Participant Handbook

Total Page:16

File Type:pdf, Size:1020Kb

Participant Handbook 58th District Court Sobriety Treatment Program Participant Handbook Revised 10/2014 Welcome! Welcome to the Ottawa County Sobriety Treatment Program (STP). This handbook is designed to answer your questions and provide overall in- formation about the program. As a participant, you will be expected to CONTENTS follow the instructions given to you by the Judge and to comply with the Welcome treatment plan developed for you by the case manager and treatment Overview team. The STP Team This handbook will detail what is expected of you as a participant. It will Confidentiality review general program information. We are confident the STP will help Progress Reports you learn how to make successful choices free of the influence of drugs Review Hearings or alcohol. Court Room Rules Program Rules Overview Narcotic Medications 12 Step Meetings The STP is a four phase intervention program for adults who have pled Incentives guilty to more than one alcohol offense and who are having difficulty Sanctions staying clean and sober. It is a collaborative effort between the District Home Visit Guidelines Court, the Prosecutor’s Office, your defense attorney, community agen- Alcohol and Drug Testing cies, case management, and treatment programs. By working together, Program Phases the team seeks to provide a variety of programs and consistent supervi- Restricted License sion geared toward supporting and helping you maintain a drug and al- Ignition Interlock cohol free life. The STP involves frequent court appearances, random Driver Responsibility Fee drug and alcohol testing, as well as group and individual counseling. The Termination From Program Court awards incentives for compliant behavior and imposes sanctions Commencement for negative behavior. Participants who do not comply with the rules may Alumni Reunions be placed in short-term custody, have phase advancement delayed, or Conclusion face a variety of other sanctions. They may also be terminated from the Phone Numbers program. All of the staff working with the program will assist you to be sure you understand what is expected of you. Sanctions for violations of STP rules, or the probation order, may be imposed by the Court without formal probation violation hearings. If the factual basis for the claimed violation is disputed, partici- pants have the right to a hearing by the Court to determine whether or not the violation occurred. If the proposed sanction involves a jail term, the participant has the right to demand a formal proba- tion violation hearing with representation by an attorney, including a court appointed attorney if the participant cannot afford one. If a violation involves the possibility of termination from the STP or revocation of probation, the Court will proceed by way of a formal probation violation. P a g e 2 Participant Handbook The STP Team The STP Judge will make all decisions regarding your participation in the STP, with input from the team. Prior to the STP review, the team members receive an update from the case managers regarding your progress. In addition to the Judge, the team consists of the following members: Defense Attorney- Protects the rights of the defendant. Prosecuting Attorney- Assists in reviewing cases for eligibility. Case Managers- Provide direct supervision of participants. Treatment Providers– Responsible for educating participants and helping them deal with alcohol and drug abuse issues. Surveillance Officers– Conduct home visits to ensure program compli- ance. Saving Lives, Reuniting Families, and Improving Communities Confidentiality By law, your identity and privacy are to be protected. In response to these regulations, the STP team has developed policies and procedures that guard your privacy. You will be asked to sign a Consent for Disclosure of Confidential Substance Abuse Information form. This disclosure of infor- mation is for the sole purpose of hearings and reports concerning your specific STP case. The Consent expires upon the successful or unsuccess- ful completion of probation. Progress Report sss Review Hearings Before your hearing, the Judge will be given a As a STP participant, you will be required progress report presented by your case manager to appear in court on a regular basis. The or treatment provider. The progress report will number of times you must appear de- discuss your drug testing results, attendance, pends on the phase you are in. Failure participation and cooperation in the treatment to appear will result in a warrant issued program, employment or other requirements that for your arrest and detention in jail until may have been imposed. The Judge may ask you can appear before the Judge. If you questions about your progress and discuss any have questions about your court appear- problems you may be having. If your progress ances, you may contact your case man- report shows that you are not doing well, the ager. Judge will discuss this with