'Photobiont Diversity in Teloschistaceae (Lecanoromycetes)'

Total Page:16

File Type:pdf, Size:1020Kb

'Photobiont Diversity in Teloschistaceae (Lecanoromycetes)' Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2006 Photobiont diversity in Teloschistaceae (Lecanoromycetes) Nyati, Shyam Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-163471 Dissertation Published Version Originally published at: Nyati, Shyam. Photobiont diversity in Teloschistaceae (Lecanoromycetes). 2006, University of Zurich, Faculty of Science. PHOTOBIONT DIVERSITY IN TELOSCHISTACEAE (LECANOROMYCETES) Dissertation zur Erlangung der naturwissenschaftlichen Doktorwürde (Dr. sc. nat) vorgelegt der Mathematisch-naturwissenschaftlichen Fakultät der Universität Zürich von Shyam Nyati aus Indien Promotionskomitee Prof. Dr. Ueli Grossniklaus (Vorsitz) Prof. Dr. Rosmarie Honegger (Leitung der Dissertation) Prof. Dr. Elena Conti Prof. Dr. Martin Grube Zürich, 2006 Table of Contents Table of Contents Zusammenfassung . i-v Summary . ii-vii 1 Introduction . 1-1 1.1 Lichen symbiosis . 1-1 1.1.1 Lichen-forming fungi and their photobionts. 1-1 1.1.2 Specificity and selectivity in lichen symbiosis . 1-2 1.2 Green algal lichen photobionts in focus. 1-3 1.2.1 Green algal taxonomy. 1-3 1.2.2 Trebouxiophyceae and the “lichen algae”. 1-5 1.2.3 The genus Trebouxia: most common and widespread lichen photobionts . 1-6 1.2.4 Trebouxia s.str. and Asterochloris (Tscherm.-Woess) Friedel ined. 1-7 1.3 Aims of the present investigation. .1-9 1.4 References . 1-14 2 Green algal photobiont diversity (Trebouxia spp.) in representatives of Teloschistaceae (Lecanoromycetes, lichen-forming ascomycetes) . 2-1 2.1 Summary . 2-1 2.1.1 Key words: . 2-2 2.2 Introduction . 2-2 2.3 Materials and Methods . 2-5 2.3.1 Lichen collection and storage . 2-5 2.3.2 Photobiont isolation and culture . 2-6 2.3.3 DNA extraction, PCR amplification and Sequencing . 2-14 2.3.4 ITS amplification . 2-14 2.3.5 rbcL amplification . 2-15 2.3.6 Sequencing. 2-15 2.3.7 Phylogenetic analysis . .2-16 2.4 Results. 2-16 2.4.1 Isolation and culturing. 2-16 2.4.2 ITS phylogeny. 2-17 2.4.3 rbcL phylogeny . 2-21 2.5 Discussion . 2-23 2.5.1 Correlations among morphological and molecular data sets . 2-23 2.5.2 Photobionts of the Teloschistaceae . 2-26 2.5.3 Photobionts of the genus Xanthoria . 2-27 2.5.4 Photobionts of Xanthoria parietina s. lat. 2-28 2.5.5 Algal theft by Xanthoria spp. from adjacent Physcia species? . 2-29 2.6 Acknowledgements . 2-31 2.7 References . 2-32 i 3 Novel group I LSU and SSU introns identified in lichen photobionts of the genera Trebouxia and Asterochloris . 3-1 3.1 Abstract . 3-1 3.1.1 Key words: . 3-2 3.2 Introduction . 3-2 3.3 Materials and Methods: . 3-4 3.3.1 Lichen collection, storage and photobiont isolation and culture . 3-4 3.3.2 DNA extraction, PCR amplification and sequencing. 3-8 3.3.3 Sequence alignment and phylogenetic analysis. 3-9 3.3.4 PCR test to confirm presence of 1512 group I introns in photobiont isolates. 3-9 3.4 Results and Discussion . 3-9 3.4.1 Trebouxia LSU 798 group I intron. 3-9 3.4.2 Trebouxia 1512 group I intron. 3-13 3.4.3 LSU and SSU group I intron distribution in Trebouxia and Asterochloris spp. 3-17 3.4.4 Introns of lichen photobionts and mycobionts. 3-18 3.5 Acknowledgements . 3-20 3.6 References . 3-20 4 Genetic diversity among the sterile cultured Trebouxia photobionts from populations of Xanthoria parietina (lichen-forming ascomycete) visualized with RAPD-PCR fingerprinting techniques . 4-1 4.1 Abstract . 4-1 4.1.1 Key words: . 4-2 4.2 Introduction . 4-2 4.3 Materials and methods . 4-4 4.3.1 Specimen collection, photobiont isolation and culturing . 4-4 4.3.2 Genomic DNA isolation. .4-6 4.3.3 ITS amplification, restriction digestion and sequencing . 4-7 4.3.4 ITS sequencing and phylogenetic analysis. 4-7 4.3.5 ITS-RFLP . 4-8 4.3.6 RAPD amplification and fingerprinting analysis . 4-9 4.4 Results. 4-10 4.4.1 Suitability of methods . ..
