Context Free Languages and Pushdown Automata

Total Page:16

File Type:pdf, Size:1020Kb

Context Free Languages and Pushdown Automata Context Free Languages and Pushdown Automata COMP2600 — Formal Methods for Software Engineering Ranald Clouston Australian National University Semester 2, 2013 COMP 2600 — Context Free Languages and Pushdown Automata 1 Parsing The process of parsing a program is partly about confirming that a given program is well-formed – syntax. But it is also about representing the structure of the program so that it can be executed – semantics. For this purpose, the trail of sentential forms created en route to generating a given sentence is just as important as the question of whether the sentence can be generated or not. COMP 2600 — Context Free Languages and Pushdown Automata 2 The Semantics of Parses Take the code if e1 then if e2 then s1 else s2 where e1, e2 are boolean expressions and s1, s2 are subprograms. Does this mean if e1 then( if e2 then s1 else s2) or if e1 then( if e2 else s1) else s2 We’d better have an unambiguous way to tell which is right, or we cannot know what the program will do at runtime! COMP 2600 — Context Free Languages and Pushdown Automata 3 Ambiguity Recall that we can present CFG derivations as parse trees. Until now this was mere pretty presentation; now it will become important. A context-free grammar G is unambiguous iff every string can be derived by at most one parse tree. G is ambiguous iff there exists any word w 2 L(G) derivable by more than one parse tree. COMP 2600 — Context Free Languages and Pushdown Automata 4 Example: If-Then and If-Then-Else Consider the CFG S ! if bexp then S j if bexp then S else S j prog where bexp and prog stand for boolean expressions and (if-statement free) programs respectively, defined elsewhere. The string if e1 then if e2 then s1 else s2 then has two parse trees: S S RR ss EE ss EERRR ss EE ss EE RRR sy ss EE" sy ss E" RRR if e1 then S if e1 then S else R) S jjjy EE s jjjj yy EE sss ju jjj | yy EE" sy ss if e2 then S y else S if e2 then S s2 s1 s2 s1 COMP 2600 — Context Free Languages and Pushdown Automata 5 Example: If-Then and If-Then-Else That grammar was ambiguous. But here’s a grammar accepting the exact same language that is unambiguous: S ! if bexp then S j T T ! if bexp then T else S j prog There is now only one parse for if e1 then if e2 then s1 else s2. This is given on the next slide: COMP 2600 — Context Free Languages and Pushdown Automata 6 Example: If-Then and If-Then-Else S s EE sss EE sy ss EE" if e1 then S T jj E jjj y EE jjj yy EE ju jj y| y E" if e2 then T else S s1 T s2 You cannot parse this string as if e1 then ( if e2 else s1 ) else s2. COMP 2600 — Context Free Languages and Pushdown Automata 7 Reflecting on This Example We have seen that the same language can be presented with ambiguous and unambiguous grammars. Ambiguity is in general a property of grammars, not of languages. From the point of view of semantics and parsing, it is often desirable to turn an ambiguous grammar into an equivalent unambiguous grammar. This generally involves choices that are not driven by the language itself. E.g. there exists another grammar for the language of the previous slides that is unambiguous and allows the parse if e1 then ( if e2 else s1 ) else s2 but not if e1 then ( if e2 then s1 else s2 ). COMP 2600 — Context Free Languages and Pushdown Automata 8 What Ambiguity Isn’t You might wonder if our grammar is still ambiguous, given the production T ! if bexp then T else S After a derivation that uses this, we have a choice of whether we expand the T or the S first. Is this an ambiguity? No. A context-free grammar gets its name because non-terminals can be expanded without regard for the context they appear in. In other words, it doesn’t matter if you expand T or S ‘first’. From the perspec- tive of the parse tree these expansions are happening in parallel. This is a reason why a parse tree is a better formalism for presenting a CFG derivation than listing each step. COMP 2600 — Context Free Languages and Pushdown Automata 9 Inherently Ambiguous Languages In fact not all context-free languages can be given unambiguous grammars – some are inherently ambiguous. Consider the language L = faib jck j i = j or j = kg How do we know that this is context-free? First, notice that L = faibickg [ faib jc jg We then combine CFGs for each side of this union (a standard trick): S ! T j W T ! UV W ! XY U ! aUb j e X ! aX j e V ! cV j e Y ! bYc j e COMP 2600 — Context Free Languages and Pushdown Automata 10 Inherently Ambiguous Languages The problem with this CFG is that the union we used has a non-empty inter- section, where the a’s, b’s, and c’s all have equal number. The sentences in this intersection are a source of ambiguity: S S T W B C || BB {{ CC |} | B {} { C! U V X Y B A @ }} BB AA ~~ || @@ }~ } B A ~~ |} | @ a U b c V a X b Y c e e e e In fact (not proved here!) there is no alternative choice of grammar for this language that avoids this ambiguity. COMP 2600 — Context Free Languages and Pushdown Automata 11 The Bad News We would like to have an algorithm that turns grammars into equivalent un- ambiguous grammars where possible. However this is an uncomputable problem. Worse – determining whether a grammar is ambiguous or not in the first place is also uncomputable! Uncomputable problems are everyone in computer science. You will see many more next week in particular. The best response is not despair; rather we should see what tricks and tech- niques might help us out at least some of the time. COMP 2600 — Context Free Languages and Pushdown Automata 12 Example: Subtraction Consider the grammar S ! S − S j int where int could be any integer and the symbol ‘−’ is intended to be executed as subtraction. This grammar is ambiguous, and this matters: S S > @ ~~ >> ÐÐ @@ ~~ >> ÐÐ @@ ~ ~ > Ð Ð @ S − 1 5 − S @ > ÐÐ @@ ~~ >> ÐÐ @@ ~~ >> Ð Ð @ ~ ~ > 5 − 3 3 − 1 The left tree evaluates 5 − 3 − 1 to 1; the left evaluates the same string to 3! COMP 2600 — Context Free Languages and Pushdown Automata 13 Technique 1: Associativity We can remove the ambiguity of a binary infix operator by making it associate to the left or right. S ! S − int j int Now 5 − 3 − 1 can only be read as (5 − 3) − 1 - this is left associativity. For right associativity we would use the production S ! int − S instead. Idea: Force one side of our operator to a ‘lower’ level, making sure we avoid loops in our grammar that allow the original non-terminal to be recovered. Here we force the right hand side of the minus sign to the lowest possible level – a terminal symbol. COMP 2600 — Context Free Languages and Pushdown Automata 14 Example: Multiplication and Addition S ! S ∗ S j S + S j int where ∗ is to be executed as multiplication and + as addition. Again this is obviously ambiguous – 1 + 2 ∗ 3 could evaluate to 7 or 9. (Note that 1 + 2 + 3 is also a source of ambiguity as it can be produced by different parse trees, even though it is not ambiguous in the interpretation we have in mind.) If all we care about is resolving ambiguity we can use the same trick as the last slide, making both ∗ and + left (or right) associative. But this is not the behaviour we expect from these operations: we expect ∗ to have higher precedence than +. COMP 2600 — Context Free Languages and Pushdown Automata 15 Technique 2: Precedence S ! S + T j T T ! T ∗ int j int Given a string 1+2∗3, or 2∗3+1, we have no choice but to expand to S+T first, so that (thinking bottom-up) the + will be last command to be executed. Suppose we tried to derive 1 + 2 ∗ 3 by first doing S ) T ) T ∗ 3. We are then stuck because we cannot send T to 1 + 2! As with associativity this trick works by forcing ourselves down to a lower level to generate parts of our sentences. Here we have three levels: S, then T , then the integers as non-terminals. COMP 2600 — Context Free Languages and Pushdown Automata 16 Example: Basic Arithmetic S ! S + T j S − T j T T ! T ∗U j T=U j U U ! (S) j int Note that we have brackets available to give a clearly labelled way to loop back to the top – if we want to break the usual rules of arithmetic to get the execution (1 + 2) ∗ 3 then we must indicate this with explicit brackets. (Note also that the previous slides’ languages were actually regular and so could have been generated by right-linear grammars. The language above is truly context-free because of the need to keep track of bracket balancing to an arbitrary depth.) COMP 2600 — Context Free Languages and Pushdown Automata 17 Example: Balanced Brackets The following grammar generates a language where each left bracket is ex- actly matched by a closing bracket: S ! e j (S) j SS This is ambiguous in a rather stupid way: to generate () we could use the derivation S ) (S) ) (), which seems sensible.