you and determine future action, which could include a sanction in order to help you remember your goals in the pro- gram. Sanctions can be anything from increased program requirements to jail. P a g e 3 Courtroom Rules • All individuals participating in the program must adhere to the following rules. Remembering that although this is not the traditional court proceeding, it is still a court proceeding and partici- pants shall govern themselves accordingly. • When addressing the Judge, the participant shall approach the bench with the utmost respect for the position. • Participants must attend all scheduled Court appearances on time and immediately be seated in the courtroom. • Participants are encouraged to bring family members to the review sessions. • Participants may not talk in the courtroom during proceedings. • Participants may not bring food or drink into the courtroom. • Participants must remain in the courtroom until he or she is dismissed by the Judge. • Participants will only be excused from Court, or be allowed to leave prior to Court dismissal, in the case of an emergency. Participants will not be excused because of transportation problems. It is the participants responsibility to find transportation to each court appearance, counseling session, and probation appointment. Any requests for absences will be presented to the team for review. The Judge, or case manager, will advise the participant of approval or denial. • If a participant does not appear on his or her regularly scheduled court date, the Judge may is- sue a warrant. • Participants may not possess dangerous weapons, including firearms and knives. • Participants must turn off cell phones. • Participants must dress appropriately for court. Program Rules As a participant you will be required to abide by the rules outlined in the participant contract, includ- ing, but not limited to the following: • Totally abstain from the use of drugs and alcohol (This includes non-alcoholic beer, energy drinks containing alcohol, and synthetic cannabinoid, known as Spice, JWH-018, incense) • Not associate with people who use or possess drugs. • Must live in an alcohol and drug free residence. • Attend court sessions and treatment sessions as scheduled. • Submit to random alcohol and drug testing. • Keep your case manager informed of your current address and phone number at all times. • Remain an Ottawa County resident throughout your participation in the program. • Submit to a search of your person, property, place of residence, vehicle or personal effects at the request of a police or probation officer. • Inform your case manager immediately should you come in contact with law enforcement. • Abide by all other rules and regulations imposed by the STP team. P a g e 4 Participant Handbook Narcotic Medications As a program participant you are prohibited from consuming controlled sub- stances without following the proper approval procedure. You are required to inform your treating physician (s) that you are a recovering addict and that you may not take controlled substances or addictive medications or drugs unless it is medically necessary and approved by the Sobriety CourtCourt. If you are on con- trolled substances prior to program entry, you will be required to review your treatment plan with your prescribing physician within 30 days of program entry. You will be required to sign a release form with your physician so the Court can communicate with your physician. You must present any treating physician with your NOTICE TOTO ANY HEALTH CARE PROVIDER card every time you seek treatment. Failure to abide with these conditions will result in a sanction or possible termi- nation from the program. The card will be provided to you by your case manager. The card states the following: 12 Step Meeting Attendance You are required to attend 12-step meetings five times per week in the first phase of the program. The time and location is your choice. We count meetings from Sunday through Saturday. It is re- quired that you arrive to meetings on time and that you stay for the entire session. You may double up on meetings one time per week only, except for Phase III and IV. All other meetings must be done on separate days. Always remember to have your log signed by the chair person only. Signa- tures must be obtained on the day of the meeting. Falsification of logs will result in severe sanc- tions. Please be careful not to lose your logs. Without your logs there is no way to confirm compliance. If you loose your log you must make up the meetings immediately. P a g e 5 Incentives Upon the recommendation of the STP Team, participants may be given rewards or incentives for compliant behavior. Common incentives are as follows: commencement ceremony, mugs, certifi- cate of recognition, books, praise by the Judge and other team members, permission to travel. Sanctions The following sanctions are examples of the sanctions that can be imposed by the STP Judge. The Judge is not limited to these sanctions.
