What Lies Ahead Make Chemical Ten Leading Chemists Set Priorities for the Forthcoming Processes Greener Decades, and Reveal the Scientists They Find Inspiring

Total Page:16

File Type:pdf, Size:1020Kb

What Lies Ahead Make Chemical Ten Leading Chemists Set Priorities for the Forthcoming Processes Greener Decades, and Reveal the Scientists They Find Inspiring COMMENT CHRISTOPHER C. CUMMINS S. J. COLEMAN J. S. Better living through chemistry Massachusetts Institute of Technology, Cambridge Chemistry is not always well encapsulated by a simplistic ‘big question’ formula. Advances in chemistry are needed to address myriad issues, ranging from resource stewardship in the global carbon, nitrogen and phosphorus cycles, to energy-saving ways of doing catal- ysis with inexpensive, abundant elements. Chemistry has a fundamental part to play in developing a future wherein a high liv- ing standard is attainable for all without the sacrifice of our environment and habitat. I admire Marie Curie (see ‘A gallery of greats’) tremendously because of the abso- lute, relentless determination she exhibited in performing the excruciatingly tedious work involved in the isolation of radium. The brilliance of her ideas was backed up by a Herculean work ethic. All budding scientists should read her biography. MARTYN POLIAKOFF What lies ahead Make chemical Ten leading chemists set priorities for the forthcoming processes greener decades, and reveal the scientists they find inspiring. University of Nottingham, UK to transformative innovation. The key question facing green chemists and PAUL WENDER Those who see problems through a process engineers this decade is how to design molecular lens are well positioned to molecules with specific properties and func- Look through a address some of the major problems of tions and, then, how to make those molecules our time. We cannot hope to improve pub- with minimal waste and hazard. Chemistry molecular lens lic health, for example, without a shift in has made huge strides in this in recent years emphasis to early detection and prevention but still we are often reduced to tinkering Stanford University, California of disease. That in turn requires an under- with molecules and observing the changes in standing of the molecular origins of disease their properties rather like computer hackers Chemistry has often been called a ‘central and the design of molecules that can detect probing an unfamiliar piece of software. science’. In my view, it is more accurately a early molecular events that lead to disease Looking further ahead, everything we ‘universal science’. It deals with molecular progression. make and use involves chemical elements structure, function and synthesis, subjects Our energy future is also inexorably and, in the past 100 years, we have squan- of great importance across the whole of intertwined with questions of structure dered many of the planet’s resources in science. The problems of our time and of and function, whether connected to energy making the paraphernalia of modern life. the future are not confined to a single dis- collection, storage or conversion. Smart Concentrated deposits of minerals have cipline. Indeed, research and how we think materials and responsive devices require been mined, and the elements within them about problems are becoming increasingly molecules or molecular systems that both scattered across the globe. Now, many of ‘molecularized’, because questions require detect an event and structurally change these elements are becoming so scarce that an understanding of atomic-level struc- in response to it. We are in the midst of a they are ‘endangered’. Unless we can invent ture and function and the ability to design molecular revolution that will profoundly sustainable substitutes, many of the products and make new molecules and systems — change our world. that support current society, from laptops to whether drugs, diagnostics, new materials fertilizers, will disappear. And chemists are or even functioning cells. From molecular 20��: YEAR OF CHEMISTRY best placed to make these inventions. anthropology to molecular zoology (and Celebrating the central science The most important year, rather than even molecular gastronomy), we have nature.com/chemistry20�� person, in chemistry was 1869. Dmitri entered an age of exploration that will lead Mendeleev in St Petersburg proposed the 6 JANUARY 2011 | VOL 469 | NATURE | 23 © 2011 Macmillan Publishers Limited. All rights reserved COMMENT periodic table and Thomas Andrews in I admire a perfect