Pteridophytes General Characters

Total Page:16

File Type:pdf, Size:1020Kb

Pteridophytes General Characters PTERIDOPHYTES GENERAL CHARACTERS Dr. S.SALAMMA NSPR GOVT. DEGREE COLLEGE (W), HINDUPUR • Pteridophytes are spore-bearing vascular plants. • They are commonly called as ‘vascular cryptogams’ or ‘botanical snakes’. • Pteridophytes constitute the most primitive group of land plants with a vascular system. • The origin of Pteridophytes dates back to Silurian period of Palaeozoic era. GENERAL CHARACTERS OF PTERIDOPHYTES Occurrence • Pteridophytes grow in a variety of habitats. Most of them are terrestrial (grow on land) and found luxurious in habitats of abundant moisture. Some of them grow as xerophytes Ex. Selaginella bryopteris • A few Pteridophytes are aquatic (Azolla, Salvinia, Isoetes, Marsilia) and some others are epiphytic (Drynaria). The plant body • In Pteridophyte life cycle, there are two generations, sporophyte and gametophyte. • The sporophyte is the recognised plant body of all pteridophytes and is diploid in nature. The sporophyte develops from the zygote which results from the fertilisation of the egg by a male gamete. • The sporophytic plant body is differentiated into true roots, stem and leaves. But some primitive Pteridophytes are without true roots and well developed leaves (Psilotum) • Branching in many Pteridophytes is monopodial. In some members, the branching is of dichotomous type (Dicranopteris). • The sporophytic plant presents a great range in form. Two main categories may be distinguished. • One category comprises megaphyllous types, in which the leaves are large in relation to the stem, and is represented by the ferns. • Second category consists of microphyllous type, in which the leaves are small in relation to the stem and is represented by the lycopods and the horse-tails. • All the vegetative organs of the sporophyte possess vascular supply. The vascular system comprises complex tissues, xylem and phloem. • Phloem is with sieve tubes but lacks companion cells. Xylem is made up of tracheids. In some members of Selaginella and Equisetum, primitive vessels are present. • The vascular system in pteridophytes may be a simple as protostele (without pith), siphonostele (with pith), or a dictyostele (advanced type of siphonostele). • Secondary growth is absent in majority of the living pteridophytes except Isoetes. Reproduction • The sporophytic plant reproduces asexually by means of spores which are produced in small capsules called sporangia. • The position of the sporangia differs among the groups, but they are always found on the sporophyte. In some pteridophytes, the sporangia are borne on stems. In some others, the sporangia are borne either on the leaves (foliar) or in their axils (between the leaves and the stem). • In some pteridophytes, the sporangia are produced within the specialised structures called the sporocarps (e.g., Marsilea). • Leaves bearing the sporangia are called sporophylls. The sporophylls may be widely scattered on a plant or may be clustered in definite areas and structures called cones or strobili (Selaginella and Equisetum). • According to the nature and mode of development, the sporangia are of two types: • A large sporangium developing from several initial cells producing many spores is called as eusporangium and the development is called as eusporangiate. • Small specialized sporangia developing from a single initial cell producing a small, definite number of spores is called as leptosporangium and the development is called as leptosporangiate. • Within the sporangia are developed the diploid spore mother cells or sporocytes. These spore mother cells undergo meiosis or reduction division and produce haploid spores. • If all the spores are of the same size, the plant is said to be homosporous (Lycopodium) and if the plant is producing two kinds of spores then it is called as heterosporous (8 genera in pteridophytes are heterosporous (Selaginella). • In the heterosporous type, the two different types of spores are produced in separate sporangia. The smaller spores produced in larger numbers in microsporangia are termed as microspores or male spores and the larger spores which are produced in smaller numbers in megasporangia are termed as megaspores. The Gametophyte • The haploid spores, on germination give rise to the haploid gametophytes or prothalli which are usually small and insignificant structures. The gametophytes are inconspicuous as compared to the sporophytes. • Hence the sporophyte has become the dominant part of the life-cycle of pteridophytes, while the gametophyte has been much