Recommended publications
  • GRAS Notice 789 for Erythritol
    GRAS Notice (GRN) No. 789 https://www.fda.gov/food/generally-recognized-safe-gras/gras-notice-inventory. Toi• Strategies ~~~~G~~[)) JUN 7 20'8 Innovative solutions Sound science OFFICE OF FOOD ADDITIVE SAFE1Y June 5, 2018 Dr. Dennis Keefe Director, Division of Biotechnology and GRAS Notice Review Office of Food Additive Safety (HFS-200) Center for Food Safety and Applied Nutrition Food and Drug Administration 5100 Paint Branch Parkway College Park, MD 20740-3835 Subject: GRAS Notification - Erythritol Dear Dr. Keefe: On behalf of Cargill, Incorporated, ToxStrategies, Inc. (its agent) is submitting, for FDA review, a copy of the GRAS notification as required. The enclosed document provides notice of a claim that the food ingredient, erythritol, described in the enclosed notification is exempt from the premarket approval requirement of the Federal Food, Drug, and Cosmetic Act because it has been determined to be generally recognized as safe (GRAS), based on scientific procedures, for addition to food. If you have any questions or require additional information, please do not hesitate to contact me at 630-352-0303, or [email protected]. Sincerely, (b) (6) Donald F. Schmitt, M.P.H. Senior Managing Scientist ToxStrategies, Inc., 931 W. 75th St. , Suite 137, PMB 263, Naperville, IL 60565 1 Office (630) 352-0303 • www.toxstrategies.com GRAS Determination of Erythritol for Use in Human Food JUNES,2018 Innovative solutions s ,..,.,',--.r-.r--.r--. OFFICE OF FOOD ADDITIVE SAFE1Y GRAS Determination of Erythritol for Use in Human Food SUBMITTED BY: Cargill, Incorporated 15407 McGinty Road West Wayzata, MN 55391 SUBMITTED TO: U.S. Food and Drug Administration Center for Food Safety and Applied Nutrition Office of Food Additive Safety HFS-200 5100 Paint Branch Parkway College Park MD 20740-3835 CONTACT FOR TECHNICAL OR OTIIER INFORMATION Donald F.
    [Show full text]
  • Low Molecular Weight Organic Composition of Ethanol Stillage from Sugarcane Molasses, Citrus Waste, and Sweet Whey Michael K
    Chemical and Biological Engineering Publications Chemical and Biological Engineering 2-1994 Low Molecular Weight Organic Composition of Ethanol Stillage from Sugarcane Molasses, Citrus Waste, and Sweet Whey Michael K. Dowd Iowa State University Steven L. Johansen Iowa State University Laura Cantarella Iowa State University See next page for additional authors Follow this and additional works at: http://lib.dr.iastate.edu/cbe_pubs Part of the Biochemical and Biomolecular Engineering Commons, and the Biological Engineering Commons The ompc lete bibliographic information for this item can be found at http://lib.dr.iastate.edu/ cbe_pubs/12. For information on how to cite this item, please visit http://lib.dr.iastate.edu/ howtocite.html. This Article is brought to you for free and open access by the Chemical and Biological Engineering at Iowa State University Digital Repository. It has been accepted for inclusion in Chemical and Biological Engineering Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Low Molecular Weight Organic Composition of Ethanol Stillage from Sugarcane Molasses, Citrus Waste, and Sweet Whey Abstract Filtered stillage from the distillation of ethanol made by yeast fermentation of sugarcane molasses, citrus waste, and sweet whey was analyzed by gas chromatography/mass spectroscopy and by high-performance liquid chromatography. Nearly all of the major peaks representing low molecular weight organic components were identified. The am jor components in cane stillage were, in decreasing order of concentration, lactic acid, glycerol, ethanol, and acetic acid. In citrus stillage they were lactic acid, glycerol, myo-inositol, acetic acid, chiro-inositol, and proline.
    [Show full text]
  • New Yeasts Capable of Assimilating Methanol*
    J. Gen. Appl. Microbiol., 18, 295-305 (1972) NEW YEASTS CAPABLE OF ASSIMILATING METHANOL* TOSHIKAZU OKI, KAGEAKI KOUNO, ATSUO KITAI, ANDASAICHIRO OZAKI Central Research Laboratories of Sanraku- Ocean Co., Ltd., Fujisawa, Japan (Received May 10, 1972) Twenty strains of methanol strongly assimilating yeasts were isolated from rotten tomato and a flower of azalea through investigations on the single- cell protein production and on the microbial utilization of Cl compound. Taxonomic studies indicated that these yeasts were limited to certain species of Candida and Torulopsis, including two new species; C. methanolica OKi et KouNo sp. nov. and T. methanolovescens OKi et KouNo sp. nov. One hundred and ninety-one strains of yeasts obtained from type culture collections did not exhibit methanol assimilability at all. The possibility of producing a single-cell protein from methanol by micro- organisms was suggested by the extensive studies concerning methane- or methanol-assimilating bacteria, Pseudomonas sp. PRL-W4 (1), Pseudomonas methanica (2, 3, 4), Methanomonas methanooxidans (5, 6), Pseudomonas AM 1(7 ), Pseudomonas sp. M27 (8), and Vibrio extorquens (9). Moreover, it is of considerable interest that OGATA et al. first reported the assimila- tion of methanol by yeast, Kloeckera sp. No. 2201 (10, 11, 12). More recently, ASTHANA et al. (13) isolated one species of yeast capable of uti- lizing methanol as a primary carbon source and identified it tentatively as Torulopsis glabrata. However, its taxonomical characteristics have not been reported yet. In the course of investigations on yeast production and microbial utiliza- tion of Ci compounds, two new species of yeasts assimilating methanol as a carbon and energy source were isolated from natural sources.
