Rede Automatizada De Spamtraps

Total Page:16

File Type:pdf, Size:1020Kb

Rede Automatizada De Spamtraps Universidade do Minho Escola de Engenharia Pedro Jorge Barros Vasconcelos Guimarães Rede automatizada de spamtraps Outubro de 2011 Universidade do Minho Escola de Engenharia Pedro Jorge Barros Vasconcelos Guimarães Rede automatizada de spamtraps Dissertação de Mestrado Mestrado em Engenharia Informática Trabalho efectuado sob a orientação de Prof. Doutor António Luís Sousa Outubro de 2011 ii Declara¸c~ao Nome: Pedro Jorge Barros Vasconcelos Guimar~aes Endere¸coElectr´onico: [email protected] Telefone: 914486608 Bilhete de identidade: 13261663 T´ıtuloda Tese: Rede automatizada de spamtraps Orientador: Professor Doutor Ant´onioLu´ısSousa Ano de conclus~ao: 2011 Designa¸c~aodo Mestrado: Mestrado em Engenharia Inform´atica E´ AUTORIZADA A REPRODUC¸ AO~ INTEGRAL DESTA TESE APE- NAS PARA EFEITOS DE INVESTIGAC¸ AO,~ MEDIANTE DECLARAC¸ AO~ ESCRITA DO INTERESSADO, QUE A TAL SE COMPROMETE; Universidade do Minho, Maio de 2011 Assinatura: Who has time to manually spam web sites? That can't be very cost effective. Eric Cheng iv Agradecimentos Em primeiro lugar devo agradecer pelos preciosos conhecimentos t´ecnicosque me foram transmitidos pelo Nuno Pais Fernandes ao longo da fase de con- cep¸c~aoe desenvolvimento. As suas ideias e sugest~oesforam de um inestim´avel valor. Bastar´areal¸carque o projecto n~aoo seria sem a sua participa¸c~ao. Ao Professor Ant´onioLu´ısSousa que sempre me apontou o caminho indi- cado em termos acad´emicos,contribuindo com ideias valiosas para o projecto. A` equipa de suporte t´ecnico da Eurotux, em especial ao Duarte Rocha, Paulo Silva e Fernando Gomes, pelo tempo que dedicaram a elucidar-me sobre as mais variadas quest~oest´ecnicasrelacionadas com este projecto. A` administra¸c~aoda Eurotux Inform´aticaS.A. pela facilidade e flexibili- dade hor´ariasoferecidas, bem como pelas excelentes condi¸c~oesde trabalho. Ao Manuel Dias que embarcou no mesmo desafio de realizar a disserta¸c~ao de mestrado na ind´ustriae que sempre me ajudou naquilo que estava ao seu alcance. A` fam´ılia,amigos e em especial a Jos´eDur~aese Cl´audiaMatosa que sem- pre revelaram grande interesse e curiosidade, contribuindo com as preciosas sugest~oes. v vi AGRADECIMENTOS Resumo Spam ´eo termo que define o envio de mensagens n~aosolicitadas por meios electr´onicos. A vertente do fen´omenoassociada ao email ´eum problema que afecta a Internet desde os seus prim´ordios.S~aomuitas e sofisticadas as t´ecnicasadoptadas pelos spammers para espalhar mensagens n~aosolicitadas. Apesar disso, os mecanismos anti-spam t^emvindo a tornar-se cada vez mais eficazes. Uma t´ecnicade combate ao spam que se tem tornado cada vez mais popular ´ea utiliza¸c~aode spamtraps. Tratam-se de normais endere¸cosde email que n~aos~aoutilizados por humanos, tendo apenas como objectivo a captura de mensagens n~aosolicitadas e por isso classificadas como spam. Estes endere¸coss~aocolocados em locais estrat´egicosna Internet para que os spammers os recolham e os utilizem para enviar spam. Neste trabalho ´eproposto um novo