Plataformas De Compartición De Incidentes De Ciberseguridad

Total Page:16

File Type:pdf, Size:1020Kb

Plataformas De Compartición De Incidentes De Ciberseguridad PROJECTE FINAL DE CARRERA Plataformas de Compartición de Incidentes de Ciberseguridad (Cybersecurity Incident Sharing Platforms) Estudis: Enginyeria de Telecomunicació Autor: Jenifer Jiménez Gallardo Director: Manel Medina Any: 2016 2 Table of Contents 1. Acknowledgements............................................................................................................ 9 2. Summary .......................................................................................................................... 10 2.1 Resum del Projecte ................................................................................................... 10 2.2 Resumen del Proyecto .............................................................................................. 11 2.3 Abstract ..................................................................................................................... 12 3. Introduction ..................................................................................................................... 13 3.1 Background ................................................................................................................ 13 3.2 Objectives .................................................................................................................. 13 3.3 Thesis Structure ......................................................................................................... 13 4. Methodology Used........................................................................................................... 14 4.1 Cyber Threat Sources Research................................................................................. 14 4.2 Cyber Threat Sources Selection ................................................................................ 14 4.3 Quality Assessment Methodology for Data Sources ................................................ 14 4.3.1 Coverage ............................................................................................................ 14 4.3.2 Data Frequency .................................................................................................. 15 4.3.3 Accuracy of Results ............................................................................................ 16 4.4 Data Quality assessment formula ............................................................................. 17 5. Inventory and Description of Identified Sources ............................................................. 18 5.1 Abuse.ch .................................................................................................................... 18 5.2 AlienVault Open Threat Exchange ............................................................................ 20 5.3 ATLAS ........................................................................................................................... 2 5.4 Anti Phishing Working Group ...................................................................................... 4 5.5 Autoshun ..................................................................................................................... 6 5.6 Blocklist ....................................................................................................................... 8 5.7 BotScout .................................................................................................................... 10 5.8 BruteForceBlocker ..................................................................................................... 11 5.9 CI Army ...................................................................................................................... 13 5.10 Cisco IronPort SenderBase .................................................................................... 14 3 5.11 Clean MX ................................................................................................................ 16 5.12 Composite Blocking List ......................................................................................... 17 5.13 CyberCrime Tracker ............................................................................................... 20 5.14 DNS-BH Malware Domain Blocklist ....................................................................... 21 5.15 Dr Web ................................................................................................................... 23 5.16 Dragon Research Group ........................................................................................ 25 5.17 Dshield ................................................................................................................... 27 5.18 Emerging Threats ................................................................................................... 29 5.19 hpHosts .................................................................................................................. 31 5.20 ImproWare AG ....................................................................................................... 33 5.21 Kaspersky ............................................................................................................... 35 5.22 Malc0de ................................................................................................................. 37 5.23 Malware Domain List ............................................................................................. 38 5.24 NoThink! ................................................................................................................ 40 5.25 PhisTank ................................................................................................................. 42 5.26 Project Honey Pot .................................................................................................. 43 5.27 Shadowserver ........................................................................................................ 45 5.28 Spamhaus .............................................................................................................. 48 5.29 Team Cymru ........................................................................................................... 50 5.30 Zone H .................................................................................................................... 52 6. Information Sources Analysis........................................................................................... 55 6.1 Summary of the evaluations ..................................................................................... 55 6.2 Data Uniqueness ....................................................................................................... 57 6.2.1 Phishing .............................................................................................................. 57 6.2.2 Malware ............................................................................................................. 58 6.2.3 Spam .................................................................................................................. 59 6.3 Timeliness .................................................................................................................. 60 6.3.1 Phishing .............................................................................................................. 60 6.3.2 Malware ............................................................................................................. 61 6.3.3 Spam .................................................................................................................. 61 4 7. Conclusions ...................................................................................................................... 62 8. Annex I: Abbreviations ..................................................................................................... 63 9. Bibliography ....................................................................................................................... 1 5 List of Figures Figure 1: Abuse.ch geographical distribution .......................................................................... 19 Figure 2: AlienVault geographical distribution ........................................................................ 21 Figure 3: ATLAS geographical distribution ................................................................................. 2 Figure 4: ATLAS Intelligence Feed .............................................................................................. 3 Figure 5: APWG geographical distribution................................................................................. 5 Figure 6: Autoshun geographical distribution ........................................................................... 7 Figure 7: Blocklist geographical distribution ............................................................................. 8 Figure 8: BotScout geographical distribution .......................................................................... 10 Figure 9: BruteForceBlocker geographical distribution ........................................................... 12 Figure 10: CI Army geographical distribution .......................................................................... 13 Figure 11: Cisco IronPort SenderBase geographical distribution ............................................ 15 Figure 12: Clean MX geographical distribution ....................................................................... 16 Figure 13: Composite Blocking List geographical distribution................................................