blend between Jacobus unlikely that human activity could lead to Belfast invented the term ‘critical point’ at van ’t Hoff (1852–1911) and Hans Wyn- such an increase. Now more than 100 years which the distinction between a liquid and a berg. Van ’t Hoff, the first chemistry Nobel have passed, the scale of human activity gas disappear. Supercritical fluids have been laureate in 1901, proposed seminal insights has grown enormously, and we can see that the focus of my research for the past 25 years into the three-dimensional arrangements Arrhenius got it mostly just right. and led me into the field of green chemistry. of atoms in space, thereby introducing the The periodic table has influenced me since field of stereochemistry. Remarkably, he high school and, recently, launched me onto got this idea at the age of 22, showing the KAREN WOOLEY YouTube: www.periodicvideos.com. strength of combining a passion for science with originality of thought. I admire my Enhance selective PhD adviser Hans Wynberg for introduc- LAURA KIESSLING ing me to the fascinating world of chiral interactions molecules and for his drive to stimulate the Mimic how nature young generation to work at the frontiers Texas A&M University, College Station of science. makes polymers Over the next decade the design and study of polymers as functional materials for medical University of Wisconsin-Madison PAUL ALIVISATOS and other applications must address three pri- mary challenges. First, how to enhance selec- One very basic question we must answer is Replicate tive interactions while avoiding non-selective how biological systems make polymers of ones, so that molecules can target specific tis- controlled sequences and lengths without photosynthesis sues in vivo. Second, how can chemists create a template. Carbohydrate polymers are the single, well-defined structures, as formed most abundant organic substances on the Director, Lawrence Berkeley National in nature, instead of populations of materi- planet and we do not know how they are Laboratory, California als with varying composition, structure and generated and how their lengths are con- size that result from experiments in the lab? trolled. This information could allow us to This will be the decade when we finally learn Third, how can synthetic organic chemists better harvest cellulose for energy, design how to make artificial photosynthesis work in extend the exquisite control they wield over better vaccines for pathogens, control a practical way. The goal dates back to Melvin the construction of natural drug products growth-factor signalling pathways in can- Calvin (1911–97), who developed our under- and analogues to allow new synthetic targets cer or development, and devise new types of standing of the biological carbon cycle, and for chemical manipulation, including ribo- antimicrobials. Understanding how nature who appreciated the need to establish a stable somes and viruses. All of these require greater makes polysaccharides could also provide cycle for human use of energy. An artificial control over intermolecular interactions. insight into a wide range of polymerization photosynthetic system could provide us with As a young girl, I admired Marie Curie, reactions, including those that underlie the a sustainable form of energy for the future. but over the years, my appreciation for sev- formation of telomeres —protective caps on This grand challenge requires chemists to eral ‘giants’ of modern chemistry has grown, chromosomes — and their role in cancer. solve many deep and long-standing prob- especially for those, such as Robert Grubbs I admire so many chemists, living and lems. For instance, we need to understand (who shared the 2005 Nobel Prize in Chem- dead. Pushed to choose one, I would go with multi-electron and multi-step catalytic events istry for his work on organic reactions), who Emil Fischer (1852–1919) for his imaginative more deeply, so that we can design better cat- are driven by scientific curiosity and main- applications of organic synthesis to address alysts for oxygen generation from water and tain a humble, friendly personality and active problems in biology. He was perhaps the first for the reduction of carbon dioxide to fuel. mentorship of young chemists. chemical biologist. We need to learn how to assemble precise multi-component nanoscale light-absorb- ing and charge-separation systems and to DAVID KING E. W. ‘BERT’ MEIJER integrate these with catalysts. These systems need to be grown from abundant materials, Solar power is Foster synthetic