Recommended publications
  • Ambiguity Detection Methods for Context-Free Grammars
    Ambiguity Detection Methods for Context-Free Grammars H.J.S. Basten Master’s thesis August 17, 2007 One Year Master Software Engineering Universiteit van Amsterdam Thesis and Internship Supervisor: Prof. Dr. P. Klint Institute: Centrum voor Wiskunde en Informatica Availability: public domain Contents Abstract 5 Preface 7 1 Introduction 9 1.1 Motivation . 9 1.2 Scope . 10 1.3 Criteria for practical usability . 11 1.4 Existing ambiguity detection methods . 12 1.5 Research questions . 13 1.6 Thesis overview . 14 2 Background and context 15 2.1 Grammars and languages . 15 2.2 Ambiguity in context-free grammars . 16 2.3 Ambiguity detection for context-free grammars . 18 3 Current ambiguity detection methods 19 3.1 Gorn . 19 3.2 Cheung and Uzgalis . 20 3.3 AMBER . 20 3.4 Jampana . 21 3.5 LR(k)test...................................... 22 3.6 Brabrand, Giegerich and Møller . 23 3.7 Schmitz . 24 3.8 Summary . 26 4 Research method 29 4.1 Measurements . 29 4.1.1 Accuracy . 29 4.1.2 Performance . 31 4.1.3 Termination . 31 4.1.4 Usefulness of the output . 31 4.2 Analysis . 33 4.2.1 Scalability . 33 4.2.2 Practical usability . 33 4.3 Investigated ADM implementations . 34 5 Analysis of AMBER 35 5.1 Accuracy . 35 5.2 Performance . 36 3 5.3 Termination . 37 5.4 Usefulness of the output . 38 5.5 Analysis . 38 6 Analysis of MSTA 41 6.1 Accuracy . 41 6.2 Performance . 41 6.3 Termination . 42 6.4 Usefulness of the output . 42 6.5 Analysis .
    [Show full text]
  • Topics in Context-Free Grammar CFG's
    Topics in Context-Free Grammar CFG’s HUSSEIN S. AL-SHEAKH 1 Outline Context-Free Grammar Ambiguous Grammars LL(1) Grammars Eliminating Useless Variables Removing Epsilon Nullable Symbols 2 Context-Free Grammar (CFG) Context-free grammars are powerful enough to describe the syntax of most programming languages; in fact, the syntax of most programming languages is specified using context-free grammars. In linguistics and computer science, a context-free grammar (CFG) is a formal grammar in which every production rule is of the form V → w Where V is a “non-terminal symbol” and w is a “string” consisting of terminals and/or non-terminals. The term "context-free" expresses the fact that the non-terminal V can always be replaced by w, regardless of the context in which it occurs. 3 Definition: Context-Free Grammars Definition 3.1.1 (A. Sudkamp book – Language and Machine 2ed Ed.) A context-free grammar is a quadruple (V, Z, P, S) where: V is a finite set of variables. E (the alphabet) is a finite set of terminal symbols. P is a finite set of rules (Ax). Where x is string of variables and terminals S is a distinguished element of V called the start symbol. The sets V and E are assumed to be disjoint. 4 Definition: Context-Free Languages A language L is context-free IF AND ONLY IF there is a grammar G with L=L(G) . 5 Example A context-free grammar G : S aSb S A derivation: S aSb aaSbb aabb L(G) {anbn : n 0} (((( )))) 6 Derivation Order 1.