    [Show full text]
  • Benzyl-L-Threitol
    A Publication of Reliable Methods for the Preparation of Organic Compounds Working with Hazardous Chemicals The procedures in Organic Syntheses are intended for use only by persons with proper training in experimental organic chemistry. All hazardous materials should be handled using the standard procedures for work with chemicals described in references such as "Prudent Practices in the Laboratory" (The National Academies Press, Washington, D.C., 2011; the full text can be accessed free of charge at http://www.nap.edu/catalog.php?record_id=12654). All chemical waste should be disposed of in accordance with local regulations. For general guidelines for the management of chemical waste, see Chapter 8 of Prudent Practices. In some articles in Organic Syntheses, chemical-specific hazards are highlighted in red “Caution Notes” within a procedure. It is important to recognize that the absence of a caution note does not imply that no significant hazards are associated with the chemicals involved in that procedure. Prior to performing a reaction, a thorough risk assessment should be carried out that includes a review of the potential hazards associated with each chemical and experimental operation on the scale that is planned for the procedure. Guidelines for carrying out a risk assessment and for analyzing the hazards associated with chemicals can be found in Chapter 4 of Prudent Practices. The procedures described in Organic Syntheses are provided as published and are conducted at one's own risk. Organic Syntheses, Inc., its Editors, and its Board of Directors do not warrant or guarantee the safety of individuals using these procedures and hereby disclaim any liability for any injuries or damages claimed to have resulted from or related in any way to the procedures herein.
    [Show full text]
  • Bio-Based Chemicals from Renewable Biomass for Integrated Biorefineries
    energies Review Bio-Based Chemicals from Renewable Biomass for Integrated Biorefineries Kirtika Kohli 1 , Ravindra Prajapati 2 and Brajendra K. Sharma 1,* 1 Prairie Research Institute—Illinois Sustainable Technology Center, University of Illinois, Urbana Champaign, IL 61820, USA; [email protected] 2 Conversions & Catalysis Division, CSIR-Indian Institute of Petroleum, Dehradun, Uttarakhand 248005, India; [email protected] * Correspondence: [email protected] Received: 10 December 2018; Accepted: 4 January 2019; Published: 13 January 2019 Abstract: The production of chemicals from biomass, a renewable feedstock, is highly desirable in replacing petrochemicals to make biorefineries more economical. The best approach to compete with fossil-based refineries is the upgradation of biomass in integrated biorefineries. The integrated biorefineries employed various biomass feedstocks and conversion technologies to produce biofuels and bio-based chemicals. Bio-based chemicals can help to replace a large fraction of industrial chemicals and materials from fossil resources. Biomass-derived chemicals, such as 5-hydroxymethylfurfural (5-HMF), levulinic acid, furfurals, sugar alcohols, lactic acid, succinic acid, and phenols, are considered platform chemicals. These platform chemicals can be further used for the production of a variety of important chemicals on an industrial scale. However, current industrial production relies on relatively old and inefficient strategies and low production yields, which have decreased their competitiveness with fossil-based alternatives. The aim of the presented review is to provide a survey of past and current strategies used to achieve a sustainable conversion of biomass to platform chemicals. This review provides an overview of the chemicals obtained, based on the major components of lignocellulosic biomass, sugars, and lignin.