Recommended publications
  • Technical and Legal Approaches to Unsolicited Electronic Mail, 35 USFL Rev
    UIC School of Law UIC Law Open Access Repository UIC Law Open Access Faculty Scholarship 1-1-2001 Technical and Legal Approaches to Unsolicited Electronic Mail, 35 U.S.F. L. Rev. 325 (2001) David E. Sorkin John Marshall Law School, [email protected] Follow this and additional works at: https://repository.law.uic.edu/facpubs Part of the Computer Law Commons, Internet Law Commons, Marketing Law Commons, and the Privacy Law Commons Recommended Citation David E. Sorkin, Technical and Legal Approaches to Unsolicited Electronic Mail, 35 U.S.F. L. Rev. 325 (2001). https://repository.law.uic.edu/facpubs/160 This Article is brought to you for free and open access by UIC Law Open Access Repository. It has been accepted for inclusion in UIC Law Open Access Faculty Scholarship by an authorized administrator of UIC Law Open Access Repository. For more information, please contact [email protected]. Technical and Legal Approaches to Unsolicited Electronic Mailt By DAVID E. SORKIN* "Spamming" is truly the scourge of the Information Age. This problem has become so widespread that it has begun to burden our information infrastructure. Entire new networks have had to be constructed to deal with it, when resources would be far better spent on educational or commercial needs. United States Senator Conrad Burns (R-MT)1 UNSOLICITED ELECTRONIC MAIL, also called "spain," 2 causes or contributes to a wide variety of problems for network administrators, t Copyright © 2000 David E. Sorkin. * Assistant Professor of Law, Center for Information Technology and Privacy Law, The John Marshall Law School; Visiting Scholar (1999-2000), Center for Education and Research in Information Assurance and Security (CERIAS), Purdue University.
    [Show full text]
  • Prospects, Leads, and Subscribers
    PAGE 2 YOU SHOULD READ THIS eBOOK IF: You are looking for ideas on finding leads. Spider Trainers can help You are looking for ideas on converting leads to Marketing automation has been shown to increase subscribers. qualified leads for businesses by as much as 451%. As You want to improve your deliverability. experts in drip and nurture marketing, Spider Trainers You want to better maintain your lists. is chosen by companies to amplify lead and demand generation while setting standards for design, You want to minimize your list attrition. development, and deployment. Our publications are designed to help you get started, and while we may be guilty of giving too much information, we know that the empowered and informed client is the successful client. We hope this white paper does that for you. We look forward to learning more about your needs. Please contact us at 651 702 3793 or [email protected] . ©2013 SPIDER TRAINERS PAGE 3 TAble Of cOnTenTS HOW TO cAPTure SubScriberS ...............................2 HOW TO uSe PAiD PrOGrAMS TO GAin Tipping point ..................................................................2 SubScriberS ...........................................................29 create e mail lists ...........................................................3 buy lists .........................................................................29 Pop-up forms .........................................................4 rent lists ........................................................................31 negative consent
    [Show full text]
  • Successful Non-Governmental Threat Attribution
