 SUPERVISOR: DR . .H.P. LINDER University of Cape Town The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgement of the source. The thesis is to be used for private study or non- commercial research purposes only. Published by the University of Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author. University of Cape Town BOLUS LIBRARY 1 ABSTRACT The perennation of orchids is poorly understood, in particular that of the Orchidoidae. The understanding of perennation in the Orchidoidae is important because the root-stem tuberoid .is used as the one character defining the Orchidoidae as a monophyletic group. The root-stem tuberoid has never been examined for variation before. This project focuses on perennial growth in the Diseae in order to study the structbre and function of the root stem tuberoid in relation tp other organs and to contribute to the understanding of Orchidoid phylogeny. , INTRODUCTION Host te1perate monocotyledons have evolved underground resting or perennating organs for the climatically unfavourable season (Holttum 1955). A period of underground existence may allow a plant to escape unfavourable conditions, to counter environmental uncertainty, and to build reserves for flowering episodes (Calvo 1990). This is especially evident in the temperate members of the Orchidaceae and is made possible through sympodial growth· (Withnerj1974). Not .all temperate orchids have a resting period although they do have sympodial growth and do perennate.
    [Show full text]
  • Erica Abietina Subsp. Atrorosea | Plantz Africa South African National Biodiversity Institute
    PlantZAfrica - SANBI Erica abietina subsp. atrorosea | Plantz Africa South African National Biodiversity Institute pza.sanbi.org Erica abietina subsp. atrorosea | Plantz Africa Introduction Erica abietina subsp. atrorosea is only found on the Cape Peninsula (endemic Cape Peninsula species) and is known to regular mountain walkers as Erica phylicifolia. When Dr Ted Oliver revised this section of Erica in 2002, he included this species in a complex of seven subspecies within the species abietina. Description Description Erica abietina subsp. atrorosea is a sturdy shrub up to 1 m high. It arises from a single woody stem and branches freely to produce a dense shrub. The mid to upper branches are clothed with a dense arrangement of dark green, needle-like ericoid leaves. This species produces pinkish purple flowers, which are slightly sticky and arranged in attractive clusters near the ends of the branches. The flowers are tubular, curved and widen slightly towards the mouth. Flowers are produced from midsummer to midwinter in the Cape (December to August). Conservation Status Status Printed from: http://www.plantzafrica.com 1 of 3 2017/01/09 12:38 PM PlantZAfrica - SANBI Erica abietina subsp. atrorosea | Plantz Africa South African National Biodiversity Institute Erica abietina subsp. atrorosea is common within conservation areas and so this species has been classified in the Red Data List as Least Concern. A species is listed as Least Concern when it does not qualify for the criteria of Critically Endangered, Endangered, Vulnerable or Near Threatened. Distribution and habitat Distribution description This species is confined to the Cape Peninsula. It is common above Kirstenbosch and on the lower mountain slopes from Constantia Nek southwards to Cape Point.
    [Show full text]
  • PLANT LIST 2019 DISA DISA Uniflora £15 Orange
    DAVE PARKINSON PLANTS PLANT LIST 2019 DISA DISA uniflora £15 Orange. Large flowered. Beautiful species. DISA uniflora-pink £15 Later flowering species. Large flowers of pale dusky pink. DISA uniflora-Carmine £15 Large flowers of attractive carmine. Later flowering species, very scarce DISA uniflora-Red River £15 Large red flowers. Short growing species. DISA aurata £15 Many small golden yellow flowers on a long stem. Small plant, species. DISA tripetaloides £15 Many small white/pink flowers on a long stem arising from a small plant species. In short supply.(Sold Out) HYBRIDS DISA Brides Dream £15 Veitchii x Foam. DISA Child Safety Transvaal £15 Unifoam x Betty's Bay DISA Child Safety Transvaal Sonia' £15 Large flowered, tall growing. Brilliant cerise pink DISA Collette Cywes ‘Blush’ £15 Tall growing. Very pale pink. In short supply DISA Constantia £12 Kewdiot x Betty's Bay DISA Diores £12 Pretty orange/red unnamed clone DISA Diores-Inca Warrior £12 Red/orange flowers on a robust plant. Excellent choice to start a collection DISA Diores-Inca Princess £12 Tall growing. Large pale pink flowers DISA Diores-Inca City £12 Pink slightly later flowering DISA Diores Inca Gold £12 Deep pink, despite the name DISA Diores `Inca King` £12 Large flowered Pink DISA Diorosa £12 Very tall growing. Large flowered pink DISA Foam 'Zoe' £15 Tall growing, large orangy flowers with pink overlay, petal tips pink DISA Foam £12 Mainly orange, Large Flowers DISA Glasgow Orchid Conference £15 Large flowers of orange or red. Strong plant. Short growing DISA Kalahari Sands £15 Foam x Unifoam DISA Kalahari Sands 'Tina' £15 Selected clone.