    [Show full text]
  • Context Free Languages
    Context Free Languages COMP2600 — Formal Methods for Software Engineering Katya Lebedeva Australian National University Semester 2, 2016 Slides by Katya Lebedeva and Ranald Clouston. COMP 2600 — Context Free Languages 1 Ambiguity The definition of CF grammars allow for the possibility of having more than one structure for a given sentence. This ambiguity may make the meaning of a sentence unclear. A context-free grammar G is unambiguous iff every string can be derived by at most one parse tree. G is ambiguous iff there exists any word w 2 L(G) derivable by more than one parse trees. COMP 2600 — Context Free Languages 2 Dangling else Take the code if e1 then if e2 then s1 else s2 where e1, e2 are boolean expressions and s1, s2 are subprograms. Does this mean if e1 then( if e2 then s1 else s2) or if e1 then( if e2 then s1) else s2 The dangling else is a problem in computer programming in which an optional else clause in an “ifthen(else)” statement results in nested conditionals being ambiguous. COMP 2600 — Context Free Languages 3 This is a problem that often comes up in compiler construction, especially parsing. COMP 2600 — Context Free Languages 4 Inherently Ambiguous Languages Not all context-free languages can be given unambiguous grammars – some are inherently ambiguous. Consider the language L = faib jck j i = j or j = kg How do we know that this is context-free? First, notice that L = faibickg [ faib jc jg We then combine CFGs for each side of this union (a standard trick): S ! T j W T ! UV W ! XY U ! aUb j e X ! aX j e V ! cV j e Y ! bYc j e COMP 2600 — Context Free Languages 5 The problem with L is that its sub-languages faibickg and faib jc jg have a non-empty intersection.
    [Show full text]
  • Ambiguity Detection for Context-Free Grammars in Eli
    Fakultät für Elektrotechnik, Informatik und Mathematik Bachelor’s Thesis Ambiguity Detection for Context-Free Grammars in Eli Michael Kruse Student Id: 6284674 E-Mail: [email protected] Paderborn, 7th May, 2008 presented to Dr. Peter Pfahler Dr. Matthias Fischer Statement on Plagiarism and Academic Integrity I declare that all material in this is my own work except where there is clear acknowledgement or reference to the work of others. All material taken from other sources have been declared as such. This thesis as it is or in similar form has not been presented to any examination authority yet. Paderborn, 7th May, 2008 Michael Kruse iii iv Acknowledgement I especially whish to thank the following people for their support during the writing of this thesis: • Peter Pfahler for his work as advisor • Sylvain Schmitz for finding some major errors • Anders Møller for some interesting conversations • Ulf Schwekendiek for his help to understand Eli • Peter Kling and Tobias Müller for proofreading v vi Contents 1. Introduction1 2. Parsing Techniques5 2.1. Context-Free Grammars.........................5 2.2. LR(k)-Parsing...............................7 2.3. Generalised LR-Parsing......................... 11 3. Ambiguity Detection 15 3.1. Ambiguous Context-Free Grammars.................. 15 3.1.1. Ambiguity Approximation.................... 16 3.2. Ambiguity Checking with Language Approximations......... 16 3.2.1. Horizontal and Vertical Ambiguity............... 17 3.2.2. Approximation of Horizontal and Vertical Ambiguity..... 22 3.2.3. Approximation Using Regular Grammars........... 24 3.2.4. Regular Supersets........................ 26 3.3. Detection Schemes Based on Position Automata........... 26 3.3.1. Regular Unambiguity...................... 31 3.3.2.