Recommended publications
  • Key to the Species of Agonimia (Lichenised Ascomycota, Verrucariaceae)
    Österr. Z. Pilzk. 28 (2019) – Austrian J. Mycol. 28 (2019, publ. 2020) 69 Key to the species of Agonimia (lichenised Ascomycota, Verrucariaceae) OTHMAR BREUSS Naturhistorisches Museum Wien, Botanische Abteilung (Kryptogamenherbar) Burgring 7 1010 Wien, Österreich E-Mail: [email protected] Accepted 29. September 2020. © Austrian Mycological Society, published online 25. October 2020 BREUSS, O., 2020: Key to the species of Agonimia (lichenised Ascomycota, Verrucariaceae). – Österr. Z. Pilzk. 28: 69–74. Key words: Pyrenocarpous lichens, Verrucariales, Agonimia, Agonimiella, Flakea. – Taxonomy, key. Abstract: A key to the 24 Agonimia species presently known is provided. A short survey of relevant literature on the genus and its affinities is added. Zusammenfassung: Ein Bestimmungsschlüssel zu den 24 bisher bekannten Agonimia-Arten wird vor- gelegt. Eine kurze Übersicht über relevante Literatur zur Gattung und ihrer Verwandtschaft ist beigefügt. Agonimia ZAHLBR. was introduced by ZAHLBRUCKNER (1909) for Agonimia tristicula (NYL.) ZAHLBR. and his newly described A. latzelii ZAHLBR. (now included within A. tristicula). It was not earlier than 1978 that another species was added to the genus: A. octospora (COPPINS & JAMES 1978). Later a handful of species previously treated in other genera (Polyblastia MASSAL., Physcia (SCHREB.) MICHX., Omphalina QUÉL.) have been transferred to Agonimia (COPPINS & al. 1992, VĚZDA 1997, SÉRUSIAUX & al. 1999, LÜCKING & MONCADA 2017, NIMIS & al. 2018). A couple of additional species have been described as new quite recently (SÉRUSIAUX & al. 1999; CZARNOTA & COP- PINS 2000; KASHIWADANI 2008; DYMYTROVA & al. 2011; GUZOW-KRZEMIŃSKA & al. 2012; APTROOT & CÁCERES 2013; HARADA 2013; KONDRATYUK 2015; KONDRATYUK & al. 2015, 2016, 2018; MCCARTHY & ELIX 2018). The circumscription of Agonimia is not fully clear.
    [Show full text]
  • Algal Sex Determination and the Evolution of Anisogamy James Umen, Susana Coelho
    Algal Sex Determination and the Evolution of Anisogamy James Umen, Susana Coelho To cite this version: James Umen, Susana Coelho. Algal Sex Determination and the Evolution of Anisogamy. Annual Review of Microbiology, Annual Reviews, 2019, 73 (1), 10.1146/annurev-micro-020518-120011. hal- 02187088 HAL Id: hal-02187088 https://hal.sorbonne-universite.fr/hal-02187088 Submitted on 17 Jul 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Annu. Rev. Microbiol. 2019. 73:X–X https://doi.org/10.1146/annurev-micro-020518-120011 Copyright © 2019 by Annual Reviews. All rights reserved Umen • Coelho www.annualreviews.org • Algal Sexes and Mating Systems Algal Sex Determination and the Evolution of Anisogamy James Umen1 and Susana Coelho2 1Donald Danforth Plant Science Center, St. Louis, Missouri 63132, USA; email: [email protected] 2Sorbonne Université, UPMC Université Paris 06, CNRS, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, France [**AU: Please write the entire affiliation in French or write it all in English, rather than a combination of English and French**] ; email: [email protected] Abstract Algae are photosynthetic eukaryotes whose taxonomic breadth covers a range of life histories, degrees of cellular and developmental complexity, and diverse patterns of sexual reproduction.
