Species Delimitation and Speciation Process in the Seriphium Plumosum L
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Phylogenetics, Flow-Cytometry and Pollen Storage in Erica L
Institut für Nutzpflanzenwissenschaft und Res sourcenschutz Professur für Pflanzenzüchtung Prof. Dr. J. Léon Phylogenetics, flow-cytometry and pollen storage in Erica L. (Ericaceae). Implications for plant breeding and interspecific crosses. Inaugural-Dissertation zur Erlangung des Grades Doktor der Agrarwissenschaften (Dr. agr.) der Landwirtschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn von Ana Laura Mugrabi de Kuppler aus Buenos Aires Institut für Nutzpflanzenwissenschaft und Res sourcenschutz Professur für Pflanzenzüchtung Prof. Dr. J. Léon Referent: Prof. Dr. Jens Léon Korreferent: Prof. Dr. Jaime Fagúndez Korreferent: Prof. Dr. Dietmar Quandt Tag der mündlichen Prüfung: 15.11.2013 Erscheinungsjahr: 2013 A mis flores Rolf y Florian Abstract Abstract With over 840 species Erica L. is one of the largest genera of the Ericaceae, comprising woody perennial plants that occur from Scandinavia to South Africa. According to previous studies, the northern species, present in Europe and the Mediterranean, form a paraphyletic, basal clade, and the southern species, present in South Africa, form a robust monophyletic group. In this work a molecular phylogenetic analysis from European and from Central and South African Erica species was performed using the chloroplast regions: trnL-trnL-trnF and 5´trnK-matK , as well as the nuclear DNA marker ITS, in order i) to state the monophyly of the northern and southern species, ii) to determine the phylogenetic relationships between the species and contrasting them with previous systematic research studies and iii) to compare the results provided from nuclear data and explore possible evolutionary patterns. All species were monophyletic except for the widely spread E. arborea , and E. manipuliflora . The paraphyly of the northern species was also confirmed, but three taxa from Central East Africa were polyphyletic, suggesting different episodes of colonization of this area. -
Erica Abietina Subsp. Atrorosea | Plantz Africa South African National Biodiversity Institute
PlantZAfrica - SANBI Erica abietina subsp. atrorosea | Plantz Africa South African National Biodiversity Institute pza.sanbi.org Erica abietina subsp. atrorosea | Plantz Africa Introduction Erica abietina subsp. atrorosea is only found on the Cape Peninsula (endemic Cape Peninsula species) and is known to regular mountain walkers as Erica phylicifolia. When Dr Ted Oliver revised this section of Erica in 2002, he included this species in a complex of seven subspecies within the species abietina. Description Description Erica abietina subsp. atrorosea is a sturdy shrub up to 1 m high. It arises from a single woody stem and branches freely to produce a dense shrub. The mid to upper branches are clothed with a dense arrangement of dark green, needle-like ericoid leaves. This species produces pinkish purple flowers, which are slightly sticky and arranged in attractive clusters near the ends of the branches. The flowers are tubular, curved and widen slightly towards the mouth. Flowers are produced from midsummer to midwinter in the Cape (December to August). Conservation Status Status Printed from: http://www.plantzafrica.com 1 of 3 2017/01/09 12:38 PM PlantZAfrica - SANBI Erica abietina subsp. atrorosea | Plantz Africa South African National Biodiversity Institute Erica abietina subsp. atrorosea is common within conservation areas and so this species has been classified in the Red Data List as Least Concern. A species is listed as Least Concern when it does not qualify for the criteria of Critically Endangered, Endangered, Vulnerable or Near Threatened. Distribution and habitat Distribution description This species is confined to the Cape Peninsula. It is common above Kirstenbosch and on the lower mountain slopes from Constantia Nek southwards to Cape Point. -
Spotted Knapweed Centaurea Stoebe Ssp. Micranthos (Gugler) Hayek