    [Show full text]
  • Green Synthesis of 1,5‑Dideoxy‑1,5‑Imino‑Ribitol and 1 ,5
    www.nature.com/scientificreports OPEN Green synthesis of 1,5‑dideoxy‑1,5‑imino‑ribitol and 1,5‑ dideox y‑1 ,5‑ imino‑ dl ‑a rabinitol from natural d‑sugars 2− over Au/Al2O3 and ­SO4 /Al2O3 catalysts Hongjian Gao & Ao Fan* A green synthetic route for the synthesis of some potential enzyme active hydroxypiperidine iminosugars including 1,5‑dideoxy‑1,5‑imino‑ribitol and 1,5‑dideoxy‑1,5‑imino‑dl‑arabinitol, starting from commercially available d‑ribose and d‑lyxose was tested out. Heterogeneous catalysts including 2− Au/Al2O3, SO4 /Al2O3 as well as environmentally friendly reagents were employed into several critical reaction of the route. The synthetic route resulted in good overall yields of 1,5‑dideoxy‑1,5‑imino‑ ribitol of 54%, 1,5‑dideoxy‑1,5‑imino‑d‑arabinitol of 48% and 1,5‑dideoxy‑1,5‑imino‑l‑arabinitol of 46%. The Au/Al2O3 catalyst can be easily recovered from the reaction mixture and reused with no loss of activity. Iminosugars are analogues of carbohydrates, chemically named as polyhydroxylated secondary and tertiary amines and found to be widespread in plants and microorganisms. Tanks to their structural similarity to sugar molecules and excellent metabolic stability, iminosugars are endowed with a high pharmacological potential for a wide range of diseases such as viral infections, tumor metastasis, AIDS, diabetes and lysosomal storage disorders1–11. Iminosugars are generally classifed into fve structural classes: pyrrolidines, piperidines, indolizidines, pyrrolizidines and nortropanes12. Hydroxypiperidines are structurally six-membered iminosugars. Some of the hydroxypiperidines such as 1,5-dideoxy-1,5-iminohexitol derivatives have now been commercialized as drugs to treat type II diabetes mellitus, type I Gaucher disease, Niemann-Pick disease type C (NP-C) and Fabry disease13–18.
    [Show full text]
  • Application of Chiral Sulfoxides in Asymmetric Synthesis
    MOJ Bioorganic & Organic Chemistry Review Article Open Access Application of chiral sulfoxides in asymmetric synthesis Abstract Volume 2 Issue 2 - 2018 Chiral sulfoxides are used as a toolbox for the synthesis of enantiomeric/diastereomeric compounds, which are used as precursors for the pharmaceutically/chemically Ganapathy Subramanian Sankaran,1 important molecules. The current review focuses on applying these chiral sulfoxides Srinivasan Arumugan,2 Sivaraman towards the synthesis of the compounds having stereogenic center. In general, the 3 stereogenic center induced by the sulfoxide is able to direct the stereochemistry of Balasubramaniam 1University of Massachusetts Medical School, USA further transformation necessary to complete the total synthesis of bioactive molecules. 2Department of Science and Humanity (Chemistry), Karunya The nature of the reactive conformation of the sulfoxide is strongly dependent on the Institute of Technology and Sciences, India nature of the substituents at C-α and/or C-β. 3Indian Institute of Technology Madras, Chennai, India Correspondence: Sivaraman Balasubramaniam, Senior Research Scientist, Indian Institute of Technology Madras, Chennai, India, Tel +9177 1880 5113, Email [email protected] Received: March 07, 2018 | Published: March 29, 2018 Introduction occurred in a further oxidation step of one of the sulfinyl enantiomer to sulfone.13 The titanium-binaphthol complex catalyzes not only the Over the last three decades, the sulfinyl group has received asymmetric oxidation but also the kinetic
    [Show full text]
  • Sugar Alcohols a Sugar Alcohol Is a Kind of Alcohol Prepared from Sugars
    Sweeteners, Good, Bad, or Something even Worse. (Part 8) These are Low calorie sweeteners - not non-calorie sweeteners Sugar Alcohols A sugar alcohol is a kind of alcohol prepared from sugars. These organic compounds are a class of polyols, also called polyhydric alcohol, polyalcohol, or glycitol. They are white, water-soluble solids that occur naturally and are used widely in the food industry as thickeners and sweeteners. In commercial foodstuffs, sugar alcohols are commonly used in place of table sugar (sucrose), often in combination with high intensity artificial sweeteners to counter the low sweetness of the sugar alcohols. Unlike sugars, sugar alcohols do not contribute to the formation of tooth cavities. Common Sugar