modo de combater o spam tendo por base a distribui¸c~aoautom´aticade spamtraps por diversos locais. O projecto de software baseado neste princ´ıpioser´arespons´avel pela recep¸c~aoe enca- minhamento das mensagens recebidas pelas spamtraps. Estas mensagens de spam, futuramente, ser~aoutilizadas para alimentar um sistema de filtragem de spam j´aexistente, de modo a que este esteja sempre actualizado com os conte´udosmais recentes enviados pelos spammers, bem como das mais diversas informa¸c~oesrelativas aos remetentes destas. Palavras-chave: administra¸c~aode sistemas, email, seguran¸ca, redes, internet, spam, spamtrap vii viii RESUMO Abstract Spam is the term that defines the sending of unsolicited messages through electronic means. Since the beginning of the Internet, email spam is conside- red a serious problem. Nowadays, spammers are using increasingly sophisti- cated techniques in order to deliver unsolicited mail. Nevertheless, anti-spam mechanisms are becoming progressively more effective. The use of spamtraps is a technique that is becoming more popular. Spamtraps are unused, but yet valid, email addresses used as traps in order to seize unsolicited email, spam. Such addresses are placed in strategic locations over the Internet so spammers can collect and use them to send spam. The project based on this approach will be able to disseminate email addresses by various sites and then receive and route the generated messages. These messages will be used to feed an existing content based filtering system in a way that it will continuously learn about the most recent spam contents, as well as information concerning the senders. Keywords: systems administration, email, security, networks, internet, spam, spamtrap ix x ABSTRACT Conte´udo Agradecimentos v Resumo vii Abstract ix 1 Introdu¸c~ao 1 1.1 Contexto . .2 1.2 Motiva¸c~ao . .4 1.3 Objectivos . .6 1.4 Estrutura do documento . .7 2 Spam, spamtraps e factos relacionados 9 2.1 M´etodos de spam . .9 2.1.1 Aquisi¸c~aode endere¸cos . 10 2.1.2 Prepara¸c~aode conte´udos. 13 2.1.3 Envio de spam . 14 2.2 Mitiga¸c~ao . 16 2.2.1 Preven¸c~aode recolha de endere¸cos. 17 2.2.2 Filtragem baseada em conte´udos . 19 2.2.3 Filtragem n~ao-baseadaem conte´udos . 20 2.3 Redes de honeypots ........................ 23 2.3.1 Conceito . 24 2.3.2 Exemplos de redes de honeypots ............. 24 2.3.3 Inova¸c~oese diferen¸cas . 26 3 Rede Automatizada de Spamtraps 29 3.1 Arquitectura do sistema . 30 3.1.1 M´odulosde distribui¸c~aode spamtraps . 30 3.1.2 M´odulosauxiliares . 39 3.1.3 Ficheiros de configura¸c~ao. 41 xi xii CONTEUDO´ 3.1.4 Integra¸c~ao. 42 3.1.5 Spam collector ...................... 44 3.2 Base de dados . 46 3.2.1 Esquema relacional . 46 3.3 Servi¸cos . 51 3.3.1 Servidor DNS . 51 3.3.2 Servidor Email . 51 3.3.3 Servidor IMAP . 52 3.3.4 Servidor Web . 52 3.4 M´aquinavirtual . 53 3.4.1 Caracter´ısticasgerais . 53 3.4.2 Caracter´ısticasde rede . 53 3.4.3 Sistema Operativo . 53 4 Distribui¸c~aoautom´aticade spamtraps 55 4.1 Prepara¸c~ao . 55 4.1.1 Cria¸c~aode conte´udos. 56 4.1.2 Levantamento de locais . 56 4.1.3 Sistema . 57 4.2 Distribui¸c~ao . 