reduced. The gametophytes are of two types • Gametophytes that develop from homospores grow upon the soil and form independent plants-these are known as exosporic gametophytes. • Gametophytes, that develop from heterospores are for the most part, retained within the original spore case and dependent on sporophyte are called endosporic gametophytes • Exosporic gametophyte is typically a delicate, thin thallus and is commonly called the prothallus. In most of the pteridophytes, they attached to ground by numerous rhizoids. They live independently. • In some pteridophytes, the exosporic gametophytes are devoid of chlorophyll and are subterranean in habitant are saprophytic. In such cases, they obtain their food by symbiosis through the agency of mycorrhiza which occurs within the tissue of the prothallus or gametophyte (Psilotum) • Endosporic gametophytes that develop from heterospores are greatly reduced structures. They develop largely or entirely within the spore wall and live on food deposited in the spores. • The gametophyte or prothallus bears the sex-organs, the antheridia and archegonia. Typically, the gametophytes formed from the homospores are monoecious, that is both antheridia and archegonia are born in large numbers on the same gametophyte or prothallus. • The gametophytes formed from the heterospores are dioecious, the antheridia and archegonia developing on separate male and female gametophytes. Prothallus • The sex organs are called as antheridia and archegonia • The antheridia may be embedded either wholly (Lycopodium) or in part in the tissue of gametophyte (some ferns) or they may project from it. • At maturity, each antheridium is a globular structure. It consists of an outer sterile wall inside which are found a large number of androcytes. Each androcyte gives rise to a single motile antherozoid or sperm. • Each archegonium is a flask-shaped structure, consisting of a basal swollen, embedded portion, the venter and a short neck. The wall of the venter develops from the tissue of the prothallus. The venter encloses the egg and ventral canal cell. Inside the neck are found the neck canal cells. • At maturity, the apical cells separate, the neck canal cells disintegrate forming a passage for the antherozoids to reach the egg cell. Fertilization • Fertilization in all cases is accomplished by the agency of water. One of the male gamete fuses with the egg of archegonium and form zygote. The fusion of a male gamete and an egg restores the diploid nature chromosomes number and results in the formation of the zygote. The embryo • The zygote undergoes repeated divisions to form a new sporophyte. The young sporophyte remains attached to the gametophyte by means of a foot and draws nourishment from the prothallus until it develops its own stem, roots and leaves. The sporophyte is dependent on the gametophyte only during its early stages. Life cycle of Pteridophytes • The life cycle of a pteridophyte comprises of two distinct phases or generations, sporophyte and gametophyte. The first generation, the sporophyte, is the diploid and dominant part of the life-cycle and is organised into stem, leaves and roots. • The sporophyte plant develops sporangia within which are diploid cells are produced called spore mother cells. Each spore mother cell divides by meiotic or reduction division and produce four spores which are haploid. • In some Pteridophytes, all spores produced by sporangia are of one type; such a plant is said to be homosporous. In these plants gametophytes are of same kind are bisexual. In heterosporous Pteridophytes, the spores are of two kinds-the smaller ones are termed as microspores or male spores which developed in microsporangia, while the larger spores are called megaspores or female spores which formed in megasporangia. • The microspores on germination produce the male gametophyte. • The megaspores produce the female gametophytes. • Gametophytic generation is always small, inconspicuous and bears male and female gametes. The male gametes are produced in large number within the antheridium. The female gamete is generally borne singly within the archegonium • Fertilization takes place in the presence of moisture when a sperm cell fuses with an egg to produce a diploid zygote. The zygote germinates again into a new sporophyte. • Thus the life cycle of a pteridophyte exhibit alternation of generations comprising of an alternate succession of sporophytic and gametophytic generations. There is a distinct difference in case of sporangia and spores and nature of gametophyte in homosporous and heterosporous pteridophytes. LIFE CYCLE OF A FERN .