by processes that can be scaled to vast areas, by inexpensive means. the future self-assembly This problem was investigated in the late 1970s and early 1980s, but then there was a Director, Smith School of Enterprise Eindhoven University of Technology, 30-year hiatus. In the intervening decades, and the Environment, Oxford, UK the Netherlands nanoscience has developed, and there are new theoretical and analytical tools at our The next decade will hopefully see the ‘How far can we push chemical self-assem- disposal. generation of an efficient photovoltaic bly?’ is without doubt the most intriguing Rather than pick a favourite scientist, material that can be cheaply produced and challenge we as scientists have to solve in the I prefer to call attention to a remarkable is attractive to architects and builders to use
Recommended publications
  • Metagenomics Approaches for the Detection and Surveillance of Emerging and Recurrent Plant Pathogens
    microorganisms Review Metagenomics Approaches for the Detection and Surveillance of Emerging and Recurrent Plant Pathogens Edoardo Piombo 1,2 , Ahmed Abdelfattah 3,4 , Samir Droby 5, Michael Wisniewski 6,7, Davide Spadaro 1,8,* and Leonardo Schena 9 1 Department of Agricultural, Forest and Food Sciences (DISAFA), University of Torino, 10095 Grugliasco, Italy; [email protected] 2 Department of Forest Mycology and Plant Pathology, Uppsala Biocenter, Swedish University of Agricultural Sciences, P.O. Box 7026, 75007 Uppsala, Sweden 3 Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, 8010 Graz, Austria; [email protected] 4 Department of Ecology, Environment and Plant Sciences, University of Stockholm, Svante Arrhenius väg 20A, 11418 Stockholm, Sweden 5 Department of Postharvest Science, Agricultural Research Organization (ARO), The Volcani Center, Rishon LeZion 7505101, Israel; [email protected] 6 U.S. Department of Agriculture—Agricultural Research Service (USDA-ARS), Kearneysville, WV 25430, USA; [email protected] 7 Department of Biological Sciences, Virginia Technical University, Blacksburg, VA 24061, USA 8 AGROINNOVA—Centre of Competence for the Innovation in the Agroenvironmental Sector, University of Torino, 10095 Grugliasco, Italy 9 Department of Agriculture, Università Mediterranea, 89122 Reggio Calabria, Italy; [email protected] * Correspondence: [email protected]; Tel.: +39-0116708942 Abstract: Globalization has a dramatic effect on the trade and movement of seeds, fruits and vegeta- bles, with a corresponding increase in economic losses caused by the introduction of transboundary Citation: Piombo, E.; Abdelfattah, A.; plant pathogens. Current diagnostic techniques provide a useful and precise tool to enact surveillance Droby, S.; Wisniewski, M.; Spadaro, protocols regarding specific organisms, but this approach is strictly targeted, while metabarcoding D.; Schena, L.
    [Show full text]
  • The Lock-And-Key Analogy in 20Th Century Biochemistry
    From: Rebecca Mertens The Construction of Analogy-Based Research Programs The Lock-and-Key Analogy in 20th Century Biochemistry April 2019, 224 p., pb., ill. 34,99 € (DE), 978-3-8376-4442-5 E-Book: PDF: 34,99 € (DE), ISBN 978-3-8394-4442-9 When the German chemist Emil Fischer presented his lock-and-key hypothesis in 1899, his analogy to describe the molecular relationship between enzymes and substrates quickly gained vast influence and provided future generations of scientists with a tool to investigate the relation between chemical structure and biological specificity. Rebecca Mertens explains the appeal of the lock-and-key analogy by its role in model building and in the construction of long-term, cross-generational research programs. She argues that a crucial feature of these research programs, namely ascertaining the continuity of core ideas and concepts, is provided by a certain way of analogy-based modelling. Rebecca Mertens (PhD), born in 1984, is a postdoctoral researcher in the history and philosophy of science at the University of Bielefeld, Germany. She works on the role of analogies, models and forms of comparison in the history of molecular genetics and is a member of the collaborative research program "Practices of ComparisonÚ Ordering and Changing the World". During her graduate and doctoral studies, she was a visiting scholar at the École Normale Supérieure in Paris and a visiting graduate fellow at the Minnesota Center for Philosophy of Science. For further information: www.transcript-verlag.de/en/978-3-8376-4442-5 © 2019
    [Show full text]
  • Europe's Favorite Chemists?