58 4.2.1 Forums .......................... 59 4.2.2 Newsgroups ........................ 60 4.2.3 Twitter .......................... 62 4.2.4 Websites .......................... 63 5 Resultados 65 5.1 Enquadramento geral . 65 5.1.1 An´alisedo espa¸cotemporal . 66 5.1.2 Destinat´arios . 67 5.2 Spam e spamtraps distribu´ıdas. 68 5.2.1 Forums .......................... 69 5.2.2 Newsgroups ........................ 69 5.2.3 Twitter .......................... 70 5.2.4 Websites .......................... 70 5.3 Spam . 72 5.3.1 Conte´udo . 72 5.3.2 Proveni^encia. 74 6 Conclus~oes 77 6.1 Objectivos e resultados . 77 6.2 Aplica¸c~ao . 79 CONTEUDO´ xiii 6.2.1 Integra¸c~aocom ETMX . 80 6.2.2 Aplica¸c~oescomerciais . 80 6.3 Trabalho futuro . 81 xiv CONTEUDO´ Lista de Algoritmos 3.1 Distribui¸c~aode spamtraps em f´oruns . 32 3.2 Distribui¸c~aode spamtraps em newsgroups ........... 34 3.3 Distribui¸c~aode spamtraps em contas do Twitter ........ 35 3.4 Cria¸c~aode websites com spamtraps . 37 xv xvi LISTA DE ALGORITMOS Lista de Tabelas 1.1 Compara¸c~aode custos entre m´etodos de marketing comuns e spam. .3 2.1 Pa´ısesde origem de pr´aticasde harvesting ........... 10 2.2 Pa´ısescom maior incid^enciade envio de spam . 11 2.3 Principais sistemas operativos de relays de spam . 15 4.1 N´umerode spamtraps colocadas por local . 59 5.1 N´umerode mensagens recebidas por dia da semana . 66 5.2 Mensagens de spam recebidas por local de coloca¸c~aoda spamtrap 69 5.3 Hashtags que acompanharam spamtraps mais bem sucedidas . 71 5.4 Spam recebido por gama de IPs . 74 5.5 Spam recebido por pa´ıs. 75 xvii xviii LISTA DE TABELAS Lista de Figuras 2.1 Processo t´ıpicode harvesting em p´aginasWeb . 12 2.2 Exemplo de cabe¸calhosSMTP Received ............. 21 3.1 Arquitectura do sistema . 31 3.2 Exemplo de coloca¸c~aode uma spamtrap num f´orum phpBB .. 33 3.3 Exemplo de invoca¸c~aoda API do twitter ............ 35 3.4 Exemplo de coloca¸c~aode uma spamtrap numa conta do twitter 36 3.5 Amostra de c´odigoHTML gerado pelo m´odulo websites .... 38 3.6 Amostra de c´odigocom integra¸c~aodo m´oduloDBI . 40 3.7 Amostra de entradas no ficheiro asn.conf ............ 42 3.8 Cabe¸calhosHTTP utilizados pelo m´odulo WWW :: Mechanize 42 3.9 API simplificada das classes desenvolvidas . 44 3.10 Amostra de c´odigofonte do cliente de webservices ....... 45 3.11 Esquema relacional da base de dados . 47 3.12 Entrada t´ıpicana tabela Topics ................. 48 3.13 Amostra da configura¸c~aodo servi¸co dovecot .......... 52 4.1 Distribui¸c~aodi´ariade spamtraps . 58 4.2 Distribui¸c~aodi´ariade spamtraps em f´oruns. 60 4.3 Distribui¸c~aodi´ariade spamtraps em newsgroups ........ 61 4.4 Distribui¸c~aodi´ariade spamtraps em contas do twitter ..... 62 5.1 Recep¸c~aodi´ariade spam . 67 5.2 Percentagem de mensagens por categoria de spam . 74 6.1 Spamtraps colocadas e respectivo spam recebido por local . 78 xix xx LISTA DE FIGURAS Cap´ıtulo1 Introdu¸c~ao Desde o inicio da massifica¸c~aoda Internet que o envio de mensagens in- desej´aveis ou n~aosolicitadas, spam, se tem vindo a revelar um problema que afecta o regular funcionamento da rede global.