Recommended publications
  • Anthocerotophyta
    Glime, J. M. 2017. Anthocerotophyta. Chapt. 2-8. In: Glime, J. M. Bryophyte Ecology. Volume 1. Physiological Ecology. Ebook 2-8-1 sponsored by Michigan Technological University and the International Association of Bryologists. Last updated 5 June 2020 and available at <http://digitalcommons.mtu.edu/bryophyte-ecology/>. CHAPTER 2-8 ANTHOCEROTOPHYTA TABLE OF CONTENTS Anthocerotophyta ......................................................................................................................................... 2-8-2 Summary .................................................................................................................................................... 2-8-10 Acknowledgments ...................................................................................................................................... 2-8-10 Literature Cited .......................................................................................................................................... 2-8-10 2-8-2 Chapter 2-8: Anthocerotophyta CHAPTER 2-8 ANTHOCEROTOPHYTA Figure 1. Notothylas orbicularis thallus with involucres. Photo by Michael Lüth, with permission. Anthocerotophyta These plants, once placed among the bryophytes in the families. The second class is Leiosporocerotopsida, a Anthocerotae, now generally placed in the phylum class with one order, one family, and one genus. The genus Anthocerotophyta (hornworts, Figure 1), seem more Leiosporoceros differs from members of the class distantly related, and genetic evidence may even present
    [Show full text]
  • Seedless Plants Key Concept Seedless Plants Do Not Produce Seeds 2 but Are Well Adapted for Reproduction and Survival
    Seedless Plants Key Concept Seedless plants do not produce seeds 2 but are well adapted for reproduction and survival. What You Will Learn When you think of plants, you probably think of plants, • Nonvascular plants do not have such as trees and flowers, that make seeds. But two groups of specialized vascular tissues. plants don’t make seeds. The two groups of seedless plants are • Seedless vascular plants have specialized vascular tissues. nonvascular plants and seedless vascular plants. • Seedless plants reproduce sexually and asexually, but they need water Nonvascular Plants to reproduce. Mosses, liverworts, and hornworts do not have vascular • Seedless plants have two stages tissue to transport water and nutrients. Each cell of the plant in their life cycle. must get water from the environment or from a nearby cell. So, Why It Matters nonvascular plants usually live in places that are damp. Also, Seedless plants play many roles in nonvascular plants are small. They grow on soil, the bark of the environment, including helping to form soil and preventing erosion. trees, and rocks. Mosses, liverworts, and hornworts don’t have true stems, roots, or leaves. They do, however, have structures Vocabulary that carry out the activities of stems, roots, and leaves. • rhizoid • rhizome Mosses Large groups of mosses cover soil or rocks with a mat of Graphic Organizer In your Science tiny green plants. Mosses have leafy stalks and rhizoids. A Journal, create a Venn Diagram that rhizoid is a rootlike structure that holds nonvascular plants in compares vascular plants and nonvas- place. Rhizoids help the plants get water and nutrients.
    [Show full text]
  • Crosstalk Between Sporophyte and Gametophyte Generations Is Promoted By
    Genetics: Early Online, published on April 13, 2016 as 10.1534/genetics.115.180141 Crosstalk between Sporophyte and Gametophyte Generations Is Promoted by CHD3 Chromatin Remodelers in A. thaliana Benjamin Carter*, James T. Henderson*, Elisabeth Svedin§, Martijn Fiers†, Kyle McCarthy*, Amanda Smith*, Changhua Guo†, Brett Bishop*, Heng Zhang*, Tjitske Riksen†, Allison Shockley*, Brian P. Dilkes§, Kim Boutilier†, Joe Ogas* * Department of Biochemistry, Purdue University, West Lafayette, Indiana § Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana † Bioscience, Wageningen University and Research Centre, Wageningen, Netherlands 1 Copyright 2016. CHD3 Remodelers in Reproductive Development Keywords: PICKLE, PKR2, ovule, pollen tube, seed size Corresponding author: Joe Ogas 175 S. University St. West Lafayette, IN 47907 765-496-3969 [email protected] 2 ABSTRACT Angiosperm reproduction requires the integrated development of multiple tissues with different genotypes. To achieve successful fertilization, the haploid female gametophytes and diploid ovary must coordinate their development, after which the male gametes must navigate through the maternal sporophytic tissues to reach the female gametes. After fertilization, seed development requires coordinated development of the maternal diploid integuments, the triploid endosperm, and the diploid zygote. Transcription and signaling factors contribute to communication between these tissues, and roles for epigenetic regulation have been described for some of these processes. Here we identify a broad role for CHD3 chromatin remodelers in Arabidopsis thaliana reproductive development. Plants lacking the CHD3 remodeler PICKLE exhibit various reproductive defects including abnormal development of the integuments, female gametophyte, and pollen tube as well as delayed progression of ovule and embryo development. Genetic analyses demonstrate that these phenotypes result from loss of PICKLE in the maternal sporophyte.
