Vision for Smart Energy in Denmark - Research, Development and Demonstration

Total Page:16

File Type:pdf, Size:1020Kb

Vision for Smart Energy in Denmark - Research, Development and Demonstration Smart Energy Networks VISION FOR SMART Research, Development and Demonstration ENERGY IN DENMARK Research, Development and Demonstration Vision for Smart Energy in Denmark - Research, Development and Demonstration The Danish agenda for climate and energy is efficiencies, integration of the various energy very ambitious aiming at a renewable-based infrastructures (electricity, gas, heating and energy system by 2050. The road to 2050 will cooling), flexible energy consumption in build- not be easy - new technologies, architectures, ings, industry and transport, and smart system markets, actors and business models need to be operation. developed, and including changes in the regu- lation of the energy systems and tax systems, The transition of the energy system requires which allow for and support new business mod- rethinking the energy management and the 3 2 els and new consumption patterns. way we use energy. It is essential that the over- all design and solutions for the future smart Vision for Smart Energy in Denmark The ambition can only be achieved in a sustain- energy system are cost-effective and not least able way through combinations of high energy socially acceptable and feasible. The future Smart THE DEFINITION OF A SMART ENERGY SYSTEM: A smart energy system is a cost-effective, sustainable and secure energy system in Energy System which renewable energy production, infrastructures and consumption are integrated Vision for Smart Energy in Denmark and coordinated through energy services, active users and enabling technologies. The future Smart Energy System will be sustai- The main renewable energy sources in Den- nable, efficient, cost effective, integrated and mark are wind, solar and biomass. The fluc- intelligent. The overall aim of the energy system tuating nature of the wind and solar sources Research, Development and Demonstrations carried out to enable a cost-efficient transition is to provide energy services, requested by the requires high flexibility of the energy systems (RD&D) are key enablers for the development of the energy system and explore the unique customers, in a reliable, sustainable and cost at all scales in both time and space to balance of a smart energy system. Research-based opportunity of utilizing the Danish stronghold efficient way. power and energy. innovations and large-scale demonstration of position within renewable energy integration new system solutions with multiple interact- into more jobs and green export. DENMARK IS INTERNATIONALLY In the future: Buildings, urban areas, cit- ing sub-systems and components have to be RECOGNIZED FOR HAVING A RELIABLE ies, regions and countries like Denmark may AND EFFICIENT ENERGY SYSTEM become more or less energy self-sufficient in WITH A HIGH SHARE OF FLUCTUATING average over the year. However, more energy RENEWABLE ENERGY SOURCES. flow and exchanges are expected, due to the THE VISION FOR SMART ENERGY IN DENMARK – RD&D: increasing variation in energy demand and The Danish Smart Energy Research, Development and Demonstration will support We have established dynamic energy markets, generation, initiated by dynamic prices, new a smooth transition towards a future, sustainable and cost-efficient energy system, enhanced district heating and gas networks and use practises, etc. providing new world-wide business opportunities for the Danish companies by well integrated interconnectors to our neigh- identifying, developing and demonstrating smart energy knowledge, technologies boring countries, which makes the energy sys- The necessary flexibility in the energy sys- and solutions tem robust and ready for even larger amount of tem is most cost-efficient provided through a fluctuating energy. combination of different and complementary Vision | 2015 Vision | 2015 means – including increased responsiveness of and operation of the grids have to be coordi- the controllable energy generations and con- nated in a scalable manner. Information and sumptions (demand responses), storages, con- communication technology have to be deployed Challenges versions and exchanges with the neighbouring at all levels in each grid in order to coordinate countries. the management and operation of the grids, THE CHALLENGES MAY BE GROUPED INTO TECHNICAL, including control of the underlying systems. INSTITUTIONAL AND SOCIO-ECONOMIC CHALLENGES: Large-scale storage of electricity is expensive. However, it is possible to convert electricity Efficient tools and solutions for collecting, man- TECHNOLOGY LEVEL: THE TRANSITION towards into heat or gas. The heating system can pro- aging, analyzing and utilizing large amounts of the future sustainable, smart vide short-term and middle-long term energy data in the smart energy system are needed to Controllable centralized and decentralized generation capacity is expected to be reduced, and integrated energy system requires fundamental changes – storage capacities and the gas system long-term provide operational basis and decision support and new fluctuating energy generation is introduced faster than the redesign of the in system design, technologies, energy storage capacities. Cost and flexibility of for more intelligent energy services. power system. operation, regulations, organisations, and actors. these technologies have to be enhanced. Immature energy conversion and energy storage technologies. A successful implementation of a smart energy Information and Communication Technology system will require reliable and secure commu- Lack of implementation of integrated energy design and