Recommended publications
  • Prospects, Leads, and Subscribers
    PAGE 2 YOU SHOULD READ THIS eBOOK IF: You are looking for ideas on finding leads. Spider Trainers can help You are looking for ideas on converting leads to Marketing automation has been shown to increase subscribers. qualified leads for businesses by as much as 451%. As You want to improve your deliverability. experts in drip and nurture marketing, Spider Trainers You want to better maintain your lists. is chosen by companies to amplify lead and demand generation while setting standards for design, You want to minimize your list attrition. development, and deployment. Our publications are designed to help you get started, and while we may be guilty of giving too much information, we know that the empowered and informed client is the successful client. We hope this white paper does that for you. We look forward to learning more about your needs. Please contact us at 651 702 3793 or [email protected] . ©2013 SPIDER TRAINERS PAGE 3 TAble Of cOnTenTS HOW TO cAPTure SubScriberS ...............................2 HOW TO uSe PAiD PrOGrAMS TO GAin Tipping point ..................................................................2 SubScriberS ...........................................................29 create e mail lists ...........................................................3 buy lists .........................................................................29 Pop-up forms .........................................................4 rent lists ........................................................................31 negative consent
    [Show full text]
  • Presentations Made by Senders
    SES ���� ��� � �� � � � � � � � ������������� DomainKeys ��������� SPF ��������������������� ���������� ����������������� ������������������������������������������������ Contents Introduction 3 Deployment: For Email Receivers 6 Audience 3 Two Sides of the Coin 6 How to Read this White Paper 3 Recording Trusted Senders Who Passed Authentication 6 A Vision for Spam-Free Email 4 Whitelisting Incoming Forwarders 6 The Problem of Abuse 4 What To Do About Forgeries 6 The Underlying Concept 4 Deployment: For ISPs and Enterprises 7 Drivers; or, Who’s Buying It 4 Complementary considerations for ISPs 7 Vision Walkthrough 5 Deployment: For MTA vendors 8 About Sender Authentication 8 Which specification? 8 An Example 8 Conformance testing 8 History 8 Perform SRS and prepend headers when forwarding 8 How IP-based Authentication Works 9 Add ESMTP support for Submitter 8 The SPF record 9 Record authentication and policy results in the headers 8 How SPF Classic Works 9 Join the developers mailing list 8 How Sender ID works 9 Deployment: For MUA vendors 9 How Cryptographic Techniques Work 0 Displaying Authentication-Results 9 Using Multiple Approaches Automatic switching to port 587 9 Reputation Systems Deployment: For ESPs 20 Deployment: For Email Senders 2 Don’t look like a phisher! 20 First, prepare. 2 Delegation 20 Audit Your Outbound Mailstreams 2 Publish Appropriately 20 Construct the record 2 Deployment: For Spammers 2 Think briefly about PRA and Mail-From contexts. 3 Two Types of Spammers 2 Test the record, part 3 Publish SPF and sign with DomainKeys. 2 Put the record in DNS 3 Stop forging random domains. 2 Test the record, part 2 4 Buy your own domains. 2 Keep Track of Violations 4 Reuse an expired domain.
    [Show full text]
  • Asian Anti-Spam Guide 1
    Asian Anti-Spam Guide 1 © MediaBUZZ Pte Ltd January 2009 Asian Anti-SpamHighlights Guide 2 • Combating the latest inbound threat: Spam and dark traffic, Pg. 13 • Secure Email Policy Best Practices, Pg. 17 • The Continuous Hurdle of Spam, Pg. 29 • Asian Anti Spam Acts, Pg. 42 Contents: • Email Spam: A Rising Tide 4 • What everyone should know about spam and privacy 7 • Scary Email Issues of 2008 12 • Combating the latest inbound threat: Spam and dark 13 • Proofpoint survey viewed spam as an increasing threat 16 • Secure Email Policy Best Practices 17 • Filtering Out Spam and Scams 24 • The Resurgence of Spam 26 • 2008 Q1 Security Threat landscape 27 • The Continuous Hurdle of Spam 29 • Spam Filters are Adaptive 30 • Liberating the inbox: How to make email safe and pro- 31 ductive again • Guarantee a clear opportunity to opt out 33 • The Great Balancing Act: Juggling Collaboration and 34 Authentication in Government IT Networks • The Not So Secret Cost of Spam 35 • How to Avoid Spam 36 • How to ensure your e-mails are not classified as spam 37 • Blue Coat’s Top Security Trends for 2008 38 • The Underground Economy 40 • Losing Email is No Longer Inevitable 42 • Localized malware gains ground 44 • Cyber-crime shows no signs of abating 45 MEDIABUZZ PTE LTD • Asian Anti-Spam Acts 47 ASIAN ANTI-SPAM GUIDE © MediaBUZZ Pte Ltd January 2009 Asian Anti-SpamHighlights Guide 3 • Frost & Sullivan: Do not underestimate spam, Pg. 65 • Unifying email security is key, Pg. 71 • The many threats of network security, Pg. 76 • The UTM story, Pg.