    [Show full text]
  • Lecture 7-8 — Context-Free Grammars and Bottom-Up Parsing
    Lecture 7-8 | Context-free grammars and bottom-up parsing • Grammars and languages • Ambiguity and expression grammars • Parser generators • Bottom-up (shift/reduce) parsing • ocamlyacc example • Handling ambiguity in ocamlyacc CS 421 | Class 7{8, 2/7/12-2/9/12 | 1 Grammar for (almost) MiniJava Program -> ClassDeclList ClassDecl -> class id { VarDeclList MethodDeclList } VarDecl -> Type id ; MethodDecl -> Type id ( FormalList ) { VarDeclList StmtList return Exp ; } Formal -> Type id Type -> int [ ] | boolean | int | id Stmt -> { StmtList } | if ( Exp ) Stmt else Stmt | while ( Exp ) Stmt | System.out.println ( Exp ) ; | id = Exp ; | id [ Exp ] = Exp ; Exp -> Exp Op Exp | Exp [ Exp ] | Exp . length | Exp . id ( ExpList ) | integer | true | false | id | this | new int [ Exp ] | new id ( ) | ! Exp | ( Exp ) Op -> && | < | + | - | * ExpList -> Exp ExpRest | ExpRest -> , Exp ExpRest | FormalList -> Type id FormalRest | FormalRest -> , Type id FormalRest | ClassDeclList = ClassDeclList VarDecl | MethodDeclList = MethodDeclList MethodDecl | VarDeclList = VarDeclList VarDecl | StmtList = StmtList Stmt | CS 421 | Class 7{8, 2/7/12-2/9/12 | 2 Grammars and languages • E.g. program class C {int f () { return 0; }} has this parse tree: • Parser converts source file to parse tree. AST is easily calcu- lated from parse tree, or constructed while parsing (without explicitly constructing parse tree). CS 421 | Class 7{8, 2/7/12-2/9/12 | 3 Context-free grammar (cfg) notation • CFG is a set of productions A ! X1X2 :::Xn (n ≥ 0). If n = 0, we may write either
    [Show full text]
  • Principles of Programming Languages Lexics Vs. Syntax Vs. Semantics
    Software II: Principles of Programming Languages Lecture 3 – Formal Descriptions of a Programming Language Lexics vs. Syntax Vs. Semantics • Lexics refers to issues regarding the assembly of words that comprise a statement. • Syntax refers to issues regarding the grammar of a statement. • Semantics refers to issues regarding the meaning of a statement. Lexical Structure of Programming Languages • It was believed in the early days of programming language development that it was sufficient to be able specify the syntax of a programming language. We now know that this is not enough. • This led to the development of context-free grammars and Backus-Naur Form. Programming Language Syntax • Syntax is defined as “the arrangement of words as elements in a sentence to show their relationship.” • Syntax provides a great deal of information that we need to understand a program and to guide its translation. • Example 2 + 3 ´ 4 = 14 (not 20 – multiplication takes precedence) Programming Language Semantics • Semantics is defined as “the meaning of a symbol or set of symbols.” • This is equally important in translating a programming correctly and may be more difficult to express unambiguously. Tokens • The lexical structure of program consists of sequence of characters that are assembled into character strings called lexemes which have directly related to tokens, the element of a languages grammar to which they correspond. • Tokens fall into several distinct categories: – reserved words – literals or constants – special symbols such as < = + – identifiers, such as x24, average, balance Reserved Words and Standard Identifiers • Reserved words serve a special purpose within the syntax of a language; for this reason, they are generally not allowed to be used as user-defined identifiers.
    [Show full text]
  • Arxiv:1911.05672V2 [Cs.FL] 4 Feb 2020 Tax of a Language Must Be Defined [2,10,15,29,32]
    Resolvable Ambiguity? Viktor Palmkvist1, Elias Castegren1, Philipp Haller1, and David Broman1 KTH Royal Institute of Technology, 100 44 Stockholm, Sweden fvipa,eliasca,dbro,[email protected] Abstract. A common standpoint when designing the syntax of pro- gramming languages is that the grammar definition has to be unambigu- ous. However, requiring up front unambiguous grammars can force lan- guage designers to make more or less arbitrary choices to disambiguate the language. In this paper, we depart from the traditional view of un- ambiguous grammar design, and enable the detection of ambiguities to be delayed until parse time, allowing the user of the language to perform the disambiguation. A natural decision problem follows: given a language definition, can a user always disambiguate an ambiguous program? We introduce and formalize this fundamental problem|called the resolvable ambiguity problem|and divide it into separate static and dynamic re- solvability problems. We provide solutions to the static problem for a restricted language class and sketch proofs of soundness and complete- ness. We also provide a sound and complete solution to the dynamic problem for a much less restricted class of languages. The approach is evaluated through two separate case studies, covering both a large ex- isting programming language, and the composability of domain-specific languages. Keywords: Syntax · Ambiguity · Grammars · Parsing · Domain-specific languages 1 Introduction Ever since the early 60s, it has been known that determining whether a context- free grammar is ambiguous is undecidable [7]. As a consequence, a large number of restricted grammars have been developed to guarantee that language defi- nitions are unambiguous.