    [Show full text]
  • 01 Innerfrontcover40 2.Indd 1 8/27/2010 2:27:58 PM BOTHALIA
    ISSN 0006 8241 = Bothalia Bothalia A JOURNAL OF BOTANICAL RESEARCH Vol. 40,2 Oct. 2010 TECHNICAL PUBLICATIONS OF THE SOUTH AFRICAN NATIONAL BIODIVERSITY INSTITUTE PRETORIA Obtainable from the South African National Biodiversity Institute (SANBI), Private Bag X101, Pretoria 0001, Republic of South Africa. A catalogue of all available publications will be issued on request. BOTHALIA Bothalia is named in honour of General Louis Botha, first Premier and Minister of Agriculture of the Union of South Africa. This house journal of the South African National Biodiversity Institute, Pretoria, is devoted to the furtherance of botanical science. The main fields covered are taxonomy, ecology, anatomy and cytology. Two parts of the journal and an index to contents, authors and subjects are published annually. Three booklets of the contents (a) to Vols 1–20, (b) to Vols 21–25, (c) to Vols 26–30, and (d) to Vols 31–37 (2001– 2007) are available. STRELITZIA A series of occasional publications on southern African flora and vegetation, replacing Memoirs of the Botanical Survey of South Africa and Annals of Kirstenbosch Botanic Gardens. MEMOIRS OF THE BOTANICAL SURVEY OF SOUTH AFRICA The memoirs are individual treatises usually of an ecological nature, but sometimes dealing with taxonomy or economic botany. Published: Nos 1–63 (many out of print). Discontinued after No. 63. ANNALS OF KIRSTENBOSCH BOTANIC GARDENS A series devoted to the publication of monographs and major works on southern African flora.Published: Vols 14–19 (earlier volumes published as supplementary volumes to the Journal of South African Botany). Discontinued after Vol. 19. FLOWERING PLANTS OF AFRICA (FPA) This serial presents colour plates of African plants with accompanying text.
    [Show full text]
  • Biodiversity Fact Sheets: Threatened Species
    Biodiversity Fact Sheets: Threatened Species * Supplementary document to a series of 8 biodiversity fact sheets* RED LIST PLANTS Critically Endangered (CR) Afrolimon purpuratum CR Aristea ericifolia erecta CR Arctotheca forbesiana CR Aspalathus aculeata CR Aspalathus horizontalis CR Aspalathus rycroftii CR Babiana leipoldtii CR Babiana regia CR Babiana secunda CR Cadiscus aquaticus CR Cephalophyllum parviflorum CR Chrysocoma esterhuyseniae CR Cliffortia acockii CR Cotula myriophylloides CR Cyclopia latifolia CR Diastella proteoides CR Disa barbata CR Disa nubigena CR Disa physodes CR Disa sabulosa CR Erica abietina diabolis CR Erica bolusiae bolusiae CR Erica heleogena CR Erica malmesburiensis CR Erica margaritacea CR Erica ribisaria CR Erica sociorum CR Erica ustulescens CR Erica vallis‐aranearum CR Geissorhiza eurystigma CR Geissorhiza malmesburiensis CR Geissorhiza purpurascens CR Gladiolus aureus CR Gladiolus griseus CR Hermannia procumbens procumbens CR Holothrix longicornu CR Ixia versicolor CR Lachenalia arbuthnotiae CR Lachenalia purpureo ‐caerulea CR Lampranthus tenuifolius CR Leucadendron floridum CR Leucadendron lanigerum laevigatum CR Leucadendron levisanus CR Leucadendron macowanii CR Leucadendron stellare CR Leucadendron thymifolium CR Leucadendron verticillatum CR Marasmodes oligocephala CR Marasmodes polycephala CR Metalasia distans CR Mimetes hottentoticus CR Moraea angulata CR Moraea aristata CR Muraltia satureioides salteri CR Oxalis natans CR Podalyria microphylla CR Polycarena silenoides CR Protea odorata CR Psoralea
    [Show full text]
  • 77 CHAPTER 5 REPRODUCTION on the CLIFF Obligate Cremnophytes
    CHAPTER 5 REPRODUCTION ON THE CLIFF Obligate cremnophytes are exiled to life on a cliff and are effectively adapted to their vertical habitat where there is no (or limited) disturbance by larger mammals. Very few plants other than succulents can sustain life on a cliff, and the few non-succulent species that do survive, display a shift in reproductive strategy. Obligate cremnophytes cannot compete in conventional (non- cliff) accessible habitats and even if they do germinate in a non-cliff situation, the plants will soon be grazed. All plants are dependent on moisture, nutrients and sufficient solar radiation and cremnophytes have to cope with gravity in special ways. Furthermore, sustained life on a cliff demands an effective reproductive strategy. The overall reproductive behaviour of obligate cremnophytes deviates from that of their non-cremnophilous relatives in accessible habitats. The emphasis in this chapter is on cliff-adapted reproductive strategies. Apart from their sexual reproduction, most (204 or 93% of the taxa studied) obligate succulent cremnophytes have an in situ vegetative propagation backup. There is therefore a clear shift to vegetative propagation on the cliff and many cremnophytes are dependent on this asexual mode of reproduction. Both sexual and asexual reproduction are discussed below. Semisucculent plants such as Dewinteria petrophila [221], Stemodiopsis rivae [222] and Colpias mollis are less succulent but have additional strategies such as active cremnocarpy and cremno-amphicarpy. Colpias mollis and D. petrophila are almost ephemeral or weak perennials. The vertical habitat and the constant presence of gravity demand an effective seed dispersal strategy. Cliffs are known for updrafts and birds of prey are often observed as they glide on thermals above cliff faces.