    [Show full text]
  • Taxonomy of Email Reputation Systems (Invited Paper)
    Taxonomy of Email Reputation Systems (Invited Paper) Dmitri Alperovitch, Paul Judge, and Sven Krasser Secure Computing Corporation 4800 North Point Pkwy Suite 400 Alpharetta, GA 30022 678-969-9399 {dalperovitch, pjudge, skrasser}@securecomputing.com Abstract strong incentive for people to act maliciously without paying reputational consequences [1]. While this Today a common goal in the area of email security problem can be solved by disallowing anonymity on is to provide protection from a wide variety of threats the Internet, email reputation systems are able to by being more predictive instead of reactive and to address this problem in a much more practical fashion. identify legitimate messages in addition to illegitimate By assigning a reputation to every email entity, messages. There has been previous work in the area of reputation systems can influence agents to operate email reputation systems that can accomplish these responsibly for fear of getting a bad reputation and broader goals by collecting, analyzing, and being unable to correspond with others [2]. distributing email entities' past behavior The goal of an email reputation system is to monitor characteristics. In this paper, we provide taxonomy activity and assign a reputation to an entity based on its that examines the required properties of email past behavior. The reputation value should be able to reputation systems, identifies the range of approaches, denote different levels of trustworthiness on the and surveys previous work. spectrum from good to bad. In 2000, Resnick et al. described Internet reputation system as having three 1. Introduction required properties [3]: • Entities are long lived, As spam volumes have continued to increase with • feedback about current interactions is high rates, comprising 90% of all email by the end of captured and distributed, and 2006 as determined by Secure Computing Research, • past feedback guides buyer decisions.
    [Show full text]
  • Pragmaticperl-Interviews-A4.Pdf
    Pragmatic Perl Interviews pragmaticperl.com 2013—2015 Editor and interviewer: Viacheslav Tykhanovskyi Covers: Marko Ivanyk Revision: 2018-03-02 11:22 © Pragmatic Perl Contents 1 Preface .......................................... 1 2 Alexis Sukrieh (April 2013) ............................... 2 3 Sawyer X (May 2013) .................................. 10 4 Stevan Little (September 2013) ............................. 17 5 chromatic (October 2013) ................................ 22 6 Marc Lehmann (November 2013) ............................ 29 7 Tokuhiro Matsuno (January 2014) ........................... 46 8 Randal Schwartz (February 2014) ........................... 53 9 Christian Walde (May 2014) .............................. 56 10 Florian Ragwitz (rafl) (June 2014) ........................... 62 11 Curtis “Ovid” Poe (September 2014) .......................... 70 12 Leon Timmermans (October 2014) ........................... 77 13 Olaf Alders (December 2014) .............................. 81 14 Ricardo Signes (January 2015) ............................. 87 15 Neil Bowers (February 2015) .............................. 94 16 Renée Bäcker (June 2015) ................................ 102 17 David Golden (July 2015) ................................ 109 18 Philippe Bruhat (Book) (August 2015) . 115 19 Author .......................................... 123 i Preface 1 Preface Hello there! You have downloaded a compilation of interviews done with Perl pro- grammers in Pragmatic Perl journal from 2013 to 2015. Since the journal itself is in Russian
    [Show full text]
  • WHITE PAPER Email Deliverability Review
    WHITE PAPER Email DELIVeraBility REView dmawe are the White Paper Email Deliverability Review Published by Deliverability Hub of the Email Marketing Council Sponsored by 1 COPYRIGHT: THE DIRECT MARKETING ASSOCIATION (UK) LTD 2012 WHITE PAPER Email DELIVeraBility REView Contents About this document ...............................................................................................................................3 About the authors ...................................................................................................................................4 Sponsor’s perspective .............................................................................................................................5 Executive summary .................................................................................................................................6 1. Major factors that impact on deliverability ..............................................................................................7 1.1 Sender reputation .............................................................................................................................7 1.2 Spam filtering ...................................................................................................................................7 1.3 Blacklist operators ............................................................................................................................8 1.4 Smart Inboxes ..................................................................................................................................9
    [Show full text]
  • 84. Blog Spam Detection Using Intelligent Bayesian Approach
    International Journal of Engineering Research and General Science Volume 2, Issue 5, August-September, 2014 ISSN 2091-2730 Blog-Spam Detection Using intelligent Bayesian Approach - Krushna Pandit, Savyasaachi Pandit Assistant Professor, GCET, VVNagar, E-mail- [email protected] , M - 9426759947 Abstract Blog-spam is one of the major problems of the Internet nowadays. Since the history of the internet the spam are considered a huge threat to the security and reliability of web content. The spam is the unsolicited messages sent for the fulfillment of the sender’s purpose and to harm the privacy of user, site owner and/or to steal available resource over the internet (may be or may not be allocated to).For dealing with spam there are so many methodologies available. Nowadays the blog spamming is a rising threat to safety, reliability, & purity of the published internet content. Since the search engines are using certain specific algorithms for creating the searching page-index/rank for the websites (i.e. google-analytics), it has attracted so many attention to spam the SMS(Social Media Sites) for gaining rank in order to increase the company’s popularity. The available solutions to malicious content detection are quite a more to be used very frequently in order to fulfill the requirement of analyzing all the web content in certain time with least possible ―false positives‖. For this purpose a site level algorithm is needed so that it can be easy, cheap & understandable (for site modifiers) to filter and monitor the content being published. Now for that we use a ―Bayes Theorem‖ of the ―Statistical approach‖.