    [Show full text]
  • Recursive-Descent Parsing and Code Generation
    Top Down Parsing 1 Where We Are Source code if (b == 0) a = b; (character stream) Lexical Analysis Token if ( b == 0 ) a = b ; stream Syntax Analysis (Parsing) if Abstract Syntax == = Tree (AST) b 0 a b Semantic Analysis CS 412/413 Spring 2008 Introduction to Compilers 2 Outline • Inference rules for computing grammar properties • Top-down parsing • SLL(1) grammars • Recursive-descent parsing • Generating parsing tables for SLL(1) grammars Concepts you should know • Distinction between language and grammar – Language: set of strings over some alphabet – Grammar: a set of rules for generating the strings in a language – G: grammar, L(G): language generated by grammar • Recognition vs. parsing, given grammar G and word w – Recognition is decision problem - is w in L(G)? – Parsing: if w in L(G), show a derivation (proof) • Context-free grammar: 4-tuple – S: Start symbol – T: Terminals aka tokens (also written as Σ by some authors) – N: Non-terminals (also written as V) – P: Productions • Sentential forms and sentences – Sentential form: string that can be obtained by starting with S and using productions as rewrite rules to rewrite nonterminals – Sentence: sentential form without nonterminals (word in language) 4 Concepts you should know • Derivation of string using grammar – Start from S and repeatedly rewrite a nonterminal using the productions of the grammar until there are no nonterminals left – Leftmost/rightmost-derivation: rewrite only the leftmost/rightmost nonterminal at each step • Ambiguous grammar – Grammar in which there are
    [Show full text]
  • Analyzing Ambiguity of Context-Free Grammars
    Analyzing Ambiguity of Context-Free Grammars Claus Brabrand1, Robert Giegerich2, and Anders Møller1 1 Department of Computer Science, University of Aarhus, Denmark {brabrand,amoeller}@brics.dk 2 Practical Computer Science, Faculty of Technology, Bielefeld University, Germany [email protected] Abstract. It has been known since 1962 that the ambiguity problem for context-free grammars is undecidable. Ambiguity in context-free gram- mars is a recurring problem in language design and parser generation, as well as in applications where grammars are used as models of real-world physical structures. We observe that there is a simple linguistic characterization of the gram- mar ambiguity problem, and we show how to exploit this to conserva- tively approximate the problem based on local regular approximations and grammar unfoldings. As an application, we consider grammars that occur in RNA analysis in bioinformatics, and we demonstrate that our static analysis of context-free grammars is sufficiently precise and effi- cient to be practically useful. 1 Introduction When using context-free grammars to describe formal languages, one has to be aware of potential ambiguity in the grammars, that is, the situation where a string may be parsed in multiple ways, leading to different parse trees. We pro- pose a technique for detecting ambiguities in a given grammar. As the problem is in general undecidable [11] we resort to conservative approximation. This is much like, for example, building an LR(k) parse table for the given grammar and checking for conflicts. The analysis we propose has two significant advantages: 1. The LR(k) condition has since its discovery by Knuth in 1965 been known as a powerful test for unambiguity [13].
    [Show full text]
  • Analyzing Ambiguity of Context-Free Grammars
    BRICS RS-07-10 Brabrand et al.: Analyzing Ambiguity of Context-Free Grammars BRICS Basic Research in Computer Science Analyzing Ambiguity of Context-Free Grammars Claus Brabrand Robert Giegerich Anders Møller BRICS Report Series RS-07-10 ISSN 0909-0878 May 2007 Copyright c 2007, Claus Brabrand & Robert Giegerich & Anders Møller. BRICS, Department of Computer Science University of Aarhus. All rights reserved. Reproduction of all or part of this work is permitted for educational or research use on condition that this copyright notice is included in any copy. See back inner page for a list of recent BRICS Report Series publications. Copies may be obtained by contacting: BRICS Department of Computer Science University of Aarhus IT-parken, Aabogade 34 DK–8200 Aarhus N Denmark Telephone: +45 8942 9300 Telefax: +45 8942 5601 Internet: [email protected] BRICS publications are in general accessible through the World Wide Web and anonymous FTP through these URLs: http://www.brics.dk ftp://ftp.brics.dk This document in subdirectory RS/07/10/ Analyzing Ambiguity of Context-Free Grammars Claus Brabrand1, Robert Giegerich2, and Anders Møller1 1 Department of Computer Science, University of Aarhus, Denmark brabrand,amoeller @brics.dk 2 Practical Computer Science,{ Faculty of Technology,} Bielefeld University, Germany [email protected] Abstract. It has been known since 1962 that the ambiguity problem for context-free grammars is undecidable. Ambiguity in context-free gram- mars is a recurring problem in language design and parser generation, as well as in applications where grammars are used as models of real-world physical structures. We observe that there is a simple linguistic characterization of the gram- mar ambiguity problem, and we show how to exploit this to conserva- tively approximate the problem based on local regular approximations and grammar unfoldings.