    Successful Non-Governmental! Threat Attribution, Containment! and Deterrence: A Case Study! Joe St Sauver, Ph.D. ! [email protected] or [email protected]! Internet2 Nationwide Security Programs Manager! November 2nd, 2010, 1:15-2:30 PM, Chancellor I! http://pages.uoregon.edu/joe/attribute-contain-deter/! Disclaimer: The opinions expressed are those of the author and ! do not necessarily represent the opinion of any other party.! I. Introduction! 2! Cyberspace: Anonymous and Undeterred?! • General Keith Alexander, Director of the National Security Agency (DIRNSA), recently commented [1] that in cyberspace:! "" "“It is difficult to deliver an effective response if the ! " "attacker's identity isn't known,” and ! " "“It is unclear if the government's response to cyber ! " "threats and attacks have deterred criminals, ! " "terrorists, or nations.” ! • That's a provocatively framed (if equivocal) assessment, and one worthy of careful consideration given its source. ! 3! Is The Concept of Deterrence Even Relevant to ! Attacks on Private Critical Cyber Infrastructure?! • In pondering that quote, I also note the National Research Council's (NRC's) “Cyber Deterrence Research and Scholarship” question number 39, [2] which asked: ! "" "How and to what extent, if at all, is deterrence applicable! " "to cyber attacks on private companies (especially those that! " "manage U.S. critical infrastructure)? ! • Since the Office of the Director of National Intelligence (ODNI) requested the NRC's inquiry into cyber deterrence, and since General Alexander is now leading the new United States Cyber Command as well as the National Security Agency, it is appropriate to consider these two questions jointly. ! 4! Can We Identify An Example of Successful Attribution and Cyber Deterrence?! • If we are to prove that cyber deterrence is both relevant and possible, and that the difficulties associated with attribution can be overcome, we must be able to point to at least one example of successful attribution and cyber deterrence.
    [Show full text]
  • Technical and Legal Approaches to Unsolicited Electronic Mail†
    35 U.S.F. L. REV. 325 (2001) Technical and Legal Approaches to Unsolicited Electronic Mail† By DAVID E. SORKIN* “Spamming” is truly the scourge of the Information Age. This problem has become so widespread that it has begun to burden our information infrastructure. Entire new networks have had to be constructed to deal with it, when resources would be far better spent on educational or commercial needs. United States Senator Conrad Burns (R-MT)1 UNSOLICITED ELECTRONIC MAIL, also called “spam,”2 causes or contributes to a wide variety of problems for network administrators, † Copyright © 2000 David E. Sorkin. * Assistant Professor of Law, Center for Information Technology and Privacy Law, The John Marshall Law School; Visiting Scholar (1999–2000), Center for Education and Research in Information Assurance and Security (CERIAS), Purdue University. The author is grateful for research support furnished by The John Marshall Law School and by sponsors of the Center for Education and Research in Information Assurance and Security. Paul Hoffman, Director of the Internet Mail Consortium, provided helpful comments on technical matters based upon an early draft of this Article. Additional information related to the subject of this Article is available at the author’s web site Spam Laws, at http://www.spamlaws.com/. 1. Spamming: Hearing Before the Subcomm. on Communications of the Senate Comm. on Commerce, Sci. & Transp., 105th Cong. 2 (1998) (prepared statement of Sen. Burns), available at 1998 WL 12761267 [hereinafter 1998 Senate Hearing]. 2. The term “spam” reportedly came to be used in connection with online activities following a mid-1980s episode in which a participant in a MUSH created and used a macro that repeatedly typed the word “SPAM,” interfering with others’ ability to participate.