    ability and on uncertainty evaluation of chemical mea- surement results. Participants can take this expertise back to their home countries and/or become regional coordinators for IMEP in their respective countries. In collaboration with EUROMET and CCQM, IMEP samples are offered for the organization of EUROMET key or supplementary comparisons and, where appro- priate, for the organization of CCQM key comparisons or pilot studies. In its role as a neutral, impartial international evalu- ation program, IMEP displays existing problems in chemical measurement. IRMM is dedicated to tackling this problem and will, where possible, collaborate with international bodies, education and accreditation au- thorities, and NMIs to achieve more reliable measure- ments and contribute to setting up an internationally structured measurement system. Ellen Poulsen (Denmark) preparing graphs for the IMEP-9 participants’ report on trace elements in water. Europe’s Favorite Chemists? Choosing Europe’s Top 100 Chemists: birth of Christ is quite forgotten in general. An addi- A Difficult Task tional irony lies in the fact that recent evidence from history, archaeology, and astronomy suggests a birthdate This article by Prof. Colin Russell (Department of His- about seven years earlier, so the real millennium came tory of Science and Technology, Open University, and went unnoticed in the early 1990s. However that Milton Keynes, England MK6 7AA, UK) was com- may be, the grand spirit of revelry and bonhomie can- missioned by Chemistry in Britain and published by not be quenched by such mundane considerations, and that magazine in Vol. 36, pp. 50–52, February 2000. celebration there shall be. Nor are societies to be left The list of Europe’s 100 distinguished chemists was behind in the general euphoria.
    [Show full text]
  • Molecular Transport and Reactivity in Confinement
    Molecular Transport and Reactivity in Confinement THU NGOC LE A dissertation submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy of the University College London Department of Chemical Engineering Primary Advisor: Professor Alberto Striolo December 2016 Declaration I, Thu Ngoc Le confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that they have been properly indicated in the thesis. 1 To my parents Phuong Le and Thu Do Kính tặng bố mẹ vì tình yêu thương vô bờ dành cho con 2 Acknowledgements It is my genuine pleasure to express my deepest thanks and gratitude to my advisor Professor Alberto Striolo, whose expertise, support and guidance have helped me tremendously in completing my PhD study. I would like to extend my sincere gratitude to Professor Heath Turner from University of Alabama for his generosity, kindness and encouragement on the most difficult topic of my study. I would like to give immense appreciation to Dr. Paul Ashby from Lawrence Berkeley National Laboratory and Professor Roy Penny from University of Arkansas for teaching me, not only valuable academic knowledge, but also how to be a better person. Thank you for having much faith in me. This thesis is especially dedicated to my Father and Mother, who have always been my inexorable stronghold. Being brought to the world as your daughter is the upmost divine blessing I could ever ask for in this life. To my sisters Han Le and Tran Le, I am thankful for being my upright idols, my greatest supports, and my best friends.
    [Show full text]
  • ARIE SKLODOWSKA CURIE Opened up the Science of Radioactivity
    ARIE SKLODOWSKA CURIE opened up the science of radioactivity. She is best known as the discoverer of the radioactive elements polonium and radium and as the first person to win two Nobel prizes. For scientists and the public, her radium was a key to a basic change in our understanding of matter and energy. Her work not only influenced the development of fundamental science but also ushered in a new era in medical research and treatment. This file contains most of the text of the Web exhibit “Marie Curie and the Science of Radioactivity” at http://www.aip.org/history/curie/contents.htm. You must visit the Web exhibit to explore hyperlinks within the exhibit and to other exhibits. Material in this document is copyright © American Institute of Physics and Naomi Pasachoff and is based on the book Marie Curie and the Science of Radioactivity by Naomi Pasachoff, Oxford University