    [Show full text]
  • Parsing Grammars
    Grammars Parsing A.k.a. Syntax Analysis Recognize sentences in a language. Discover the structure of a document/program. Construct (implicitly or explicitly) a tree (called as a parse tree) to represent the structure. The parse tree is used to guide translation. Compilers Parsing CSE 304/504 1 / 36 Grammars Grammars The syntactic structure of a language is defined using grammars. Grammars (like regular expressions) specify a set of strings over an alphabet. Efficient recognizers (automata) can be constructed to determine whether a string is in the language. Language heirarchy: Finite Languages (FL) Enumeration Regular Languages (RL ⊃ FL) Regular Expressions Context-Free Languages (CFL ⊃ RL) Context-Free Grammars Compilers Parsing CSE 304/504 2 / 36 Grammars Regular Languages Languages represented by Languages recognized ≡ regular expressions by finite automata Examples: p fa; b; cg p f, a; b; aa; ab; ba; bb;:::g p f(ab)n j n ≥ 0g ×f anbn j n ≥ 0g Compilers Parsing CSE 304/504 3 / 36 Grammars Context-Free Grammars Terminal Symbols: Tokens Nonterminal Symbols: set of strings made up of tokens Productions: Rules for constructing the set of strings associated with nonterminal symbols. Example: Stmt −! while Expr do Stmt Start symbol: a nonterminal symbol that represents the set of all strings in the language. Compilers Parsing CSE 304/504 4 / 36 Grammars Grammars Notation where recursion is explicit. Examples: f, a; b; aa; ab; ba; bb;:::g = L( (a j b)∗): E −! a Notational shorthand: E −! b E −! a j b S −! S −! j ES S −! ES fanbn j n ≥ 0g : S −! S −! aSb fw j no.
    [Show full text]
  • Predictive Parsing
    Predictive Parsing How to Construct Recursive-Descent Parsers Wednesday/Thursday, November 12/13, 2008 Reading: Appel 3.2 CS235 Languages and Automata Department of Computer Science Wellesley College Overview For some grammars, reading the first token (or first few tokens) of input is sufficient for determining which production to apply. For such grammars, we can write a so-called predictive parser = recursive descent parser. In the next two lectures, we will see how to determine if a grammar is amenable to predictive parsing and how to build a predictive parser by hand. We will also learn some techniques for handling grammars for which predictive parsers do not exist. Predictive Parsing 30/31-2 Running Example: SLiP-- As our running example, we will use SLiP--, a subset of Appel’s straight-line programming language (SLiP). The abstract syntax of SLiP-- is described by these SML datatypes: datatype pgm = Pgm of Stm and stm = Assign of string * exp | Print of exp | Seq of stm list and exp = Id of string | Int of int | BinApp of exp * binop * exp and binop = Add | Sub | Mul | Div We will explore several versions of concrete syntax for SLiP-- Predictive Parsing 30/31-3 Our First Concrete Syntax for SLiP-- P → S EOF S → ID(str) := E | print E | begin SL end Productions for Concrete Grammar SL → % | S ; SL E → ID(str) | INT(int) | ( E B E ) B → + | - | * | / datatype pgm = Pgm of Stm and stm = Assign of string * exp | Print of exp SML Data Types for | Seq of stm list Abstract Grammar and exp = Id of string | Int of int | BinApp of exp * binop
    [Show full text]