    [Show full text]
  • Plant Propagation Lab Exercise Module 2
    Plant Propagation Lab Exercise Module 2 PROPAGATION OF SPORE BEARING PLANTS FERNS An introduction to plant propagation laboratory exercises by: Gabriel Campbell-Martinez and Dr. Mack Thetford Plant Propagation Lab Exercise Module 2 PROPAGATION OF SPORE BEARING PLANTS FERNS An introduction to plant propagation laboratory exercises by: Gabriel Campbell-Martinez and Dr. Mack Thetford LAB OBJECTIVES • Introduce students to the life cycle of ferns. • Demonstrate the appropriate use of terms to describe the morphological characteristics for describing the stages of fern development. • Demonstrate techniques for collection, cleaning, and sowing of fern spores. • Provide alternative systems for fern spore germination in home or commercial settings. Fern spore germination Fern relationship to other vascular plants Ferns • Many are rhizomatous and have circinate vernation • Reproduce sexually by spores • Eusporangiate ferns • ~250 species of horsetails, whisk ferns moonworts • Leptosporangiate • ~10,250 species Sporophyte Generation Spores are produced on the mature leaves (fronds) of the sporophyte generation of ferns. The spores are arranged in sporangia which are often inside a structure called a sorus. The sori often have a protective covering of living leaf tissue over them that is called an indusium. As the spores begin to mature the indusium may also go through physical changes such as a change in color or desiccating and becoming smaller as it dries to allow an opening for dispersal. The spores (1n) may be wind dispersed or they may require rain (water) to aid in dispersal. Gametophyte Generation The gametophyte generation is initiated with the germination of the spore (1n). The germinated spore begins to grow and form a heart-shaped structure called a prothallus.
    [Show full text]
  • The Structure and Development of the Prothallus of Equisetum Debile, Roxb
    The Structure and Development of the Prothallus of Equisetum debile, Roxb. BY SHIV RAM KASHYAP, B.A. (Cantab.), M.Sc. (Punjab), Professor of Botany, Government College, Lahore. With forty-five Figures in the Text INTRODUCTION. LL the species of Equisetum whose prothalli had been investigated Ai- before 1905 are confined to Europe (Goebel, p. 195). The writer is not aware if any extra-European species have been investigated since then. As the prothalli of Equisetum debile whose range is given by Baker ('Fern Allies ', p. 5) as ' Tropical Asia from the Himalayas and Ceylon eastward through the Malay Isles to Fiji', were found growing in large numbers along the banks of the river Ravi in Lahore, and as they differed in general characters from the prothalli hitherto described, it was thought that a study of the development might bring out some interesting points. The result of this study carried on in the winter of 1913—13 is given in the following pages. Aitchison and Stewart describe Equisetum debile as the only species of Equisetum occurring in the Punjab, and certainly this is the only species met with in or near Lahore. It may be mentioned that Baker remarks that this species is doubtfully distinct from Equisetum ramosissimum, Desf., which is cosmopolitan in the warm temperate and tropical zones, but nothing is known as regards the prothallus of this latter species. MATERIAL. The plant grows in and near Lahore in great abundance along the banks of the river in sandy soil or in the shady and swampy soil of the wood along the river.