    [Show full text]
  • Presentations Made by Senders
    SES ���� ��� � �� � � � � � � � ������������� DomainKeys ��������� SPF ��������������������� ���������� ����������������� ������������������������������������������������ Contents Introduction 3 Deployment: For Email Receivers 6 Audience 3 Two Sides of the Coin 6 How to Read this White Paper 3 Recording Trusted Senders Who Passed Authentication 6 A Vision for Spam-Free Email 4 Whitelisting Incoming Forwarders 6 The Problem of Abuse 4 What To Do About Forgeries 6 The Underlying Concept 4 Deployment: For ISPs and Enterprises 7 Drivers; or, Who’s Buying It 4 Complementary considerations for ISPs 7 Vision Walkthrough 5 Deployment: For MTA vendors 8 About Sender Authentication 8 Which specification? 8 An Example 8 Conformance testing 8 History 8 Perform SRS and prepend headers when forwarding 8 How IP-based Authentication Works 9 Add ESMTP support for Submitter 8 The SPF record 9 Record authentication and policy results in the headers 8 How SPF Classic Works 9 Join the developers mailing list 8 How Sender ID works 9 Deployment: For MUA vendors 9 How Cryptographic Techniques Work 0 Displaying Authentication-Results 9 Using Multiple Approaches Automatic switching to port 587 9 Reputation Systems Deployment: For ESPs 20 Deployment: For Email Senders 2 Don’t look like a phisher! 20 First, prepare. 2 Delegation 20 Audit Your Outbound Mailstreams 2 Publish Appropriately 20 Construct the record 2 Deployment: For Spammers 2 Think briefly about PRA and Mail-From contexts. 3 Two Types of Spammers 2 Test the record, part 3 Publish SPF and sign with DomainKeys. 2 Put the record in DNS 3 Stop forging random domains. 2 Test the record, part 2 4 Buy your own domains. 2 Keep Track of Violations 4 Reuse an expired domain.
    [Show full text]
  • Glossary of Spam Terms
    white paper Glossary of Spam terms The jargon of The spam indusTry table of Contents A Acceptable Use Policy (AUP) . 5 Alias . 5 Autoresponder . 5 B Ban on Spam . 5 Bayesian Filtering . 5 C CAN-SPAM . 5 Catch Rate . 5 CAUSe . 5 Challenge Response Authentication . 6 Checksum Database . 6 Click-through . 6 Content Filtering . 6 Crawler . 6 D Denial of Service (DoS) . 6 Dictionary Attack . 6 DNSBL . 6 e eC Directive . 7 e-mail Bomb . 7 exploits Block List (XBL) (from Spamhaus org). 7 F False Negative . 7 False Positive . 7 Filter Scripting . 7 Fingerprinting . 7 Flood . 7 h hacker . 8 header . 8 heuristic Filtering . 8 honeypot . 8 horizontal Spam . 8 i internet Death Penalty . 8 internet Service Provider (iSP) . 8 J Joe Job . 8 K Keyword Filtering . 9 Landing Page . 9 LDAP . 9 Listwashing . 9 M Machine-learning . 9 Mailing List . 9 Mainsleaze . 9 Malware . 9 Mung . 9 N Nigerian 419 Scam . 10 Nuke . 10 O Open Proxy . 10 Open Relay . 10 Opt-in . 10 Opt-out . 10 P Pagejacking . 10 Phishing . 10 POP3 . 11 Pump and Dump . 11 Q Quarantine . 11 R RBLs . 11 Reverse DNS . 11 ROKSO . 11 S SBL . 11 Scam . 11 Segmentation . 11 SMtP . 12 Spam . 12 Spambot . 12 Spamhaus . 12 Spamming . 12 Spamware . 12 SPewS . 12 Spider . 12 Spim . 12 Spoof . 12 Spyware . 12 t training Set . 13 trojan horse . 13 trusted Senders List . 13 U UCe . 13 w whack-A-Mole . 13 worm . 13 V Vertical Spam . 13 Z Zombie . 13 Glossary of Spam terms A acceptable use policy (AUP) A policy statement, made by an iSP, whereby the company outlines its rules and guidelines for use of the account .