    [Show full text]
  • The Phylogenetic Position of Normandina Simodensis (Verrucariaceae, Lichenized Ascomycota)
    Bull. Natl. Mus. Nat. Sci., Ser. B, 41(1), pp. 1–7, February 20, 2015 The Phylogenetic Position of Normandina simodensis (Verrucariaceae, Lichenized Ascomycota) Andreas Frisch1* and Yoshihito Ohmura2 1 Am Heiligenfeld 36, 36041 Fulda, Germany 2 Department of Botany, National Museum of Nature and Science, Amakubo 4–1–1, Tsukuba, Ibaraki 305–0005, Japan * E-mail: [email protected] (Received 17 November 2014; accepted 24 December 2014) Abstract The phylogenetic position of Normandina simodensis is demonstrated by Bayesian and Maximum Likelihood analyses of concatenated mtSSU, nucSSU, nucLSU and RPB1 sequence data. Normandina simodensis is placed basal in a well-supported clade with N. pulchella and N. acroglypta, thus confirming Normandina as a monophyletic genus within Verrucariaceae. Norman- dina species agree in general ascoma morphology but differ in thallus structure and the mode of vegetative reproduction: crustose and sorediate in N. acroglypta; squamulose and sorediate in N. pulchella; and squamulose and esorediate in N. simodensis. Key words : Bayesian, growth form, Japan, maximum likelihood, pyrenocarpous lichens, taxonomy. Normandina Nyl. is a small genus comprising vex squamules with flat to downturned margins only three species at the world level (Aptroot, in N. simodensis. While the first two species usu- 1991; Muggia et al., 2010). Normandina pul- ally bear maculate soralia and are often found in chella (Borrer) Nyl. is almost cosmopolitan, sterile condition, N. simodensis lacks soralia and lacking only in Antarctica, while the other two is usually fertile. The latter species differs further species are of more limited distribution. Norman- by its thick paraplectenchymatic upper cortex dina acroglypta (Norman) Aptroot is known and a ± well-developed medulla derived from from Europe (Aptroot, 1991; Orange and Apt- the photobiont layer.
    [Show full text]
  • 1307 Fungi Representing 1139 Infrageneric Taxa, 317 Genera and 66 Families ⇑ Jolanta Miadlikowska A, , Frank Kauff B,1, Filip Högnabba C, Jeffrey C
    Molecular Phylogenetics and Evolution 79 (2014) 132–168 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev A multigene phylogenetic synthesis for the class Lecanoromycetes (Ascomycota): 1307 fungi representing 1139 infrageneric taxa, 317 genera and 66 families ⇑ Jolanta Miadlikowska a, , Frank Kauff b,1, Filip Högnabba c, Jeffrey C. Oliver d,2, Katalin Molnár a,3, Emily Fraker a,4, Ester Gaya a,5, Josef Hafellner e, Valérie Hofstetter a,6, Cécile Gueidan a,7, Mónica A.G. Otálora a,8, Brendan Hodkinson a,9, Martin Kukwa f, Robert Lücking g, Curtis Björk h, Harrie J.M. Sipman i, Ana Rosa Burgaz j, Arne Thell k, Alfredo Passo l, Leena Myllys c, Trevor Goward h, Samantha Fernández-Brime m, Geir Hestmark n, James Lendemer o, H. Thorsten Lumbsch g, Michaela Schmull p, Conrad L. Schoch q, Emmanuël Sérusiaux r, David R. Maddison s, A. Elizabeth Arnold t, François Lutzoni a,10, Soili Stenroos c,10 a Department of Biology, Duke University, Durham, NC 27708-0338, USA b FB Biologie, Molecular Phylogenetics, 13/276, TU Kaiserslautern, Postfach 3049, 67653 Kaiserslautern, Germany c Botanical Museum, Finnish Museum of Natural History, FI-00014 University of Helsinki, Finland d Department of Ecology and Evolutionary Biology, Yale University, 358 ESC, 21 Sachem Street, New Haven, CT 06511, USA e Institut für Botanik, Karl-Franzens-Universität, Holteigasse 6, A-8010 Graz, Austria f Department of Plant Taxonomy and Nature Conservation, University of Gdan´sk, ul. Wita Stwosza 59, 80-308 Gdan´sk, Poland g Science and Education, The Field Museum, 1400 S.