    [Show full text]
  • Mosses and Ferns
    Mosses and Ferns • How did they evolve from Protists? Moss and Fern Life Cycles Group 1: Seedless, Nonvascular Plants • Live in moist environments to reproduce • Grow low to ground to retain moisture (nonvascular) • Lack true leaves • Common pioneer species during succession • Gametophyte most common (dominant) • Ex: Mosses, liverworts, hornworts Moss Life Cycle 1)Moss 2) Through water, 3) Diploid sporophyte 4) Sporophyte will gametophytes sperm from the male will grow from zygote create and release grow near the gametophyte will haploid spores ground swim to the female (haploid stage) gametophyte to create a diploid zygote Diploid sporophyte . zygo egg zygo te egg te zygo zygo egg egg te te male male female female female male female male Haploid gametophytes 5) Haploid 6) The process spores land repeats and grow into new . gametophytes . Haploid gametophytesground . sporophyte . zygo egg zygo te egg te zygo zygo egg egg te te male male female female female male female male Haploid gametophytes • Vascular system allows Group 2: Seedless, – Taller growth – Nutrient transportation Vascular Plants • Live in moist environments – swimming sperm • Gametophyte stage – Male gametophyte: makes sperm – Female gametophyte: makes eggs – Sperm swims to fertilize eggs • Sporophyte stage – Spores released into air – Spores land and grow into gametophyte • Ex: Ferns, Club mosses, Horsetails Fern Life Cycle 1) Sporophyte creates and releases haploid spores Adult Sporophyte . ground 2) Haploid spores land in the soil . ground 3) From the haploid spores, gametophyte grows in the soil Let’s zoom in Fern gametophytes are called a prothallus ground 4) Sperm swim through water from the male parts (antheridium) to the female parts (archegonia)…zygote created Let’s zoom back out zygo zygo egg egg te te zygo egg te 5) Diploid sporophyte grows from the zygote sporophyte Fern gametophytes are called a prothallus ground 6) Fiddle head uncurls….fronds open up 7) Cycle repeats -- Haploid spores created and released .
    [Show full text]
  • General Characters of Pteridophytes.Pdf
    Pteridophytes: General Characters 1. Meaning of Pteridophytes: Pteridophyta (Gr, Pteron = feather, phyton = plant), the name was originally given to those groups of plants which have well developed pinnate or frond like leaves. Pteridophytes are cryptogams (Gr. kruptos = hidden, and Gamos = wedded) which have well developed vascular tissue. Therefore, these plants are also known as vascular cryptogams or snakes of plant kingdom. They are represented by about 400 living and fossil genera and some 10,500 species. Palaeobotanical studies reveal that these plants were dominant on the earth during the Devonian period and they were originated about 400 million years ago in the Silurian period of the Palaeozoic era. Earliest known Pteridophyte is Cooksonia. 2. General Characters of Pteridophytes: (i) Majority of the living Pteridophytes are terrestrial and prefer to grow in cool, moist and shady places e.g., ferns. Some members are aquatic (e.g., Marsilea, Azolla), xerophytic (e.g., Selaginella rupestris, Equisetum) or epiphytic (e.g., Lycopodium squarrosum) (Fig. 1). (ii) Majority of the Pteridophytes are herbaceous but a few are perennial and tree like (e.g., Angiopteris). Smallest Pteridophyte is Azolla (an aquatic fern) and largest is Cyathea (tree fern). (iii) Plant body is sporophytic and can be differentiated into root, stem and leaves. (iv) Roots are adventitious in nature with monopodial or dichotomous branching. Internally usually they are diarch. (v) Stem is usually branched. Branching is monopodial or dichotomous. Branches do not arise in the axil of the leaves. In many Pteridophytes stem is represented by rhizome. (vi) Leaves may be small, thin, scaly (microphyllous e.g., Equisetum), simple and sessile (e.g., Selaginella) or large and pinnately compound (megaphyllous e.g., Dryopteris, Adiantum).
    [Show full text]
  • Plant Reproduction Main Idea Reproduction in Plants Can Be Asexual Or Sexual
    Plant Plants have adaptations that enable them to reproduce in specific habitats. Reproduction Section 1 Introduction to Plant Reproduction Main Idea Reproduction in plants can be asexual or sexual. Plant life cycles include an alternation of generations. Section 2 Seedless Reproduction Main Idea The joining of a seedless plant’s egg and sperm requires moist condi- tions and produces a spore. Section 3 Seed Reproduction Main Idea Reproduction in seed plants involves pollen grains—the sources of sperm, and ovules—the sources of the eggs. The joining of eggs and sperms can produce seeds. A Forest from Ashes Saplings and other plants are growing among the remains of trees destroyed by fire. Where did these new plants come from? Some may have grown from seeds, and others may have grown from roots or stems that survived underground. These plants are the result of plant reproduction. Science Journal List three plants that reproduce by forming seeds. 270 Massimo Mastrorillo/CORBIS Start-Up Activities Plant Reproduction Make the following Foldable to compare and contrast the sexual and Do all fruits contain seeds? asexual characteristics of a plant. You might know that most plants grow from seeds. Seeds are usually found in the fruits of STEP 1 Fold one sheet of paper lengthwise. plants. When you eat watermelon, it can contain many small seeds. Do some plants produce fruits without seeds? Do this lab to find out. STEP 2 Fold into thirds. 1. Obtain two grapes from your teacher. Each grape should be from a different plant. 2. Split each grape in half and examine the STEP 3 Unfold and draw overlapping ovals.