spotted knapweed Centaurea stoebe ssp. micranthos (Gugler) Hayek Synonyms: Acosta maculosa auct. non Holub, Centaurea biebersteinii DC., C. maculosa auct. non Lam, C. maculosa ssp. micranthos G. Gmelin ex Gugler Other common names: None Family: Asteraceae Invasiveness Rank: 86 The invasiveness rank is calculated based on a species’ ecological impacts, biological attributes, distribution, and response to control measures. The ranks are scaled from 0 to 100, with 0 representing a plant that poses no threat to native ecosystems and 100 representing a plant that poses a major threat to native ecosystems. Description Ecological Impact Spotted knapweed is a biennial to short-lived perennial Impact on community composition, structure, and plant. Stems are 30½ to 91 cm tall and generally interactions: Spotted knapweed often forms dense branched. Rosette leaves are compound with several stands in natural communities. Infestations reduce the irregularly lobed segments. Stem leaves are alternate, 5 vigor of native plants, decrease the species diversity of to 15 cm long, more or less hairy, and resin-dotted. plant communities, and degrade the forage quality of Lower stem leaves are narrowly divided, while the wildlife habitats. Winter-ranging elk may avoid foraging upper stem leaves are undivided. Flower heads are 19 to in spotted knapweed dominated communities (Rice et al. 25½ mm wide and are composed of purple disc florets 1997). Knapweeds are allelopathic, inhibiting the (Royer and Dickinson 1999, Whitson et al. 2000). establishment and growth of surrounding vegetation (Whitson et al. 2000). Impact on ecosystem processes: Infestations of spotted knapweed have been shown to increase the erosion of topsoil. -
Ecological Influences in the Biogeography of the Austral Sedges
ECOLOGICALINFLUENCESINTHEBIOGEOGRAPHYOFTHE AUSTRALSEDGES jan-adriaan viljoen Dissertation presented in fulfillment of the requirements for the degree MSc in Botany Department of Biological Sciences Faculty of Sciences University of Cape Town UniversityFebruary of2016 Cape Town The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgement of the source. The thesis is to be used for private study or non- commercial research purposes only. Published by the University of Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author. University of Cape Town Jan-Adriaan Viljoen. Ecological influences in the biogeography of the aus- tral sedges. MSc dissertation. University of Cape Town. Cape Town. February 2016. supervisors: A. Muthama Muasya G. Anthony Verboom ABSTRACT The biogeographic history of a species is a result of both stochastic processes such as dispersal and habitat filters that determine where a population with a given set of biological requirements can become es- tablished. In this dissertation, I examine the geographical and ecolog- ical distribution of the sedge tribe Schoeneae in conjunction with its inferred speciation history in order to determine the pattern of disper- sal and the environmental factors that have influenced establishment. The biogeographic reconstruction indicates numerous transoceanic dispersal events consistent with random diffusion from an Australian point of origin, but with a bias towards habitats with vegetation type and moisture regime similar to the ancestral conditions of the given subgroup (open and dry habitats in the majority of cases). The global distribution of the tribe also suggests a preference for low-nutrient soils, which I investigate at the local (microhabitat) scale by contrast- ing the distributions of the tribes Schoeneae and Cypereae on the Cape Peninsula along soil fertility axes. -
How Many of Cassini Anagrams Should There Be? Molecular
TAXON 59 (6) • December 2010: 1671–1689 Galbany-Casals & al. • Systematics and phylogeny of the Filago group How many of Cassini anagrams should there be? Molecular systematics and phylogenetic relationships in the Filago group (Asteraceae, Gnaphalieae), with special focus on the genus Filago Mercè Galbany-Casals,1,3 Santiago Andrés-Sánchez,2,3 Núria Garcia-Jacas,1 Alfonso Susanna,1 Enrique Rico2 & M. Montserrat Martínez-Ortega2 1 Institut Botànic de Barcelona (CSIC-ICUB), Pg. del Migdia s.n., 08038 Barcelona, Spain 2 Departamento de Botánica, Facultad de Biología, Universidad de Salamanca, 37007 Salamanca, Spain 3 These authors contributed equally to this publication. Author for correspondence: Mercè Galbany-Casals, [email protected] Abstract The Filago group (Asteraceae, Gnaphalieae) comprises eleven genera, mainly