integrated energy storage in (ICT) will play an essential role in the transi- nication and control for optimizing and balanc- buildings and industries as well as lack of system operation tools. tion of today’s electricity, gas and heating grids ing the energy production and consumption. Not sufficient global standards for communication and smart control of the integration of into the smart energy system of tomorrow. Security in a smart energy system is about pro- energy components. This transition not only requires each grid to be tecting and ensuring the required confidentia- Data and control options are not available for the small-scale smart energy components. smart, it also requires the grids to be intercon- lity, integrity, and availability. Security and pri- NEW STEPS must be made to overcome the many challenges 5 4 nected through conversion, storage or genera- vacy are crucial to guarantee safe operation and and to develop a cost-effective tion and demand technologies. Management non-disclosure of user data. INSTITUTIONAL LEVEL: and sustainable smart energy Vision for Smart Energy in Denmark system. New system concepts Existing regulatory frameworks and tariff systems does not offer enough support the and novel technologies must HIGH RELIABILITY can be obtained HIGH RELIABILITY can be obtained COST EFFICIENCY can be deployment of energy integration and flexible energy consumption in the energy grids. be developed and tested in through combinations of well- through combinations of well- achieved through the introduction practise, which creates a great connected different and distributed connected different and distributed of new business models Lack of integration of national policies, regulations and requirements across the energy, opportunity for Danish companies resources, robust architectures resources, robust architectures and well established energy building and transport sectors. and knowledge institutions to and designs, and new system and designs, and new system markets with a high degree of demonstrate Danish solutions. monitoring and operation tools. monitoring and operation tools. interaction and competition. New planning competences (at local, regional and national scales) are required in order to ensure coordination across business interests and policy domains. Interaction between the various energy Vision for Smart Energy in Denmark infrastructures helps to provide the Transmission connections SOCIO-ECONOMIC LEVEL: flexibility required in a fully renewable Energy conversion technologies energy system (Source: DTU National (Gas motors, electric heating, electrolysis) Lack of strong business cases for smart energy solutions across sectors, regions and Active demand Laboratory for Sustainable Energy) Biomass, -gas and-fuels domains CONTINUOUS EFFORTS must Fluctuating be made to attract both capital RESSOURCE Biomass Energy storage (Vehicle-to-grid, VPP, Electricity biofuels, heat, gas, ...) Lack of incentives among system owners, building owners, authorities and end-users for and the brightest minds in order flexible consumption to keep Denmark as a leading hub for innovation and research Inadequate of end-user engagement and insights. in the field of Smart Energy. Gas system PJ/year SYSTEM Gas- 300 Electricity System storage Possible development process for the production and District Heating The power system The gas system Heating Transport Process industry consumption of energy, by sector. Note that the red NEIGHBOURING COUNTRIES DENMARK NEIGHBOURING COUNTRIES 250 line indicates the development in the final net energy 200 requirement, while the columns to the left refer to the total energy production to cover domestic 150 consumption in Denmark (for the gas and power systems) and the columns to the right illustrate the 100 gross consumption for heating, transport and the 50 process industry, respectively. Source: Energinet.dk SERVICES Electric Other Industry, Fuels for Heat pumps Heating 0 vehicles Consumption process etc. Transportation
Recommended publications
  • In-Depth Review of Energy Efficiency Policies and Programmes of Denmark
    09486/00_Cover EN 5/03/04 7:39 Page 1 Energy Charter Protocol on Energy Efficiency and Related Environmental Aspects (PEEREA) In-depth Review of Energy Efficiency Policies and Programmes of Denmark Energy Charter Secretariat 2004 Boulevard de la Woluwe, 56 B-1200 Brussels Belgium Tel. +32-(0)2 775 98 00 Fax +32-(0)2 775 98 01 9 789059 480247 E-mail [email protected] http://www.encharter.org Energy Charter Secretariat ISBN 90-5948-024-4 D/2003/7850/13 09486/00_Danemark EN 2/03/04 8:03 Page 1 IN-DEPTH REVIEW OF ENERGY EFFICIENCY POLICIES AND PROGRAMMES OF DENMARK E NERGY C HARTER P ROTOCOL ON E NERGY E FFICIENCY AND R ELATED E NVIRONMENT A SPECTS (PEEREA) 09486/00_Danemark EN 2/03/04 8:03 Page 2 INTRODUCTION The Energy Charter Treaty was signed in December 1994 and entered into legal force in April 1998. To date the Treaty has been signed or acceded to by fifty-one states 1. The Treaty was developed on the basis of the European Energy Charter of 1991. Whereas the latter document was drawn up as a declaration of political intent to promote East-West energy co-operation, the Energy Charter Treaty is a legally- binding multilateral instrument covering investment protection, liberalisation of trade, freedom of transit, dispute settlement and environmental aspects in the energy sector. The Energy Charter Conference, the governing and decision-making body for the Energy Charter Treaty, meets on a regular basis - normally twice a year - to discuss policy issues affecting East-West energy co-operation, review implementation of the provisions of the Treaty, and consider possible new instruments and projects on energy issues.