    [Show full text]
  • GENERAL BOTANY Lecture 32 - Bryophytes
    Jim Bidlack - BIO 1304 GENERAL BOTANY Lecture 32 - Bryophytes COMMENT: WELCOME TO THE WORLD OF PLANTS!! (WE'RE NOW IN KINGDOM PLANTAE) I. General characteristics of the Bryophyte Phyla A. Similarities to algae 1. Produce free-swimmin' sperm that travel through water to reach the eggs 2. No vascular system 3. No lignified tissue 4. Lack roots and true leaves B. What makes Bryophytes members of the Kingdom Plantae? 1. Eucaryotic 2. Lack chitinous walls (cellulose instead) & photosynthesis 3. Embryos have a jacket of sterile cells encasing reproductive cells C. Special characteristics of Bryophytes 1. Eggs formed in archegonia; sperm produced in antheridia 2. Chief photosynthetic body is the gametophyte (haploid) - note that Bryophytes demonstrate the sporic life cycle (sporophyte & gametophyte) 3. Structure is usually thallus 4. Uses: ecological importance, aesthetic value, absorbing ability, food, and medicine 5. May be the evolutionary link between algae and higher plants II. Characteristics of Bryophyte Phyla A. Phylum Hepaticophyta (liverworts - "HHHHEEEEPPPPPTTTTT!!!! [liver]") - small, green, ribbon-shaped plants 1. Two generations: gametophyte (predominant) and sporophyte 2. Ribbon-shaped thallus can often form a rosette 3. Female part (archegonia) has a head that looks like a palm tree (archegoniophore); male part (antheridia) has a head that looks like an umbrella (antheridiophore) 4. Collective term for archegonia and antheridia is gametangia B. Phylum Antherocerotophyta (hornworts - "antlers [horns]"): looks like liverwort except that the sporophyte has a much longer structure 1. Two generations: gametophyte is a ribbon-shaped thallus and sporophyte towers over the gametophyte 2. Hornworts are unique because they only have one large chloroplast per cell and those chloroplasts have pyrenoids (mosses and liverworts have many chloroplasts and lack pyrenoids) C.
    [Show full text]
  • Pteridophytes: Pteridophytes Are Vascular Cryptogams
    Pteridophytes: Pteridophytes are vascular cryptogams. They are the earliest know vascular plants which originated in the Silurian period of Palaeozoic era. They are the successful colonizers on land habit. Characteristic features: 1. Non flowering vascular plant. 2. Sporophyte is the pre-dominant plant body differentiated into root, stem and leaves. 3. Heteromorphic alternation of generation where both the sporophytic and gametophytic generations are nutritionally independent. 4. The stem is generally branched either dichotomous or monopodial. 5. They are polysporangiate, either homosporous or heterosporous. 6. Presence of multicellular sex organs antheridia and archegonia 7. The zygote undergo repeated mitotic division to form embryo. Adaptive features: Spores: The spores are bounded by two concentric wall layers, the outer thick wall (exine) and inner thin wall (intine). Cuticle and stomata: The function of cuticle is to prevent water loss, gas exchange from the body. It is also resistant to microbial attack and mechanical injury. Stomata controls the passage of gas and water depending on the requirement of plant. Tubes and tracheids: Conducting system become essential when plant adopts an upright habit and grows away from the aquatic environment. Tracheids are elongated cells in the xylem of vascular plants that serve in the transport of water and mineral salts. A variety of tubular cells found in early land plants that have fulfilled the role of tracheids. Distribution: Mostly terrestrial, some member are aquatic (Azolla, Salvinia etc), xerophytic (Selaginella, Equisetum etc) and many are epiphyte (Ophioglossum, Polypodium etc) Life forms: Small herbaceous annual to large perennials. Plant Body The major plant body is nutritionally independent sporophyte which is differentiated into root, stem and leaves.