distributed in Eurasia, northern Africa and northern America: Ancistrocarphus, Bombycilaena, Chamaepus, Cymbolaena, Evacidium, Evax, Filago, Logfia, Micropus, Psilocarphus and Stylocline. The main morphological character that defines the group is that the receptacular paleae subtend, and more or less enclose, the female florets. The aims of this work are, with the use of three chloroplast DNA regions (rpl32-trnL intergenic spacer, trnL intron, and trnL-trnF intergenic spacer) and two nuclear DNA regions (ITS, ETS), to test whether the Filago group is monophyletic; to place its members within Gnaphalieae using a broad sampling of the tribe; and to investigate in detail the phylogenetic relationships among the Old World members of the Filago group and provide some new insight into the generic circumscription and infrageneric classification based on natural entities. Our results do not show statistical support for a monophyletic Filago group. -
Thesis Sci 2009 Bergh N G.Pdf
The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgementTown of the source. The thesis is to be used for private study or non- commercial research purposes only. Cape Published by the University ofof Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author. University Systematics of the Relhaniinae (Asteraceae- Gnaphalieae) in southern Africa: geography and evolution in an endemic Cape plant lineage. Nicola Georgina Bergh Town Thesis presented for theCape Degree of DOCTOR OF ofPHILOSOPHY in the Department of Botany UNIVERSITY OF CAPE TOWN University May 2009 Town Cape of University ii ABSTRACT The Greater Cape Floristic Region (GCFR) houses a flora unique for its diversity and high endemicity. A large amount of the diversity is housed in just a few lineages, presumed to have radiated in the region. For many of these lineages there is no robust phylogenetic hypothesis of relationships, and few Cape plants have been examined for the spatial distribution of their population genetic variation. Such studies are especially relevant for the Cape where high rates of species diversification and the ongoing maintenance of species proliferation is hypothesised. Subtribe Relhaniinae of the daisy tribe Gnaphalieae is one such little-studied lineage. The taxonomic circumscription of this subtribe, the biogeography of its early diversification and its relationships to other members of the Gnaphalieae are elucidated by means of a dated phylogenetic hypothesis. Molecular DNA sequence data from both chloroplast and nuclear genomes are used to reconstruct evolutionary history using parsimony and Bayesian tools for phylogeny estimation. -
01 Innerfrontcover40 2.Indd 1 8/27/2010 2:27:58 PM BOTHALIA
ISSN 0006 8241 = Bothalia Bothalia A JOURNAL OF BOTANICAL RESEARCH Vol. 40,2 Oct. 2010 TECHNICAL PUBLICATIONS OF THE SOUTH AFRICAN NATIONAL BIODIVERSITY INSTITUTE PRETORIA Obtainable from the South African National Biodiversity Institute (SANBI), Private Bag X101, Pretoria 0001, Republic of South Africa. A catalogue of all available publications will be issued on request. BOTHALIA Bothalia is named in honour of General Louis Botha, first Premier and Minister of Agriculture of the Union of South Africa. This house journal of the South African National Biodiversity Institute, Pretoria, is devoted to the furtherance of botanical science. The main fields covered are taxonomy, ecology, anatomy and cytology. Two parts of the journal and an index to contents, authors and subjects are published annually. Three booklets of the contents (a) to Vols 1–20, (b) to Vols 21–25, (c) to Vols 26–30, and (d) to Vols 31–37 (2001– 2007) are available. STRELITZIA A series of occasional publications on southern African flora and vegetation, replacing Memoirs of the Botanical Survey of South Africa and Annals of Kirstenbosch Botanic Gardens. MEMOIRS OF THE BOTANICAL SURVEY OF SOUTH AFRICA The memoirs are individual treatises usually of an ecological nature, but sometimes dealing with taxonomy or economic botany. Published: Nos 1–63 (many out of print). Discontinued after No. 63. ANNALS OF KIRSTENBOSCH BOTANIC GARDENS A series devoted to the publication of monographs and major works on southern African flora.Published: Vols 14–19 (earlier volumes published as supplementary volumes to the Journal of South African Botany). Discontinued after Vol. 19. FLOWERING PLANTS OF AFRICA (FPA) This serial presents colour plates of African plants with accompanying text. -