Alcohols Arabitol, Erythritol, Ethylene glycol, Fucitol, Galactitol, Glycerol, Hydrogenated Starch – Hydrolysate (HSH), Iditol, Inositol, Isomalt, Lactitol, Maltitol, Maltotetraitol, Maltotriitol, Mannitol, Methanol, Polyglycitol, Polydextrose, Ribitol, Sorbitol, Threitol, Volemitol, Xylitol, Of these, xylitol is perhaps the most popular due to its similarity to sucrose in visual appearance and sweetness. Sugar alcohols do not contribute to tooth decay. However, consumption of sugar alcohols does affect blood sugar levels, although less than that of "regular" sugar (sucrose). Sugar alcohols may also cause bloating and diarrhea when consumed in excessive amounts. Erythritol Also labeled as: Sugar alcohol Zerose ZSweet Erythritol is a sugar alcohol (or polyol) that has been approved for use as a food additive in the United States and throughout much of the world. It was discovered in 1848 by British chemist John Stenhouse. It occurs naturally in some fruits and fermented foods. At the industrial level, it is produced from glucose by fermentation with a yeast, Moniliella pollinis.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2006/0165623 A1 Workman Et Al
    US 2006O165623A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2006/0165623 A1 Workman et al. (43) Pub. Date: Jul. 27, 2006 (54) NATURAL IDEODORANT COMPOSITION (57) ABSTRACT (75) Inventors: Tanya Workman, Mansonville (CA); Svetlana Ratnikova, Toronto (CA) The present invention relates to a natural deodorant system and a natural system for topical and systemic delivery of Correspondence Address: active ingredients, both systems being primarily free of Louis C. Paul, Esq. preferably substantially free of more preferably essentially CTSW free of, and most preferably completely free of ethoxylates Suite 2400 or other petrochemical derivatives, and comprising: (a) at least one of (1) glycerine (preferably of plant origin), (2) a 420 Lexington Avenue polyol selected from the group consisting of galactitol, New York, NY 10170 (US) erythritol, inositol, ribitol, dithioerythritol, dithiothreitol, (3) a Sugar alcohol, selected from the group consisting of (73) Assignee: Terra Firma Natuals, Inc. mannitol, Sorbitol. Xylitol and maltitol, (4) a hydrogenated starch hydrosylates of at least one of berries, apples or (21) Appl. No.: 11/042,569 plums, and (5) mixtures thereof; (b) water or a lower monohydric alcohol, selected from the group of methanol, (22) Filed: Jan. 24, 2005 ethanol, propanol and isoproponal, or mixtures thereof, present at a combined concentration of at least 20%; (c) one Publication Classification or more carrageenans (preferably of plant origin) or algi nates, or mixtures thereof, present in combined concentra (51) Int. C. tions of less than about 2%; and (d) optionally, one or more A6 IK 8/73 (2006.01) thickeners or gums selected from the group consisting of tara, guar, Xanthan, Arabic, tragacanth, agar, locust bean (52) U.S.
    [Show full text]
  • The Generation and Reactivity of Organozinc Carbenoids
    The Generation and Reactivity of Organozinc Carbenoids A Thesis Presented by Caroline Joy Nutley In Partial Fulfilment of the Requirements for the Award of the Degree DOCTOR OF PHILOSOPHY of the UNIVERSITY OF LONDON Christopher Ingold Laboratories Department of Chemistry University College London London WCIH OAJ September 1995 ProQuest Number: 10016731 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest. ProQuest 10016731 Published by ProQuest LLC(2016). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code. Microform Edition © ProQuest LLC. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 Through doubting we come to questioning and through questioning we come to the truth. Peter Abelard, Paris, 1122 Abstract This thesis concerns an investigation into the generation and reactivity of organozinc carbenoids, from both a practical and mechanistic standpoint, using the reductive deoxygenation of carbonyl compounds with zinc and a silicon electrophile. The first introductory chapter is a review of organozinc carbenoids in synthesis. The second chapter opens with an overview of the development of the reductive deoxygenation of carbonyl compounds with zinc and a silicon electrophile since its inception in 1973. The factors influencing the generation of the zinc carbenoid are then investigated using a control reaction, and discussed.