    [Show full text]
  • Case Study: Passivsystems Working with Dong Energy in Denmark
    CONFIDENTIAL Case Study: PassivSystems working with Dong Energy in Denmark Introduction to the Danish Energy Market Following the oil crisis in the 1970s, Denmark set out to become energy self-sufficient. Consequently, as concerns over carbon emissions grew in the 1980s, Denmark found itself with relatively high carbon dioxide emissions per capita, primarily due to the coal-fired electrical power plants that had become the norm after the energy crisis. Denmark has been self-reliant on energy since 1999, with significant oil and gas production in the North Sea, and is a net exporter of energy. Denmark is the second largest producer of oil in the EU and oil plays an important role in the energy mix. Natural gas and renewable sources have been gradually replacing solid fuels and oil in primary energy supply. However, imported coal is an important fuel in electricity generation. Transport (34%) and households (28%) are the most energy-consuming sectors. Denmark demonstrates the lowest energy intensity among EU Member States, although due to the high presence of fossil fuels in the energy mix, CO2 per capita production and intensity are significantly higher than the EU average More recently Denmark has set itself strong targets for carbon reduction and the elimination of fossil fuels, with 35% of energy to be delivered from renewables by 2020 and 100% by 2050. Renewable energy has experienced a significant growth since the late 1980s with both wind and energy from waste contributing to energy production. Currently 25% of energy generation and over 40% of electricity comes from renewable sources, which by far exceed the EU averages.
    [Show full text]
  • The Middelgrunden Offshore Wind Farm
    The Middelgrunden Offshore Wind Farm A Popular Initiative 1 Middelgrunden Offshore Wind Farm Number of turbines............. 20 x 2 MW Installed Power.................... 40 MW Hub height......................... 64 metres Rotor diameter................... 76 metres Total height........................ 102 metres Foundation depth................ 4 to 8 metres Foundation weight (dry)........ 1,800 tonnes Wind speed at 50-m height... 7.2 m/s Expected production............ 100 GWh/y Production 2002................. 100 GWh (wind 97% of normal) Park efficiency.................... 93% Construction year................ 2000 Investment......................... 48 mill. EUR Kastrup Airport The Middelgrunden Wind Farm is situated a few kilometres away from the centre of Copenhagen. The offshore turbines are connected by cable to the transformer at the Amager power plant 3.5 km away. Kongedybet Hollænderdybet Middelgrunden Saltholm Flak 2 From Idea to Reality The idea of the Middelgrunden wind project was born in a group of visionary people in Copenhagen already in 1993. However it took seven years and a lot of work before the first cooperatively owned offshore wind farm became a reality. Today the 40 MW wind farm with twenty modern 2 MW wind turbines developed by the Middelgrunden Wind Turbine Cooperative and Copenhagen Energy Wind is producing electricity for more than 40,000 households in Copenhagen. In 1996 the local association Copenhagen Environment and Energy Office took the initiative of forming a working group for placing turbines on the Middelgrunden shoal and a proposal with 27 turbines was presented to the public. At that time the Danish Energy Authority had mapped the Middelgrunden shoal as a potential site for wind development, but it was not given high priority by the civil servants and the power utility.