    [Show full text]
  • Pilay Sánchez Luis Humberto.Pdf.Part
    UNIVERSIDAD DE GUAYAQUIL FACULTAD DE CIENCIAS MATEMÁTICAS Y FÍSICAS CARRERA DE INGENIERÍA EN SISTEMAS COMPUTACIONALES “IMPLEMENTACIÓN DE UN SISTEMA HELP DESK EN LINUX PARA GESTIONAR INCIDENTES INFORMÁTICOS PARA LA NUBE INTERNA DE LA CARRERA DE INGENIERÍA EN SISTEMAS COMPUTACIONALES” TESIS DE GRADO Previa a la obtención del Título de: INGENIERO EN SISTEMAS COMPUTACIONALES AUTOR: LUIS HUMBERTO PILAY SÁNCHEZ TUTOR: ING. BERNARDO IÑIGUEZ MUÑOZ GUAYAQUIL – ECUADOR 2013 UNIVERSIDAD DE GUAYAQUIL FACULTAD DE CIENCIAS MATEMÁTICAS Y FÍSICAS CARRERA DE INGENIERÍA EN SISTEMAS COMPUTACIONALES “IMPLEMENTACIÓN DE UN SISTEMA HELP DESK EN LINUX PARA GESTIONAR INCIDENTES INFORMÁTICOS PARA LA NUBE INTERNA DE LA CARRERA DE INGENIERÍA EN SISTEMAS COMPUTACIONALES” TESIS DE GRADO Previa a la obtención del Título de: INGENIERO EN SISTEMAS COMPUTACIONALES LUIS HUMBERTO PILAY SÁNCHEZ TUTOR: ING. BERNARDO IÑIGUEZ MUÑOZ GUAYAQUIL – ECUADOR 2013 i REPOSITORIO NACIONAL EN CIENCIAS Y TECNOLOGÍA FICHA DE REGISTRO DE TESIS TÍTULO “ IMPLEMENTACIÓN DE UN SISTEMA HELP DESK EN LINUX PARA GESTIONAR INCIDENTES INFORMÁTICOS PARA LA NUBE INTERNA DE LA CARRERA DE INGENIERÍA EN SISTEMAS COMPUTACIONALES” REVISORES: FACULTAD: INSTITUCIÓN: Universidad de Guayaquil Ciencias Matemáticas y Físicas CARRERA: Ingeniería en Sistemas Computacionales FECHA DE PUBLICACIÓN: Agosto 2013 N° DE PÁGS.: 133 pág. ÁREA TEMÁTICA: Soporte a Usuarios PALABRAS CLAVES: Help Desk, Sistema gestor de tickets, OTRS, Nube, CISC. RESUMEN: El presente proyecto de tesis consiste en la implementación del sistema de Help Desk Open Source instalado bajo la plataforma de Centos sobre la infraestructura virtual mediante la herramienta web phpVirtualBox. Obteniendo como ventaja facilidad en la administración y configuración de nuestro servicio de Help Desk aplicado para la nube interna del laboratorio.