    [Show full text]
  • A Simple Synthesis of 2-Keto-3-Deoxy-D-Erythro-Hexonic
    A simple synthesis of 2-keto-3-deoxy-D-erythro-hexonic acid isopropyl ester, a key sugar for the bacterial population living under metallic stress Claire Grison, Brice-Loïc Renard, Claude Grison To cite this version: Claire Grison, Brice-Loïc Renard, Claude Grison. A simple synthesis of 2-keto-3-deoxy-D-erythro- hexonic acid isopropyl ester, a key sugar for the bacterial population living under metallic stress. Bioorganic Chemistry, Elsevier, 2014, 52, pp.50-55. 10.1016/j.bioorg.2013.11.006. hal-03149058 HAL Id: hal-03149058 https://hal.archives-ouvertes.fr/hal-03149058 Submitted on 15 Mar 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. A simple synthesis of 2-keto-3-deoxy-D-erythro-hexonic acid isopropyl ester, a key sugar for the bacterial population living under metallic stress ⇑ Claire M. Grison a, , Brice-Loïc Renard b, Claude Grison b a ICMMO UMR 8182, Equipe Synthèse Organique & Méthodologie, Université Paris Sud, Bât. 420, 15 rue Georges Clémenceau, 91405 Orsay cedex, France b CEFE UMR 5175, Campus CNRS, 1919 route de Mende, 34293 Montpellier cedex 5, France abstract 2-Keto-3-deoxy-D-erythro-hexonic acid (KDG) is the key intermediate metabolite of the Entner Doudoroff (ED) pathway.
    [Show full text]
  • ISPD Produces CDP-Ribitol Used by FKTN and FKRP to Transfer Ribitol Phosphate Onto A-Dystroglycan
    ARTICLE Received 7 Dec 2015 | Accepted 6 Apr 2016 | Published 19 May 2016 DOI: 10.1038/ncomms11534 OPEN ISPD produces CDP-ribitol used by FKTN and FKRP to transfer ribitol phosphate onto a-dystroglycan Isabelle Gerin1, Benoıˆt Ury1,*, Isabelle Breloy2,*, Ce´line Bouchet-Seraphin3, Jennifer Bolse´e1, Mathias Halbout1, Julie Graff1, Didier Vertommen1, Giulio G. Muccioli4, Nathalie Seta3, Jean-Marie Cuisset5, Ivana Dabaj6, Susana Quijano-Roy6,7,8, Ammi Grahn1,w, Emile Van Schaftingen1 & Guido T. Bommer1 Mutations in genes required for the glycosylation of a-dystroglycan lead to muscle and brain diseases known as dystroglycanopathies. However, the precise structure and biogenesis of the assembled glycan are not completely understood. Here we report that three enzymes mutated in dystroglycanopathies can collaborate to attach ribitol phosphate onto a-dystroglycan. Specifically, we demonstrate that isoprenoid synthase domain-containing protein (ISPD) synthesizes CDP-ribitol, present in muscle, and that both recombinant fukutin (FKTN) and fukutin-related protein (FKRP) can transfer a ribitol phosphate group from CDP-ribitol to a-dystroglycan. We also show that ISPD and FKTN are essential for the incorporation of ribitol into a-dystroglycan in HEK293 cells. Glycosylation of a-dystroglycan in fibroblasts from patients with hypomorphic ISPD mutations is reduced. We observe that in some cases glycosylation can be partially restored by addition of ribitol to the culture medium, suggesting that dietary supplementation with ribitol should be evaluated as a therapy for patients with ISPD mutations. 1 WELBIO and de Duve Institute, Biological Chemistry, Universite´ Catholique de Louvain, B-1200 Brussels, Belgium. 2 Institute for Biochemistry II, Medical Faculty, University of Cologne, D-50931 Cologne, Germany.
    [Show full text]