    [Show full text]
  • Image Spam Detection: Problem and Existing Solution
    International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 06 Issue: 02 | Feb 2019 www.irjet.net p-ISSN: 2395-0072 Image Spam Detection: Problem and Existing Solution Anis Ismail1, Shadi Khawandi2, Firas Abdallah3 1,2,3Faculty of Technology, Lebanese University, Lebanon ----------------------------------------------------------------------***--------------------------------------------------------------------- Abstract - Today very important means of communication messaging spam, Internet forum spam, junk fax is the e-mail that allows people all over the world to transmissions, and file sharing network spam [1]. People communicate, share data, and perform business. Yet there is who create electronic spam are called spammers [2]. nothing worse than an inbox full of spam; i.e., information The generally accepted version for source of spam is that it crafted to be delivered to a large number of recipients against their wishes. In this paper, we present a numerous anti-spam comes from the Monty Python song, "Spam spam spam spam, methods and solutions that have been proposed and deployed, spam spam spam spam, lovely spam, wonderful spam…" Like but they are not effective because most mail servers rely on the song, spam is an endless repetition of worthless text. blacklists and rules engine leaving a big part on the user to Another thought maintains that it comes from the computer identify the spam, while others rely on filters that might carry group lab at the University of Southern California who gave high false positive rate. it the name because it has many of the same characteristics as the lunchmeat Spam that is nobody wants it or ever asks Key Words: E-mail, Spam, anti-spam, mail server, filter.
    [Show full text]
  • Asian Anti-Spam Guide 1
    Asian Anti-Spam Guide 1 © MediaBUZZ Pte Ltd January 2009 Asian Anti-SpamHighlights Guide 2 • Combating the latest inbound threat: Spam and dark traffic, Pg. 13 • Secure Email Policy Best Practices, Pg. 17 • The Continuous Hurdle of Spam, Pg. 29 • Asian Anti Spam Acts, Pg. 42 Contents: • Email Spam: A Rising Tide 4 • What everyone should know about spam and privacy 7 • Scary Email Issues of 2008 12 • Combating the latest inbound threat: Spam and dark 13 • Proofpoint survey viewed spam as an increasing threat 16 • Secure Email Policy Best Practices 17 • Filtering Out Spam and Scams 24 • The Resurgence of Spam 26 • 2008 Q1 Security Threat landscape 27 • The Continuous Hurdle of Spam 29 • Spam Filters are Adaptive 30 • Liberating the inbox: How to make email safe and pro- 31 ductive again • Guarantee a clear opportunity to opt out 33 • The Great Balancing Act: Juggling Collaboration and 34 Authentication in Government IT Networks • The Not So Secret Cost of Spam 35 • How to Avoid Spam 36 • How to ensure your e-mails are not classified as spam 37 • Blue Coat’s Top Security Trends for 2008 38 • The Underground Economy 40 • Losing Email is No Longer Inevitable 42 • Localized malware gains ground 44 • Cyber-crime shows no signs of abating 45 MEDIABUZZ PTE LTD • Asian Anti-Spam Acts 47 ASIAN ANTI-SPAM GUIDE © MediaBUZZ Pte Ltd January 2009 Asian Anti-SpamHighlights Guide 3 • Frost & Sullivan: Do not underestimate spam, Pg. 65 • Unifying email security is key, Pg. 71 • The many threats of network security, Pg. 76 • The UTM story, Pg.
    [Show full text]
  • Taxonomy of Email Reputation Systems (Invited Paper)
    Taxonomy of Email Reputation Systems (Invited Paper) Dmitri Alperovitch, Paul Judge, and Sven Krasser Secure Computing Corporation 4800 North Point Pkwy Suite 400 Alpharetta, GA 30022 678-969-9399 {dalperovitch, pjudge, skrasser}@securecomputing.com Abstract strong incentive for people to act maliciously without paying reputational consequences [1]. While this Today a common goal in the area of email security problem can be solved by disallowing anonymity on is to provide protection from a wide variety of threats the Internet, email reputation systems are able to by being more predictive instead of reactive and to address this problem in a much more practical fashion. identify legitimate messages in addition to illegitimate By assigning a reputation to every email entity, messages. There has been previous work in the area of reputation systems can influence agents to operate email reputation systems that can accomplish these responsibly for fear of getting a bad reputation and broader goals by collecting, analyzing, and being unable to correspond with others [2]. distributing email entities' past behavior The goal of an email reputation system is to monitor characteristics. In this paper, we provide taxonomy activity and assign a reputation to an entity based on its that examines the required properties of email past behavior. The reputation value should be able to reputation systems, identifies the range of approaches, denote different levels of trustworthiness on the and surveys previous work. spectrum from good to bad. In 2000, Resnick et al. described Internet reputation system as having three 1. Introduction required properties [3]: • Entities are long lived, As spam volumes have continued to increase with • feedback about current interactions is high rates, comprising 90% of all email by the end of captured and distributed, and 2006 as determined by Secure Computing Research, • past feedback guides buyer decisions.