    [Show full text]
  • Energy in Denmark - a Green Transition
    Energy in Denmark - a green transition Danish Energy Agency October 17, 2016 Page 1 Denmark – 40 years ago Danish Energy Agency October 17, 2016 Page 2 Gross Energy Consumption 1975-2015 From oil to a mix of fuels Climate adjusted PJ Danish Energy Agency October 17, 2016 Page 3 From Centralized to Decentralized Centralized production in the mid 80’s Decentralized production of today Legend: • Decentralized CHP • Centralized CHP • Wind mill park Key Elements of Danish Energy Policy over time Cost-effective subsidy schemes Dialogue with and consumption- sector driven taxes on stakeholders fossil fuels A stable framework with flexibility Long term energy strategies and agreements Danish Energy Agency October 17, 2016 Page 5 A look towards 2050: Independence of fossil fuels Use of Energy Means: •Increased use of renewable energy •Strong improvement of energy efficiency in all sectors • Electrification of energy consumption 6 The current Energy Agreement - 2020 targets and means Biomass for heating Grid and Renewable energy distribution in production companies obliged processes to reduce consumption OBJECTIVES: Offshore wind Increased share of power 1400 MW renewable energy Additional minor Total wind power Reduced energy initiatives 6.500 MW consumption and GHG emissions Danish Energy Agency October 17, 2016 Page 7 Denmark’s Power Mix (2015) Solar PV Other 2% 3% Biomass 10% Fossil Electricity production based on type of input 44% Total share of RES: 56 % Wind 41% Danish Energy Agency October 17, 2016 Page 8 Denmark’s Future Power Mix (2020)
    [Show full text]
  • A Comparative Analysis of the Wind Turbine Industry in Denmark And
    DRUID Working Paper No. 07-18 Learning to Grow: A Comparative Analysis of the Wind Energy sector in Denmark and India By Kari Kristinsson and Rekha Rao www.druid.dk Learning to Grow: A Comparative Analysis of the Wind Energy Sector in Denmark and India Kari Kristinsson DRUID, Department of Business Studies Aalborg University Denmark E-mail: [email protected] Rekha Rao Laboratory of Economics and Management Scuola Superiore S. Anna Italy Corresponding e-mail: [email protected] Abstract: This paper uses sectoral systems of innovation framework to examine the relationship between technology policy and industrial development by comparing the emergence of the wind energy sector in Denmark and India. Since the late 1970s Denmark has led the development of a global wind energy industry and in 2004 wind energy supplied 18,8% percent of Denmark’s electricity consumption. India was however a late entrant that managed in a few years to establish itself as the fifth largest producer of wind energy in the world. We suggest that India’s unique policy of ‘interactive learning’ with international and especially Danish actors, instead of imitation of foreign technology policies and institutions, was a substantial contributor to India’s success in developing their wind energy industry. Key words: Wind energy industry; Denmark; India; sectoral systems of innovation Jel codes: O38; Q48 ISBN 978- 87-7873-247-7 www.druid.dk 1 ________________________________________________________________________________________________ Introduction We begin this paper by looking at the evolution of the renewable energy sector globally and namely development of wind energy sector. In the later part of this section, we will discuss the wind energy sector in our case countries, i.e., Denmark and India.
    [Show full text]
  • The Danish Energy Model Innovative, Efficient and Sustainable the Danish Energy Agency
    The Danish Energy Model Innovative, efficient and sustainable The Danish Energy Agency Preface hydro renewables in any electricity system worldwide: 66% in 2015. In 2015, The Danish Energy Model has shown more than 40% of the Danish electric- that through persistent, active and cost ity consumption was based on wind effective energy policy with ambitious power; by 2020 this figure will likely be renewable energy goals, enhanced more than 50%. energy efficiency and support for technical innovation and industrial The Danish government has set a num- development, it is possible to sustain ber of targets for the further significant economic growth, a high development of the energy sector: standard of living and a high level Continuing low-carbon energy sector of security of energy supply, while transition in a cost effective manner reducing fossil fuel dependency and Maintaining Denmark’s leading position mitigating climate change. in a number of low-carbon technologies In a nutshell: energy savings, and systems optimized manufacturing and invest- And ultimately, making Denmark ments in green energy technology are self-reliance good value for money. on renewable Denmark has reduced the adjusted energy in 2050 greenhouse gas emissions by more The Danish than 30% since 1990. With current Energy Model measures in place, the Danish Energy documents that Agency estimates that emissions will the transition be approximately 40% lower by 2020 – to 21st cen- surpassing Denmark’s legally binding tury energy is EU commitment of 34%. Denmark has Morten Bæk doable – and the highest contribution of non- Director General affordable. Danish Energy Agency 2 | benefitted the competitiveness of Danish Table of contents enterprises through lower energy costs and less exposure to highly volatile fossil fuel Low-carbon economic growth and job creation 3 prices, but also fostered new products and Setting the course 5 industries.