    [Show full text]
  • Estimating the Age of Fire in the Cape Flora of South Africa from an Orchid Phylogeny
    Bytebier, B; Antonelli, A; Bellstedt, D U; Linder, H P (2011). Estimating the age of fire in the Cape flora of South Africa from an orchid phylogeny. Proceedings of the Royal Society of London. Series B, Biological Sciences , 278(1703):188-195. Postprint available at: http://www.zora.uzh.ch University of Zurich Posted at the Zurich Open Repository and Archive, University of Zurich. Zurich Open Repository and Archive http://www.zora.uzh.ch Originally published at: Bytebier, B; Antonelli, A; Bellstedt, D U; Linder, H P (2011). Estimating the age of fire in the Cape flora of South Winterthurerstr. 190 Africa from an orchid phylogeny. Proceedings of the Royal Society of London. Series B, Biological Sciences , CH-8057 Zurich 278(1703):188-195. http://www.zora.uzh.ch Year: 2011 Estimating the age of fire in the Cape flora of South Africa from an orchid phylogeny Bytebier, B; Antonelli, A; Bellstedt, D U; Linder, H P Bytebier, B; Antonelli, A; Bellstedt, D U; Linder, H P (2011). Estimating the age of fire in the Cape flora of South Africa from an orchid phylogeny. Proceedings of the Royal Society of London. Series B, Biological Sciences , 278(1703):188-195. Postprint available at: http://www.zora.uzh.ch Posted at the Zurich Open Repository and Archive, University of Zurich. http://www.zora.uzh.ch Originally published at: Bytebier, B; Antonelli, A; Bellstedt, D U; Linder, H P (2011). Estimating the age of fire in the Cape flora of South Africa from an orchid phylogeny. Proceedings of the Royal Society of London.
    [Show full text]
  • Variation in Breeding Systems and Consequences for Reproductive Traits in Erica
    Variation in Breeding Systems and Consequences for Reproductive Traits in Erica University of Cape Town Variation in Breeding Systems and Consequences for Reproductive Traits in Erica Brittany Arendse ARNBRI007 University of Cape Town Submitted in fulfilment of the academic requirements for the degree of Master of Science Department of Biological Sciences University of Cape Town November 2014 Supervisor: Professor Jeremy Midgley Co-supervised: Professor Steve Johnson The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgement of the source. The thesis is to be used for private study or non- commercial research purposes only. Published by the University of Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author. University of Cape Town Table of Contents Plagiarism Declaration ........................................................................................................... ii Acknowledgments..................................................................................................................... iii Abstract .......................................................................................................................................... 1 General Introduction ............................................................................................................... 3 Chapter I - Breeding System Variation and Ecological Correlates in the Genus Erica ...................................................................................