Press, copyright © 1996 by Naomi Pasachoff. Site created 2000, revised May 2005 http://www.aip.org/history/curie/contents.htm Page 1 of 79 Table of Contents Polish Girlhood (1867-1891) 3 Nation and Family 3 The Floating University 6 The Governess 6 The Periodic Table of Elements 10 Dmitri Ivanovich Mendeleev (1834-1907) 10 Elements and Their Properties 10 Classifying the Elements 12 A Student in Paris (1891-1897) 13 Years of Study 13 Love and Marriage 15 Working Wife and Mother 18 Work and Family 20 Pierre Curie (1859-1906) 21 Radioactivity: The Unstable Nucleus and its Uses 23 Uses of Radioactivity 25 Radium and Radioactivity 26 On a New, Strongly Radio-active Substance
    [Show full text]
  • Antibodies with Some Bite Antibodies Have Yet to Be Determined, It Is Reasonable to Suppose That the Ester Or David E
    -~-------------------------------------N8NSANDVIEWS----------------_N_A_TU_R_E_V-O_L_._32_5_22_J_A_N_U_A_RY__ 19~87 Enzyme catalysis kinetics and is subject to competitive inhibition. Although the detailed chemical mechanisms of these catalytic Antibodies with some bite antibodies have yet to be determined, it is reasonable to suppose that the ester or David E. Hansen carbamate is strained towards a tetra­ hedral geometry on binding, thus facilitat­ THE spectacular specificities and rate William Jencks', more directly, stated in ing the attack of the hydroxide ion. Fur­ enhancements of enzymes are without 1969 thermore, the Scripps group has already equal among all known catalysts. It is no If complementarity between active site and found that their antibody can act via both wonder then that the design of new en­ transition state contributes significantly to nucleophilic and general base catalysis, zymes has long been a goal of biochemists. enzyme catalysis, it should be possible to syn­ depending on the substrate used. Now two independent groups, one led by thesize an enzyme by constructing a binding The fact that this approach succeeded at Alfonso Tramontano and Richard Lerner site. One way to do this is to prepare an anti­ all gives great hope to those attempting to of the Scripps Clinic and Research Foun­ body to a haptenic group which resembles the isolate even more efficient antibody cat­ dation', and the other by Peter Schultz of transition state of a given reaction. The com­ alysts by this and by other strategies. In the University of California at Berkeley\ bining sites of such antibodies should be com­ addition, it may be possible to modify have taken steps towards this goal by plementary to the transition state and should cause an acceleration by forcing bound sub­ existing catalytic antibodies.
    [Show full text]
  • Wilhelm Ostwald – the Scientist
    ARTICLE-IN-A-BOX Wilhelm Ostwald – The Scientist Friedrich Wilhelm Ostwald was born on September 2, 1853 at Riga, Latvia, Russia to Gottfried Ostwald, a master cooper and Elisabeth Leuckel. He was the second son to his parents who both were descended from German immigrants. He had his early education at Riga. His subsequent education was at the University of Dorpat (now Tartu, Estonia) where he enrolled in 1872. At the university he studied chemistry under the tutelage of Carl ErnstHeinrich Schmidt (1822– 1894) who again was a pupil of Justus von Liebig. Besides Schmidt, Johannes Lemberg (1842– 1902) and Arthur von Oettingen (1836–1920) who were his teachers in physical chemistry were also principal influences. It was in 1877 that he defended his thesis ‘Volumchemische Studien über Affinität’. Subsequently he taught as Privatdozent for a couple of years. During this period, his personal life saw some changes as well. He wedded Helene von Reyher (1854–1946) in 1880. With Helene, he had three sons, and two daughters. Amongst his children, Wolfgang went on to become a famous colloid chemist. On the strength of recommendation from Dorpat, Ostwald was appointed as a Professor at Riga Polytechnicum in 1882. He worked on multiple applications of the law of mass action. He also conducted measurements in chemical reaction kinetics as well as conductivity of solutions. To this end, the pyknometer was developed which was used to determine the density of liquids. He also had a thermostat built and both of these were named after him. He was prolific in his teaching and research which helped establish a school of science at the university.