    [Show full text]
  • 4 Wind Energy in Denmark
    4 Wind energy in Denmark 4.1 Introduction 4.1.1 Poul la Cour and F.L. Smidth Denmark’s experience with wind turbines that produce electricity started before 1973. The Danish physics professor and wind pioneer Poul la Cour began experimenting with wind generated electricity in 1891 (Gipe, 1995). La Cour was a very versatile scientist, who combined knowledge obtained from machine construction, electrical engineering and aerodynamics with craft pragmatism (Heymann, 1995). Around 1903, he developed the 'Klapsejler', a simple, robust and reliable windmill that produced direct current electricity (Heymann, 1998). This windmill helped introduce electricity into Denmark’s countryside and helped Denmark overcome severe fossil fuel shortages during the Second World War. La Cour saw electricity as a progressive force in the restructuring of society. He was engaged in several activities for public enlightenment (Jørgensen and Karnøe, 1995). In order to solve the problem of the intermittent nature of the wind, he combined wind turbines with storage of electrical energy by way of batteries and by separating water. With financial support from the Danish government, he improved the aerodynamic design of the blades and designed a wind turbine with two, three or four narrow blades. During the Second World War, another type of windmill was built: F.L. Smidth’s more modern Aeromotor. Smidth used the experience he had gained by working with concrete while building concrete wind turbine towers. He used knowledge from the rapidly advancing field of aerodynamics to develop modern airfoils for the turbine blades. The laminated wooden blades of the turbine were coned towards the tower (Gipe, 1995).
    [Show full text]
  • Experiences with Biomass in Denmark
    Downloaded from orbit.dtu.dk on: Sep 27, 2021 Experiences with biomass in Denmark Gregg, Jay Sterling; Bolwig, Simon; Solér, Ola; Vejlgaard, Liva; Gundersen, Sofie Holst; Grohnheit, Poul Erik; Herrmann, Ivan Tengbjerg; Karlsson, Kenneth Bernard Publication date: 2014 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Gregg, J. S., Bolwig, S., Solér, O., Vejlgaard, L., Gundersen, S. H., Grohnheit, P. E., Herrmann, I. T. (Ed.), & Karlsson, K. B. (Ed.) (2014). Experiences with biomass in Denmark. DTU Management Engineering. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Experiences with biomass in Denmark Systems Analysis Division Department of Management Engineering Prepared by DTU: Jay Sterling Gregg Simon Bolwig Ola Solér Liva Vejlgaard Sofie Holst Gundersen Poul Erik Grohnheit June, 2014 Experiences with biomass in Denmark June 24, 2014 Prepared by DTU: Jay Sterling Gregg Simon Bolwig Ola Solér Liva Vejlgaard Sofie Holst Gundersen Poul Erik Grohnheit Approved by project management team: Ivan T.
    [Show full text]
  • Danish Wind Co-Ops Can Show Us the Way by Russ Christianson
    Danish Wind Co-ops Can Show Us the Way By Russ Christianson It was hard to make out the usually prominent downtown skyline. Even the CN Tower was barely visible through the smoggy haze clogging the lakeshore. As my family and I arrived at Pearson Airport, having been away for most of the month of June in Denmark and France, we were greeted by one of the worst air quality days in Toronto’s history. Our arrival to the gridlock in Toronto was a stark contrast to strolling the pedestrian and bicycle friendly streets of Copenhagen, Denmark’s largest city. With a population over one million, it’s about half the size of the pre-amalgamated City of Toronto. And while Torontonians struggle to breath the air, the people of Copenhagen (and thousands of tourists) enjoy a very people- friendly atmosphere. In contrast to North America, bicycles, pedestrians, and ultra- modern public transit systems rule over the private automobile. The Dane’s emphasis on non-polluting individual and public transportation is not Middelgrunden: The latest and largest wind power the only reason for cleaner air in their major co-operative in Denmark, just off the coast of city. After the first oil crisis in 1973, the Copenhagen. More than seven thousand members own this 40 MW offshore wind park together with local Danes began a grassroots movement that utilities. It was inaugurated in May 2001. shifted their national energy priorities. At the time, Denmark was almost completely dependent on foreign oil for heating, transportation and electricity generation. Like many countries, they faced a fork in the road, and with characteristic intelligence and pragmatism, they chose conservation and renewable energy, and left the nuclear option behind.