Die Plantfamilie ASTERACEAE: 6
ISSN 0254-3486 = SA Tydskrif vir Natuurwetenskap en Tegnologie 23, no. 1 & 2 2004 35 Algemene artikel Die plantfamilie ASTERACEAE: 6. Die subfamilie Asteroideae P.P.J. Herman Nasionale Botaniese Instituut, Privaat sak X101, Pretoria, 0001 e-pos: [email protected] UITTREKSEL Die tribusse van die subfamilie Asteroideae word meer volledig in hierdie artikel beskryf. Die genusse wat aan dié tribusse behoort word gelys en hulle verspreiding aangedui. ABSTRACT The plant family Asteraceae: 6. The subfamily Asteroideae. The tribes of the subfamily Asteroideae are described in this article. Genera belonging to the different tribes are listed and their distribution given. INLEIDING Tribus ANTHEMIDEAE Cass. Hierdie artikel is die laaste in die reeks oor die plantfamilie Verteenwoordigers van hierdie tribus is gewoonlik aromaties, Asteraceae.1-5 In die vorige artikel is die klassifikasie bokant byvoorbeeld Artemisia afra (wilde-als), Eriocephalus-soorte, familievlak asook die indeling van die familie Asteraceae in sub- Pentzia-soorte.4 Die feit dat hulle aromaties is, beteken dat hulle families en tribusse bespreek.5 Hierdie artikel handel oor die baie chemiese stowwe bevat. Hierdie stowwe word dikwels subfamilie Asteroideae van die familie Asteraceae, met ’n aangewend vir medisyne (Artemisia) of insekgif (Tanacetum).4 bespreking van die tribusse en die genusse wat aan die verskillende Verder is hulle blaartjies gewoonlik fyn verdeeld en selfs by dié tribusse behoort. Die ‘edelweiss’ wat in die musiekblyspel The met onverdeelde blaartjies, is die blaartjies klein en naaldvormig sound of music besing word, behoort aan die tribus Gnaphalieae (Erica-agtig). Die pappus bestaan gewoonlik uit vry of vergroeide van die subfamilie Asteroideae. -
Centaurea Stoebe Ssp. Micranthos
Species: Centaurea stoebe ssp. micranthos http://www.fs.fed.us/database/feis/plants/forb/cenmac/all.html SPECIES: Centaurea maculosa Introductory Distribution and occurrence Management Considerations Botanical and ecological characteristics Fire ecology Fire effects References INTRODUCTORY SPECIES: Centaurea maculosa AUTHORSHIP AND CITATION FEIS ABBREVIATION SYNONYMS NRCS PLANT CODE COMMON NAMES TAXONOMY LIFE FORM FEDERAL LEGAL STATUS OTHER STATUS AUTHORSHIP AND CITATION: Zouhar, Kris. 2001. Centaurea maculosa. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: http://www.fs.fed.us/database/feis/ [2007, September 24]. FEIS ABBREVIATION: CENMAC SYNONYMS: Centaurea biebersteinii DC. [82] Centaurea stoebe L. ssp. micranthos (Gugler) Hayek [137] NRCS PLANT CODE [212]: CEBI2 1 of 58 9/24/2007 4:04 PM Species: Centaurea stoebe ssp. micranthos http://www.fs.fed.us/database/feis/plants/forb/cenmac/all.html COMMON NAMES: spotted knapweed TAXONOMY: The scientific name for spotted knapweed is Centaurea maculosa Lam. (Asteraceae) [45,67,217,233]. Oschmann [137] suggests that in North America, the name Centaurea maculosa has been misapplied to Centaurea stoebe ssp. micranthos. The taxonomy of spotted knapweed is discussed in Ochsmann [137] and on the Centaurea website. Oschsmann [136] also cites evidence of hybridization between spotted and diffuse knapweed (Centaurea diffusa) in at least 7 U.S. states. The hybrid is named Centaurea × psammogena Gayer. LIFE FORM: Forb FEDERAL LEGAL STATUS: No special status OTHER STATUS: Spotted knapweed has been declared a noxious or restricted weed in at least 15 states in the U.S. and 4 Canadian provinces [213]. -
Protecting the Endangered Flora of Papenkuils Wetland in South Africa" 2