    [Show full text]
  • CV Sir Arthur Harden
    Curriculum Vitae Prof. Dr. Arthur Harden Name: Sir Arthur Harden Lebensdaten: 12. Oktober 1865 ‐ 17. Juni 1940 Arthur Harden war ein britischer Chemiker. Nach ihm sind die Harden‐Young‐Ester (Zuckerphospha‐ te) benannt. Für seine Forschungen über die Gärung von Zucker und dessen Gärungsenzyme wurde er im Jahr 1929 gemeinsam mit dem deutsch‐schwedischen Chemiker Hans von Euler‐Chelpin mit dem Nobelpreis für Chemie ausgezeichnet. Werdegang Arthur Harden studierte von 1882 bis 1885 Chemie am Owens College der University of Manchester. 1868 ging er mit einem Dalton Scholarship an die Universität Erlangen, um beim Chemiker Otto Fi‐ scher, einem Vetter von Emil Fischer (Nobelpreis für Chemie 1902), zu arbeiten. Dort wurde er 1888 promoviert. Im Anschluss arbeitete er als Dozent am Owens College. Ab 1897 war er am neu gegrün‐ deten British Jenner Institute of Preventive Medicine tätig. 1907 wurde er dort Leiter der Abteilung Biochemie. Außerdem erhielt er 1912 eine Professur für Biochemie an der University of London. Auch nach seiner Emeritierung im Jahr 1930 blieb Harden wissenschaftlich aktiv. So befasste er sich unter anderem mit dem Stoffwechsel von E.coli‐Bakterien sowie mit der Gärung. Gemeinsam mit dem deutsch‐schwedischen Wissenschaftler Hans von Euler‐Chelpin gelang es ihm, diesen Vorgang vollständig aufzuklären. Nobelpreis für Chemie 1929 Die Aufklärung der Gärung als eine der ältesten biologischen Technologien der Menschheit hatte bereits zuvor viele Wissenschaftler zu Forschungsarbeiten angeregt, unter ihnen Louis Pasteur und Justus Freiherr von Liebig. Arthur Harden wurde für seine Forschungen über die Gärung von Zucker und die daran beteiligten Gärungsenzyme im Jahr 1929 gemeinsam mit Hans von Euler‐Chelpin mit dem Nobelpreis für Chemie ausgezeichnet.
    [Show full text]
  • A Nobel Synthesis
    MILESTONES IN CHEMISTRY Ian Grayson A nobel synthesis IAN GRAYSON Evonik Degussa GmbH, Rodenbacher Chaussee 4, Hanau-Wolfgang, 63457, Germany he first Nobel Prize for chemistry was because it is a scientific challenge, as he awarded in 1901 (to Jacobus van’t Hoff). described in his Nobel lecture: “The synthesis T Up to 2010, the chemistry prize has been of brazilin would have no industrial value; awarded 102 times, to 160 laureates, of whom its biological importance is problematical, only four have been women (1). The most but it is worth while to attempt it for the prominent area for awarding the Nobel Prize sufficient reason that we have no idea how for chemistry has been in organic chemistry, in to accomplish the task” (4). which the Nobel committee includes natural Continuing the list of Nobel Laureates in products, synthesis, catalysis, and polymers. organic synthesis we arrive next at R. B. This amounts to 24 of the prizes. Reading the Woodward. Considered by many the greatest achievements of the earlier organic chemists organic chemist of the 20th century, he who were recipients of the prize, we see that devised syntheses of numerous natural they were drawn to synthesis by the structural Alfred Nobel, 1833-1896 products, including lysergic acid, quinine, analysis and characterisation of natural cortisone and strychnine (Figure 1). 6 compounds. In order to prove the structure conclusively, some In collaboration with Albert Eschenmoser, he achieved the synthesis, even if only a partial synthesis, had to be attempted. It is synthesis of vitamin B12, a mammoth task involving nearly 100 impressive to read of some of the structures which were deduced students and post-docs over many years.
    [Show full text]
  • Arctic Samples
    ch08_4569.qxd 8/29/06 3:31 PM Page 223 CHAPTER 8 Global Climate Change and Human Agency Inadvertent Influence and “Archimedean” Interventions J AMES R ODGER F LEMING Wallace Broecker has referred to the global climate sytem as a “massive staggering beast.” To emphasize rapid climate changes, Richard Alley added the adjective “drunken.” When I introduced Richard’s lecture at Colby last year (2005), I noted that it was not wise to anger such a beast, yet this is just what we were doing with anthropogenic emissions, which were, in effect, our sticks to prod the beast. Since then (2006), I have become interested in longer sticks, Archimedean levers to “tip” the climate system in supposedly favorable directions though geoengineering. But what would be the consequences of such intervention? TIPPING POINTS: PHYSICAL AND SOCIAL At the American Geophysical Union meeting in San Francisco in December 2005, climate scientist James Hansen of NASA warned that the Earth’s cli- mate was nearing an unprecedented “tipping point”—a point of no return 223 ch08_4569.qxd 8/29/06 3:31 PM Page 224 INTIMATE UNIVERSALITY that could only be avoided if the “growth of greenhouse gas emissions is slowed” in the next two decades: The Earth’s climate is nearing, but has not passed, a tipping point beyond which it will be impossible to avoid climate change with far- ranging undesirable consequences. These include not only the loss of the Arctic as we know it, with all that implies for wildlife and in- digenous peoples, but losses on a much vaster scale due to rising seas ...