    [Show full text]
  • One Hundred New Species of Lichenized Fungi: a Signature of Undiscovered Global Diversity
    Phytotaxa 18: 1–127 (2011) ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ Monograph PHYTOTAXA Copyright © 2011 Magnolia Press ISSN 1179-3163 (online edition) PHYTOTAXA 18 One hundred new species of lichenized fungi: a signature of undiscovered global diversity H. THORSTEN LUMBSCH1*, TEUVO AHTI2, SUSANNE ALTERMANN3, GUILLERMO AMO DE PAZ4, ANDRÉ APTROOT5, ULF ARUP6, ALEJANDRINA BÁRCENAS PEÑA7, PAULINA A. BAWINGAN8, MICHEL N. BENATTI9, LUISA BETANCOURT10, CURTIS R. BJÖRK11, KANSRI BOONPRAGOB12, MAARTEN BRAND13, FRANK BUNGARTZ14, MARCELA E. S. CÁCERES15, MEHTMET CANDAN16, JOSÉ LUIS CHAVES17, PHILIPPE CLERC18, RALPH COMMON19, BRIAN J. COPPINS20, ANA CRESPO4, MANUELA DAL-FORNO21, PRADEEP K. DIVAKAR4, MELIZAR V. DUYA22, JOHN A. ELIX23, ARVE ELVEBAKK24, JOHNATHON D. FANKHAUSER25, EDIT FARKAS26, LIDIA ITATÍ FERRARO27, EBERHARD FISCHER28, DAVID J. GALLOWAY29, ESTER GAYA30, MIREIA GIRALT31, TREVOR GOWARD32, MARTIN GRUBE33, JOSEF HAFELLNER33, JESÚS E. HERNÁNDEZ M.34, MARÍA DE LOS ANGELES HERRERA CAMPOS7, KLAUS KALB35, INGVAR KÄRNEFELT6, GINTARAS KANTVILAS36, DOROTHEE KILLMANN28, PAUL KIRIKA37, KERRY KNUDSEN38, HARALD KOMPOSCH39, SERGEY KONDRATYUK40, JAMES D. LAWREY21, ARMIN MANGOLD41, MARCELO P. MARCELLI9, BRUCE MCCUNE42, MARIA INES MESSUTI43, ANDREA MICHLIG27, RICARDO MIRANDA GONZÁLEZ7, BIBIANA MONCADA10, ALIFERETI NAIKATINI44, MATTHEW P. NELSEN1, 45, DAG O. ØVSTEDAL46, ZDENEK PALICE47, KHWANRUAN PAPONG48, SITTIPORN PARNMEN12, SERGIO PÉREZ-ORTEGA4, CHRISTIAN PRINTZEN49, VÍCTOR J. RICO4, EIMY RIVAS PLATA1, 50, JAVIER ROBAYO51, DANIA ROSABAL52, ULRIKE RUPRECHT53, NORIS SALAZAR ALLEN54, LEOPOLDO SANCHO4, LUCIANA SANTOS DE JESUS15, TAMIRES SANTOS VIEIRA15, MATTHIAS SCHULTZ55, MARK R. D. SEAWARD56, EMMANUËL SÉRUSIAUX57, IMKE SCHMITT58, HARRIE J. M. SIPMAN59, MOHAMMAD SOHRABI 2, 60, ULRIK SØCHTING61, MAJBRIT ZEUTHEN SØGAARD61, LAURENS B. SPARRIUS62, ADRIANO SPIELMANN63, TOBY SPRIBILLE33, JUTARAT SUTJARITTURAKAN64, ACHRA THAMMATHAWORN65, ARNE THELL6, GÖRAN THOR66, HOLGER THÜS67, EINAR TIMDAL68, CAMILLE TRUONG18, ROMAN TÜRK69, LOENGRIN UMAÑA TENORIO17, DALIP K.