    [Show full text]
  • Havens of Biodiversity, and Places That Allow People to Connect with Natural Habitats and Ecosystems, Will Become Increasingly More Valuable for Future Generations
    Supplement to Veld & Flora, Vol. 93(4) December 2007 1 booklet3_FINAL_for print.indd 1 2007/11/02 10:50:33 AM FOREWORD The Botanical Society of South Africa (BotSoc) has been a partner and supporter of the South African National Biodiversity Institute (SANBI) and its forerunners for over 90 years. This supplement to Veld & Flora focuses on other “biodiversity” (birds, mammals, insects, etc.) rather than just our core interest, which is “plant diversity”. It is an example of BotSoc embracing the change which Dr Bruce McKenzie has come about since SANBI replaced its predecessor Executive Director, BotSoc the National Botanical Institute (NBI) and also supports one of the principles contained in BotSoc’s Centenary Charter (see Veld & Flora, March 2006) which outlines our commitment to supporting SANBI and its mandate. In this regard the BotSoc warmly welcomes the first CEO of SANBI, Dr Tanya Abrahamse, and looks forward to working with her and her team in tackling new challenges, some of which she has spelt out in her foreword to the supplement. Dr Bruce McKenzie EXECUTIVE DIRECTOR, BotSoc CONTENTS 2 Animals form an integral part of South Africa’s National Botanical Gardens 3 Free State NBG, Bloemfontein 4 Harold Porter NBG, Betty’s Bay 6 Karoo Desert NBG, Worcester 7 Kirstenbosch NBG, Cape Town KwaZulu-Natal NBG, Pietermaritzburg Compiled by: 11 Christopher K. Willis & 13 Lowveld NBG, Nelspruit Augustine T. Morkel 16 Nieuwoudtville NBG Published by: The Botanical Society of South Africa 18 Pretoria NBG and the South African National 21
    [Show full text]
  • Species Delimitation and Speciation Process in the Seriphium Plumosum L
    Species delimitation and speciation process in the Seriphium plumosum L. complex (Gnaphalieae: Asteraceae) in South Africa By Zaynab Shaik Dissertation presented in fulfilment of the degree of Master of Science specialising in Biological Sciences Under supervision by: Assoc. Prof. G.A. Verboom (Department of Biological Sciences, University of Cape Town) Dr N.G. Bergh (Compton Herbarium, South African National Biodiversity Institute) Department of Biological Sciences, University of Cape Town February 2019 Abstract The remarkable richness of the Cape Floristic Region (CFR) and the high in situ diversification inferred for the region prompt interest in two key areas: first, to what extent has the true species richness of the Cape been discovered and described, and second, what are the key drivers of speciation? Steady efforts in taxonomy dating back to the early 17th century have led some to estimate that over 99% of species in the Cape flora have already been described. However, taxonomic research in the Cape has, as elsewhere, relied on morphology for delimiting species, implying that undiscovered species diversity among cryptic taxa may be substantial. Early ideas regarding the drivers of diversification in the Cape flora emphasised climatically-induced vicariant speciation. Since that time, both vicariance and ecological speciation have been invoked as drivers of diversification. However, the relative contributions of either of these modes to the richness of the flora remains unclear. The present work focuses on Seriphium plumosum, a species complex in the daisy tribe Gnaphalieae with a recent evolutionary origin and a core distribution in the Cape Floristic Region. The species’ problematic taxonomic history, its substantial morphological and ecological variability, as well as its large geographic distribution in southern Africa suggest that the current concept of the species houses multiple independent evolutionary species.
    [Show full text]
  • The Endemic Flora of the Cape Peninsula, South Africa
    South African Journal of Botany 72 (2006) 205 – 210 www.elsevier.com/locate/sajb The endemic flora of the Cape Peninsula, South Africa N.A. Helme a,*, T.H. Trinder-Smith b a Nick Helme Botanical Surveys, PO Box 22652, Scarborough 7975, South Africa b Bolus Herbarium, Department of Botany, University of Cape Town, Private Bag, Rondebosch 7700, South Africa Received 27 June 2005; accepted 13 July 2005 Abstract The Cape Peninsula is a well known area of exceptional plant diversity and endemism within the Cape Floristic Region, but an accurate and complete listing of the endemic seed plant species has been lacking. Here, we present a list of the 158 species and 3 subspecies that are currently regarded as Cape Peninsula endemics, with discussion on the profile of the endemic flora, plant hotspots within the area, and conservation issues. Endemics constitute 7% of the total Peninsula flora. 76% of the endemic species fall within only 10 families, with Erica being the genus with the greatest number of endemic species on the Peninsula (39). The Peninsula is identified as a centre of endemism for Roella, Tetraria, Serruria, and Muraltia. Many families are notably under-represented in terms of endemic species on the Peninsula, including Geraniaceae, Oxalidaceae, Thymelaeaceae, Apiaceae, Hyacinthaceae, Poaceae, Rhamnaceae, Rutaceae, Orchidaceae, and Asteraceae. 62% of the endemics are shrubs or dwarf shrubs. 41% of the endemics are currently Red Data Book listed, but the Table Mountain National Park conserves a large percentage of the montane habitat, as well as significant lowland habitat in the extreme south. D 2005 SAAB.
    [Show full text]