    [Show full text]
  • Timeline of Genomics (1901–1950)*
    Research Resource Timeline of Genomics (1901{1950)* Year Event and Theoretical Implication/Extension Reference 1901 Hugo de Vries adopts the term MUTATION to de Vries, H. 1901. Die Mutationstheorie. describe sudden, spontaneous, drastic alterations in Veit, Leipzig, Germany. the hereditary material of Oenothera. Thomas Harrison Montgomery studies sper- 1. Montgomery, T.H. 1898. The spermato- matogenesis in various species of Hemiptera and ¯nds genesis in Pentatoma up to the formation that maternal chromosomes only pair with paternal of the spermatid. Zool. Jahrb. 12: 1-88. chromosomes during meiosis. 2. Montgomery, T.H. 1901. A study of the chromosomes of the germ cells of the Metazoa. Trans. Am. Phil. Soc. 20: 154-236. Clarence Ervin McClung postulates that the so- McClung, C.E. 1901. Notes on the acces- called accessory chromosome (now known as the \X" sory chromosome. Anat. Anz. 20: 220- chromosome) is male determining. 226. Hermann Emil Fischer(1902 Nobel Prize Laure- 1. Fischer, E. and Fourneau, E. 1901. UberÄ ate for Chemistry) and Ernest Fourneau report einige Derivate des Glykocolls. Ber. the synthesis of the ¯rst dipeptide, glycylglycine. In Dtsch. Chem. Ges. 34: 2868-2877. 1902 Fischer introduces the term PEPTIDES. 2. Fischer, E. 1907. Syntheses of polypep- tides. XVII. Ber. Dtsch. Chem. Ges. 40: 1754-1767. 1902 Theodor Boveri and Walter Stanborough Sut- 1. Boveri, T. 1902. UberÄ mehrpolige Mi- ton found the chromosome theory of heredity inde- tosen als Mittel zur Analyse des Zellkerns. pendently. Verh. Phys -med. Ges. WÄurzberg NF 35: 67-90. 2. Boveri, T. 1903. UberÄ die Konstitution der chromatischen Kernsubstanz. Verh. Zool.
    [Show full text]
  • Institute News
    Institute News The Celebration Begins: IYC 2011 Causes Reactions in Paris, Philadelphia he International Year of Chemistry heritage. For example, Zhigang Shuai, the discussion of the sense and sensibil- T(IYC 2011) is underway, following professor of physical chemistry at ity of smell. its official launch at two world-class Tsinghua Univ., Beijing, spoke about • On Feb. 3, professor and histori- events. the history of chemistry in China up cal recreator James Armstead came to The celebration began Jan. 27–28, to the 17th century. Thomas Tritton, Philadelphia in the character of Percy 2011, at the world headquarters of the president and CEO of CHF, proposed a Julian, the 20th century chemist who United Nations Educational, Scientific, top ten list of the “rock stars of chem- was the subject of the PBS documen- and Cultural Organization (UNESCO) istry” — Marie Curie, John Dalton, tary titled Forgotten Genius. Armstead in Paris, then moved to the U.S. for a Emil Fischer, Antoine Lavoisier, Justus spoke to students at Philadelphia’s week-long North American kick-off Liebig, Dmitri Mendeleev, Linus Paul- African-American Museum and at The at the Chemical Heritage Foundation ing, Joseph Priestley, Friedrich Wöhler, College of Physicians. (CHF) in Philadelphia, PA. AIChE and Robert B. Woodward. • On Feb. 4., “Elemental Matters,” collaborated with CHF, the American On Feb. 1, the CHF hosted more an exhibit of seven contemporary art- Chemical Society (ACS), the American than 200 visitors, including members ists responding to the periodic table of Chemistry Council (ACC), and other of AIChE’s Board of Directors, AIChE elements, opened at the CHF’s Hach organizations on the U.S.
    [Show full text]