    [Show full text]
  • Lichens and Associated Fungi from Glacier Bay National Park, Alaska
    The Lichenologist (2020), 52,61–181 doi:10.1017/S0024282920000079 Standard Paper Lichens and associated fungi from Glacier Bay National Park, Alaska Toby Spribille1,2,3 , Alan M. Fryday4 , Sergio Pérez-Ortega5 , Måns Svensson6, Tor Tønsberg7, Stefan Ekman6 , Håkon Holien8,9, Philipp Resl10 , Kevin Schneider11, Edith Stabentheiner2, Holger Thüs12,13 , Jan Vondrák14,15 and Lewis Sharman16 1Department of Biological Sciences, CW405, University of Alberta, Edmonton, Alberta T6G 2R3, Canada; 2Department of Plant Sciences, Institute of Biology, University of Graz, NAWI Graz, Holteigasse 6, 8010 Graz, Austria; 3Division of Biological Sciences, University of Montana, 32 Campus Drive, Missoula, Montana 59812, USA; 4Herbarium, Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA; 5Real Jardín Botánico (CSIC), Departamento de Micología, Calle Claudio Moyano 1, E-28014 Madrid, Spain; 6Museum of Evolution, Uppsala University, Norbyvägen 16, SE-75236 Uppsala, Sweden; 7Department of Natural History, University Museum of Bergen Allégt. 41, P.O. Box 7800, N-5020 Bergen, Norway; 8Faculty of Bioscience and Aquaculture, Nord University, Box 2501, NO-7729 Steinkjer, Norway; 9NTNU University Museum, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway; 10Faculty of Biology, Department I, Systematic Botany and Mycology, University of Munich (LMU), Menzinger Straße 67, 80638 München, Germany; 11Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK; 12Botany Department, State Museum of Natural History Stuttgart, Rosenstein 1, 70191 Stuttgart, Germany; 13Natural History Museum, Cromwell Road, London SW7 5BD, UK; 14Institute of Botany of the Czech Academy of Sciences, Zámek 1, 252 43 Průhonice, Czech Republic; 15Department of Botany, Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-370 05 České Budějovice, Czech Republic and 16Glacier Bay National Park & Preserve, P.O.
    [Show full text]
  • Checklist of the Lichens and Allied Fungi of Kathy Stiles Freeland Bibb County Glades Preserve, Alabama, U.S.A
    Opuscula Philolichenum, 18: 420–434. 2019. *pdf effectively published online 2December2019 via (http://sweetgum.nybg.org/philolichenum/) Checklist of the lichens and allied fungi of Kathy Stiles Freeland Bibb County Glades Preserve, Alabama, U.S.A. J. KEVIN ENGLAND1, CURTIS J. HANSEN2, JESSICA L. ALLEN3, SEAN Q. BEECHING4, WILLIAM R. BUCK5, VITALY CHARNY6, JOHN G. GUCCION7, RICHARD C. HARRIS8, MALCOLM HODGES9, NATALIE M. HOWE10, JAMES C. LENDEMER11, R. TROY MCMULLIN12, ERIN A. TRIPP13, DENNIS P. WATERS14 ABSTRACT. – The first checklist of lichenized, lichenicolous and lichen-allied fungi from the Kathy Stiles Freeland Bibb County Glades Preserve in Bibb County, Alabama, is presented. Collections made during the 2017 Tuckerman Workshop and additional records from herbaria and online sources are included. Two hundred and thirty-eight taxa in 115 genera are enumerated. Thirty taxa of lichenized, lichenicolous and lichen-allied fungi are newly reported for Alabama: Acarospora fuscata, A. novomexicana, Circinaria contorta, Constrictolumina cinchonae, Dermatocarpon dolomiticum, Didymocyrtis cladoniicola, Graphis anfractuosa, G. rimulosa, Hertelidea pseudobotryosa, Heterodermia pseudospeciosa, Lecania cuprea, Marchandiomyces lignicola, Minutoexcipula miniatoexcipula, Monoblastia rappii, Multiclavula mucida, Ochrolechia trochophora, Parmotrema subsumptum, Phaeographis brasiliensis, Phaeographis inusta, Piccolia nannaria, Placynthiella icmalea, Porina scabrida, Psora decipiens, Pyrenographa irregularis, Ramboldia blochiana, Thyrea confusa, Trichothelium