    [Show full text]
  • WHITE PAPER Email Deliverability Review
    WHITE PAPER Email DELIVeraBility REView dmawe are the White Paper Email Deliverability Review Published by Deliverability Hub of the Email Marketing Council Sponsored by 1 COPYRIGHT: THE DIRECT MARKETING ASSOCIATION (UK) LTD 2012 WHITE PAPER Email DELIVeraBility REView Contents About this document ...............................................................................................................................3 About the authors ...................................................................................................................................4 Sponsor’s perspective .............................................................................................................................5 Executive summary .................................................................................................................................6 1. Major factors that impact on deliverability ..............................................................................................7 1.1 Sender reputation .............................................................................................................................7 1.2 Spam filtering ...................................................................................................................................7 1.3 Blacklist operators ............................................................................................................................8 1.4 Smart Inboxes ..................................................................................................................................9
    [Show full text]
  • The Economics of Spam∗
    The Economics of Spam∗ Justin M. Rao David H. Reiley Microsoft Research Google, Inc. Keywords: spam, externalities, email, arms race, screening JEL Codes: D02, D23, D62 The term \spam," as applied to unsolicited commercial email and related undesirable online communication, derives from a popular Monty Python sketch set in a cafe that includes the canned- meat product SPAM in almost every dish. As the waitress describes the menu with increasing usage of the word \spam," a group of Vikings in the cafe start singing, \Spam, spam, spam, spam, spam," drowning out all other communication with their irrelevant, repetitive song. The analogy to unsolicited commercial solicitations jamming one's inbox seems quite apt. Every day about 90 billion emails are sent to valid email addresses around the world; in 2010 an estimated 88 percent of this worldwide email traffic was spam (Symantec, 2010; MAAWG, 2011). Almost all of this spam is illegal under current laws. How does spam differ from legitimate advertising? If I enjoy watching network television, using a social networking site or checking stock quotes online, I know I will be subjected to advertisements, many of which may be irrelevant or even annoying to me. Google, Yahoo!, Microsoft, Facebook, and others provide valuable consumer services, such as social networking, news and email, supported entirely by advertising revenue. While people may resent advertising, most consumers accept that advertising is a price they pay for access to valuable content and services. By contrast, unsolicited commercial email imposes a negative externality on consumers without any market- mediated benefit, and without the opportunity to opt out.
    [Show full text]
  • 84. Blog Spam Detection Using Intelligent Bayesian Approach
    International Journal of Engineering Research and General Science Volume 2, Issue 5, August-September, 2014 ISSN 2091-2730 Blog-Spam Detection Using intelligent Bayesian Approach - Krushna Pandit, Savyasaachi Pandit Assistant Professor, GCET, VVNagar, E-mail- [email protected] , M - 9426759947 Abstract Blog-spam is one of the major problems of the Internet nowadays. Since the history of the internet the spam are considered a huge threat to the security and reliability of web content. The spam is the unsolicited messages sent for the fulfillment of the sender’s purpose and to harm the privacy of user, site owner and/or to steal available resource over the internet (may be or may not be allocated to).For dealing with spam there are so many methodologies available. Nowadays the blog spamming is a rising threat to safety, reliability, & purity of the published internet content. Since the search engines are using certain specific algorithms for creating the searching page-index/rank for the websites (i.e. google-analytics), it has attracted so many attention to spam the SMS(Social Media Sites) for gaining rank in order to increase the company’s popularity. The available solutions to malicious content detection are quite a more to be used very frequently in order to fulfill the requirement of analyzing all the web content in certain time with least possible ―false positives‖. For this purpose a site level algorithm is needed so that it can be easy, cheap & understandable (for site modifiers) to filter and monitor the content being published. Now for that we use a ―Bayes Theorem‖ of the ―Statistical approach‖.
    [Show full text]