    [Show full text]
  • The Danish Experience with Integrating Variable Renewable Energy
    The Danish Experience with Integrating Variable Renewable Energy Lessons learned and options for improvement STUDY The Danish Experience with Integrating Variable Renewable Energy IMPRINT STUDY The Danish Experience with Integrating Variable Renewable Energy Lessons learned and options for improvement COMMISSIONED BY Agora Energiewende Rosenstraße 2 | 10178 Berlin Project lead: Dr. Stephanie Ropenus [email protected] WRITTEN BY Ea Energy Analyses Frederiksholms Kanal 4, 3. th. 1220 Copenhagen K Denmark Anders Kofoed-Wiuff, János Hethey, Mikael Togeby, Simon Sawatzki and Caroline Persson Proof reading: WordSolid, Berlin Typesetting: neueshandeln GmbH, Berlin Cover: © jeancliclac/Fotolia Please quote as: Ea (2015): The Danish Experience with Integrating Variable Renewable Energy. 082/16-S-2015/EN Study on behalf of Agora Energiewende. Publication: September 2015 www.agora-energiewende.de Preface Dear Reader, In 2014 wind energy alone supplied 39 percent of Danish from the Danish experience – based on the understanding electricity demand. Danish energy supply is moving away that sooner or later, they will face the same challenges? from a system based on fossil fuels, especially coal, toward an entirely renewable energy based system. In fact, Den- The following report, which was drafted by the Copenhagen- mark is striving for complete independence from fossil fuels based research and consultancy company Ea Energy by 2050. In the electricity and heating sectors, fossil fuel Analyses, takes an in-depth look at the Danish experience phase-out is expected even earlier. Denmark aims to meet with integrating wind power. It is hoped that the lessons 50 percent of electricity demand with wind power by 2020. learned in Denmark in recent decades can serve as a valu- Thus, increasing the integration of wind energy is one of the able aid to other countries in their efforts to transform their key challenges in the Danish renewable energy transition, energy systems.
    [Show full text]
  • Denmark - Global Leader on Climate and Energy
    DENMARK - GLOBAL LEADER ON CLIMATE AND ENERGY WWF Awards the Danish Government a Gift to the Earth for Denmark’s Leadership THE CLIMATE CHALLENGE NEEDS ActION WWF, the global conservation organization, is Since the Rio Summit in 1992, WWF has been calling for awarding the Danish government with a Gift to the governments, companies and the public to take action against Earth because Denmark has the most ambitious climate the climate challenge we are facing. and renewable energy targets of any industrialized The Earth is warming at an alarming rate and these temperature country today. changes are already having serious consequences for both people and planet such as accelerating sea level rise, droughts, WWF wishes to recognise Denmark’s ambitious achievements floods, storms and heat waves. Humankind’s emissions are in the past as well as its ambitious political targets towards the main driver of this change. The science on this is more 2050, committing to 100% renewable energy, including the certain than ever, which has just been re-established by the transport sector. IPCC. But despite compelling scientific evidence, the world is Denmark shows that it is possible to develop an equitable low not reacting quickly enough. carbon economy and at the same time secure growth and wel- fare. This has been achieved through collective action across In a time where it has become overwhelmingly evident that the the Danish Parliament since the 1970s and through sound world’s current economic growth model is no longer sustain- investment decisions. WWF hopes that industrialized and able, Denmark demonstrates ways to realize the potential for developing countries will look towards Denmark and be inspired long term sustainable growth through the development of re- to move in the same direction.
    [Show full text]
  • Denmark's Integrated National Energy and Climate Plan
    Denmark’s Integrated National Energy and Climate Plan under the REGULATION OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL on the Governance of the Energy Union and Climate Action December 2019 1 Content SECTION A: NATIONAL PLAN ............................................................................................................ 4 1. OVERVIEW AND PROCESS FOR ESTABLISHING THE PLAN .............................................................. 5 1.1 EXECUTIVE SUMMARY ........................................................................................................................ 5 1.2 OVERVIEW OF CURRENT POLICY SITUATION ........................................................................................... 10 1.3 CONSULTATIONS AND INVOLVEMENT OF NATIONAL AND EU ENTITIES AND THEIR OUTCOME ........................... 14 1.4 REGIONAL COOPERATION IN PREPARING THE PLAN ................................................................................. 20 2. NATIONAL OBJECTIVES AND TARGETS ........................................................................................ 25 2.1 DIMENSION DECARBONISATION ......................................................................................................... 25 2.1.1 GHG EMISSIONS AND REMOVALS .................................................................................................... 25 2.1.2 RENEWABLE ENERGY ..................................................................................................................... 35 2.2 DIMENSION ENERGY EFFICIENCY ........................................................................................................
    [Show full text]