    [Show full text]
  • Rinodina Fuscoisidiata, a New Muscicolous, Isidiate Species from Venezuela
    The Lichenologist 42(1): 73–76 (2010) © British Lichen Society, 2009 doi:10.1017/S0024282909990193 Rinodina fuscoisidiata, a new muscicolous, isidiate species from Venezuela Mireia GIRALT, Klaus KALB and John A. ELIX Abstract: Rinodina fuscoisidiata, a muscicolous isidiate species with large isidia and Pachysporaria-type ascospores is described from Venezuela. This species contains an unknown terpene as a major secondary metabolite in addition to traces of atranorin. It is compared with the four known isidiate Rinodina taxa. Key words: South America, taxonomy, lichenized fungi, Physciaceae, Lecanoromycetes Introduction Materials and Methods While revising the species of the genus The specimens were examined by standard techniques Rinodina (Ach.) Gray belonging to the using stereoscopic and compound microscopes. Current mycological terminology generally follows Kirk et al. Dolichospora group (at present including R. (2001). Only free ascospores lying outside the asci have brasiliensis Giralt, Kalb & H. Mayrhofer,R. been measured. Measurements were made in water at dolichospora Malme, R. guianensis Aptroot, ×1000 magnification. Mean value (x) and standard de- R. intermedia Bagl. and R. inspersoparietata viation (SD) were calculated and the results are given as Giralt & van den Boom), typically character- (minimum value observed) x ± SD (maximum value observed) followed by x,SDandn (the total number of ized by containing drops of uncertain origin ascospores measured) in parentheses. The terminology and nature surrounding the lumina of the used for the asci follows Rambold et al. (1994) and for ascospores (Giralt et al. 2008, 2009), we the ascospore-types and ascospore-ontogenies Giralt examined several muscicolous, isidiate Rino- (2001). Chemical constituents were identified by thin- layer chromatography (TLC) and high performance dina specimens from Venezuela collected at liquid chromatography (HPLC) (Elix et al.
    [Show full text]
  • Lateral Gene Transfer of Anion-Conducting Channelrhodopsins Between Green Algae and Giant Viruses
    bioRxiv preprint doi: https://doi.org/10.1101/2020.04.15.042127; this version posted April 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 5 Lateral gene transfer of anion-conducting channelrhodopsins between green algae and giant viruses Andrey Rozenberg 1,5, Johannes Oppermann 2,5, Jonas Wietek 2,3, Rodrigo Gaston Fernandez Lahore 2, Ruth-Anne Sandaa 4, Gunnar Bratbak 4, Peter Hegemann 2,6, and Oded 10 Béjà 1,6 1Faculty of Biology, Technion - Israel Institute of Technology, Haifa 32000, Israel. 2Institute for Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, Invalidenstraße 42, Berlin 10115, Germany. 3Present address: Department of Neurobiology, Weizmann 15 Institute of Science, Rehovot 7610001, Israel. 4Department of Biological Sciences, University of Bergen, N-5020 Bergen, Norway. 5These authors contributed equally: Andrey Rozenberg, Johannes Oppermann. 6These authors jointly supervised this work: Peter Hegemann, Oded Béjà. e-mail: [email protected] ; [email protected] 20 ABSTRACT Channelrhodopsins (ChRs) are algal light-gated ion channels widely used as optogenetic tools for manipulating neuronal activity 1,2. Four ChR families are currently known. Green algal 3–5 and cryptophyte 6 cation-conducting ChRs (CCRs), cryptophyte anion-conducting ChRs (ACRs) 7, and the MerMAID ChRs 8. Here we 25 report the discovery of a new family of phylogenetically distinct ChRs encoded by marine giant viruses and acquired from their unicellular green algal prasinophyte hosts.