    [Show full text]
  • HARDY FERN FOUNDATION QUARTERLY the HARDY FERN FOUNDATION Quarterly Volume 8 • No
    THE HARDY FERN FOUNDATION P.O. Box 166 Medina, WA 98039-0166 [email protected] Web site darkwing, uoregon .edu/~sueman/ The Hardy Fern Foundation was founded in 1989 to establish a comprehensive collection of the world’s hardy ferns for display, testing, evaluation, public educa¬ tion and introduction to the gardening and horticultural community. Many rare and unusual species, hybrids and varieties are being propagated from spores and tested in selected environments for their different degrees of hardiness and orna¬ mental garden value. The primary fern display and test garden is located at, and in conjunction with, The Rhododendron Species Botanical Garden at the Weyerhaeuser Corporate Headquarters, in Federal Way, Washington. Satellite fern gardens are at the Stephen Austin Arboretum, Nacogdoches, Texas, Birmingham Botanical Gardens, Birmingham, Alabama, California State Univer¬ sity at Sacramento, Sacramento, California, Dallas Arboretum, Dallas, Texas, Denver Botanic Gardens. Denver, Colorado, Georgeson Botanical Garden, Uni¬ versity of Alaska, Fairbanks, Alaska, Harry P. Leu Garden, Orlando, Florida, Coastal Maine Botanical Garden, Wiscasset, Maine, Inniswood Metro Gardens, Colum¬ bus, Ohio, New York Botanical Garden, Bronx, New York, and Strybing Arbore¬ tum, San Francisco, California. The fern display gardens are at Lakewold, Tacoma, Washington, Les Jardins de Metis, Quebec, Canada, University of Northern Colorado, Greeley, Colorado, and Whitehall Historic Home and Garden, Louisville, KY. Hardy Fern Foundation members participate in a spore exchange, receive a quar¬ terly newsletter and have first access to ferns as they are ready for distribution. Cover Design by Willanna Bradner. HARDY FERN FOUNDATION QUARTERLY THE HARDY FERN FOUNDATION Quarterly Volume 8 • No. 3 • Editor Sue Olsen \ T *2 W4 g WS11 U President’s Message.47 Anne C.
    [Show full text]
  • Difference Between Protenema and Prothallus
    Difference Between Protonema and Prothallus www.differencebetween.com Key Difference - Protonema vs Prothallus Bryophytes and Pteridophytes are respectively non-vascular and vascular plants. Vascular plants contain xylem and phloem for the transportation of their nutrients. Therefore, bryophytes and pteridophytes differ in many ways including their life cycles. In Bryophyte life cycle, the dominant stage is the gametophyte, and in pteridophytes, the dominant stage is the sporophyte. Protonema and Prothallus are two types of gametophytes belonging to bryophytes' and pteridophytes' life cycles. The protonema is a filamentous threadlike structure while the prothallus is a heart-shaped structure with many rhizoids beneath it and contains both female and male reproductive units. This is the key difference between protonema and prothallus. What is a Protonema? In the context of mosses and liverworts life cycles, the protonema is a structure which appears as threads that developed during the very early stage. Protonema develops at the initiation of the moss development after the spore germination. Then through different sequential developments stages, the protonema develops into leafy shoots which are referred to as gametophores. The protonema is an algal-like filamentous structure. It is a characteristic feature of all mosses and many of the liverworts. In hornworts (a type of liverworts) the protonema stage is absent, and it is considered as an exceptional thing with consideration to the liverworts. The protonema represents a typical gametophyte. A protonema develops through apical cell division. At the specific stage of this development cycle, phytohormone cytokinin influences the budding of three faced apical cells. The buds finally become gametophores. The gametophores are structures that mimic stems and leaves of bryophytes since they lack true stems and true leaves.
    [Show full text]