Final Report 1. CLP project ID & Project title: Project ID 01282416 CLP Project Title: “Protecting the Endangered Flora of Papenkuils Wetland in South Africa" 2. Host country, site location and dates in the field: South Africa, Rawsonville, Nov 2016 - Apr 2017 3. Institutions Involved: World Wide Fund for Nature South Africa (WWF-SA), Living Lands, Land Life Company 4. Overall Aim: Using new water-saving technology to create a tree buffer zone for the protection of the Papenkuils Wetland, South Africa. 5. Full names of authors: Lyndre Nel, Ingeborg Mägi, Michelle Duncan & Roderick Juba 6. Permanent contact address, email and website: [email protected], www.facebook.com/PapenkuilsWetland2016/ 7. Date when the report was completed: 20/10/2017 Table of Contents Section 1 .......................................................................................................................................... 2 Summary ...................................................................................................................................... 2 Introduction ................................................................................................................................. 2 Project Members ......................................................................................................................... 5 Section 2 .......................................................................................................................................... 6 Summary of Main Aim, Objectives, Activities and Outputs -
Field Guide for Wild Flower Harvesting
FIELD GUIDE FOR WILD FLOWER HARVESTING 1 Contents Introducing the Field Guide for Wild Flower Harvesting 3 Glossary 4 Introducing The Field Guide Fynbos 6 for Wild Flower Harvesting What is fynbos? 7 The Cape Floral Kingdom 7 Many people in the Overberg earn a living from the region’s wild flowers, known as South African plants 8 fynbos. Some pick flowers for markets to sell, some remove invasive alien plants, and Threats to fynbos 8 others are involved in conservation and nature tourism. It is important that people The value of fynbos 9 who work in the veld know about fynbos plants. This Field Guide for Wild Flower Harvesting describes 41 of the most popular types of fynbos plants that are picked from Fynbos and fire 9 our region for the wild flower market. It also provides useful information to support Classification of plants 9 sustainable harvesting in particular and fynbos conservation in general. Naming of plants 10 Picking flowers has an effect or impact on the veld. If we are not careful, we can Market for fynbos 10 damage, or even kill, plants. So, before picking flowers, it is important to ask: Picking fynbos with care 11 • What can be picked? The Sustainable Harvesting Programme 12 • How much can be picked? • How should flowers be picked? The SHP Code of Best Practice for Wild Harvesters 12 Ten principles of good harvesting 13 This guide aims to help people understand: The Vulnerability Index and the Red Data List 13 • the differences between the many types of fynbos plants that grow in the veld; and Know how much fynbos you have 14 • which fynbos plants can be picked, and which are scarce and should rather be Fynbos plants of the Agulhas Plain and beyond 14 left in the veld. -
Elytropappus Rhinocerotis
Alfred Maroyi /J. Pharm. Sci. & Res. Vol. 11(10), 2019, 3508-3513 Ethnomedicinal uses, phytochemistry and pharmacological properties of Elytropappus rhinocerotis Alfred Maroyi Department of Biodiversity, University of Limpopo, Private Bag X1106, Sovenga 0727, South Africa. Abstract Elytropappus rhinocerotis is a small perennial shrub widely used as traditional medicine in South Africa. This study is aimed at providing a critical review of the botany, medicinal uses, phytochemistry and pharmacological properties of E. rhinocerotis. Documented information on the botany, medicinal uses, phytochemistry and pharmacological properties of E. rhinocerotis was collected from several online sources which included BMC, Scopus, SciFinder, Google Scholar, Science Direct, Elsevier, Pubmed and Web of Science. Additional information on the botany, medicinal uses, phytochemistry and pharmacological properties of E. rhinocerotis was gathered from pre-electronic sources such as book chapters, books, journal articles and scientific publications sourced from the University library. This study showed that the leaves, roots, stems and twigs of E. rhinocerotis are mainly used as appetite stimulant and tonic, and traditional medicines for high blood pressure, backache, convulsions, foot perspiration and odour, respiratory problems, sores and wounds, bladder problems, kidney problems, vermifuge, diabetes, fever, painful hands and feet, influenza, ulcers, cancer and stomach cancer and stomach problems. Phytochemical compounds identified from the aerial parts and