    [Show full text]
  • <I> Lecanoromycetes</I> of Lichenicolous Fungi Associated With
    Persoonia 39, 2017: 91–117 ISSN (Online) 1878-9080 www.ingentaconnect.com/content/nhn/pimj RESEARCH ARTICLE https://doi.org/10.3767/persoonia.2017.39.05 Phylogenetic placement within Lecanoromycetes of lichenicolous fungi associated with Cladonia and some other genera R. Pino-Bodas1,2, M.P. Zhurbenko3, S. Stenroos1 Key words Abstract Though most of the lichenicolous fungi belong to the Ascomycetes, their phylogenetic placement based on molecular data is lacking for numerous species. In this study the phylogenetic placement of 19 species of cladoniicolous species lichenicolous fungi was determined using four loci (LSU rDNA, SSU rDNA, ITS rDNA and mtSSU). The phylogenetic Pilocarpaceae analyses revealed that the studied lichenicolous fungi are widespread across the phylogeny of Lecanoromycetes. Protothelenellaceae One species is placed in Acarosporales, Sarcogyne sphaerospora; five species in Dactylosporaceae, Dactylo­ Scutula cladoniicola spora ahtii, D. deminuta, D. glaucoides, D. parasitica and Dactylospora sp.; four species belong to Lecanorales, Stictidaceae Lichenosticta alcicorniaria, Epicladonia simplex, E. stenospora and Scutula epiblastematica. The genus Epicladonia Stictis cladoniae is polyphyletic and the type E. sandstedei belongs to Leotiomycetes. Phaeopyxis punctum and Bachmanniomyces uncialicola form a well supported clade in the Ostropomycetidae. Epigloea soleiformis is related to Arthrorhaphis and Anzina. Four species are placed in Ostropales, Corticifraga peltigerae, Cryptodiscus epicladonia, C. galaninae and C. cladoniicola
    [Show full text]
  • Diet and Habitat of Mountain Woodland Caribou Inferred From
    ARCTIC VOL. 65, SUPPL. 1 (2012) P. 59 – 79 Diet and Habitat of Mountain Woodland Caribou Inferred from Dung Preserved in 5000-year-old Alpine Ice in the Selwyn Mountains, Northwest Territories, Canada JENNIFER M. GALLOWAY,1 JAN ADAMCZEWSKI,2 DANNA M. SCHOCK,3 THOMAS D. ANDREWS,4 GLEN MacK AY, 4 VANDY E. BOWYER,5 THOMAS MEULENDYK,6 BRIAN J. MOORMAN6 and SUSAN J. KUTZ3 (Received 22 February 2011; accepted in revised form 2 May 2011) ABSTRACT. Alpine ice patches are unique repositories of cryogenically preserved archaeological artefacts and biological specimens. Recent melting of ice in the Selwyn Mountains, Northwest Territories, Canada, has exposed layers of dung accumulated during seasonal use of ice patches by mountain woodland caribou of the ancestral Redstone population over the past ca. 5250 years. Although attempts to isolate the DNA of known caribou parasites were unsuccessful, the dung has yielded numerous well-preserved and diverse plant remains and palynomorphs. Plant remains preserved in dung suggest that the ancestral Redstone caribou population foraged on a variety of lichens (30%), bryophytes and lycopods (26.7%), shrubs (21.6%), grasses (10.5%), sedges (7.8%), and forbs (3.4%) during summer use of alpine ice. Dung palynomorph assemblages depict a mosaic of plant communities growing in the caribou’s summer habitat, including downslope boreal components and upslope floristically diverse herbaceous communities. Pollen and spore content of dung is only broadly similar to late Holocene assemblages preserved in lake sediments and peat in the study region, and differences are likely due to the influence of local vegetation and animal forage behaviour.
    [Show full text]
  • Phylogenetic Analysis and Substitution Rate Estimation of Colonial Volvocine Algae Based on Mitochondrial Genomes
    G C A T T A C G G C A T genes Article Phylogenetic Analysis and Substitution Rate Estimation of Colonial Volvocine Algae Based on Mitochondrial Genomes Yuxin Hu 1,2, Weiyue Xing 1,2, Zhengyu Hu 3 and Guoxiang Liu 1,* 1 Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; [email protected] (Y.H.); [email protected] (W.X.) 2 School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China 3 State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; [email protected] * Correspondence: [email protected]; Tel.: +86-027-6878-0576 Received: 11 December 2019; Accepted: 15 January 2020; Published: 20 January 2020 Abstract: We sequenced the mitochondrial genome of six colonial volvocine algae, namely: Pandorina morum, Pandorina colemaniae, Volvulina compacta, Colemanosphaera angeleri, Colemanosphaera charkowiensi, and Yamagishiella unicocca. Previous studies have typically reconstructed the phylogenetic relationship between colonial volvocine algae based on chloroplast or nuclear genes. Here, we explore the validity of phylogenetic analysis based on mitochondrial protein-coding genes. Wefound phylogenetic incongruence of the genera Yamagishiella and Colemanosphaera. In Yamagishiella, the stochastic error and linkage group formed by the mitochondrial protein-coding genes prevent phylogenetic analyses from reflecting the true relationship. In Colemanosphaera, a different reconstruction approach revealed a different phylogenetic relationship. This incongruence may be because of the influence of biological factors, such as incomplete lineage sorting or horizontal gene transfer. We also analyzed the substitution rates in the mitochondrial and chloroplast genomes between colonial volvocine algae.
    [Show full text]