    [Show full text]
  • Studienbriefe-Spam.Pdf
    Spam [Spam] Autoren: Dr. Christopher Wolf Sebastian Uellenbeck Ruhr-Universität Bochum Modul Spam [Spam] Studienbrief 1: Grundlagen Studienbrief 2: Spam-Techniken Studienbrief 3: Anti-Spam-Techniken Autoren: Dr. Christopher Wolf Sebastian Uellenbeck 1. Auflage Ruhr-Universität Bochum © 2017 Ruhr-Universität Bochum Universitätsstraße 150 44801 Bochum 1. Auflage (30. Mai 2017) Didaktische und redaktionelle Bearbeitung: Bärbel Wolf-Gellatly Das Werk einschließlich seiner Teile ist urheberrechtlich geschützt. Jede Ver- wendung außerhalb der engen Grenzen des Urheberrechtsgesetzes ist ohne Zustimmung der Verfasser unzulässig und strafbar. Das gilt insbesondere für Vervielfältigungen, Übersetzungen, Mikroverfilmungen und die Einspei- cherung und Verarbeitung in elektronischen Systemen. Um die Lesbarkeit zu vereinfachen, wird auf die zusätzliche Formulierung der weiblichen Form bei Personenbezeichnungen verzichtet. Wir weisen des- halb darauf hin, dass die Verwendung der männlichen Form explizit als geschlechtsunabhängig verstanden werden soll. Das diesem Bericht zugrundeliegende Vorhaben wurde mit Mitteln des Bun- desministeriums für Bildung, und Forschung unter dem Förderkennzeichen 16OH12026 gefördert. Die Verantwortung für den Inhalt dieser Veröffentli- chung liegt beim Autor. Inhaltsverzeichnis Seite3 Inhaltsverzeichnis Einleitung zu den Studienbriefen5 I. Abkürzungen der Randsymbole und Farbkodierungen......... 5 II. Zu den Autoren.............................. 6 III. Modullehrziele.............................. 7 Studienbrief 1 Grundlagen9
    [Show full text]
  • CPA's Guide to Understanding and Controlling Spam Roman H
    University of Mississippi eGrove American Institute of Certified Public Accountants Guides, Handbooks and Manuals (AICPA) Historical Collection 1-1-2004 CPA's guide to understanding and controlling spam Roman H. Kepczyk American Institute of Certified Public Accountants. Information Technology Section Follow this and additional works at: https://egrove.olemiss.edu/aicpa_guides Part of the Accounting Commons, and the Taxation Commons Recommended Citation Kepczyk, Roman H. and American Institute of Certified Public Accountants. Information Technology Section, "CPA's guide to understanding and controlling spam" (2004). Guides, Handbooks and Manuals. 199. https://egrove.olemiss.edu/aicpa_guides/199 This Article is brought to you for free and open access by the American Institute of Certified Public Accountants (AICPA) Historical Collection at eGrove. It has been accepted for inclusion in Guides, Handbooks and Manuals by an authorized administrator of eGrove. For more information, please contact [email protected]. ISO Certified 091015 AMERICAN INSTITUTE OF CERTIFIED P UBLIC ACCOUNTANTS Information Spam and Controlling to Understanding A CPA’sGuide Technology Section Roman H . Kepczyk, CPA, CITP CPA, . Kepczyk, AMERICAN INSTITUTE OF CERTIFIED P UBLIC ACCOUNTANTS Information Spam and Controlling to Understanding A CPA’sGuide Technology Section Roman H . Kepczyk, CPA, CITP CPA, . Kepczyk, Controlling Spam.qxd 8/24/2004 9:41 AM Page ii Notice to Readers A CPA’s Guide to Understanding and Controlling Spam does not represent an official position of the American Institute of Certi- fied Public Accountants, and it is distributed with the under- standing that the author and the publisher are not rendering accounting or other professional services in the publication.
    [Show full text]
  • Mitigating Spam Using Network-Level Features
    MITIGATING SPAM USING NETWORK-LEVEL FEATURES A Thesis Presented to The Academic Faculty by Anirudh V. Ramachandran In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in Computer Science School of Computer Science Georgia Institute of Technology August 2011 MITIGATING SPAM USING NETWORK-LEVEL FEATURES Approved by: Professor Nick Feamster, Advisor Professor Patrick Traynor School of Computer Science School of Computer Science Georgia Institute of Technology Georgia Institute of Technology Dr. Anirban Dasgupta Professor Kilian Weinberger Research Scientist Department of Computer Science and Yahoo! Research Engineering Washington University in St. Louis Professor Wenke Lee Date Approved: 20 May 2011 School of Computer Science Georgia Institute of Technology To mom and dad for their love, support, and encouragement. iii ACKNOWLEDGEMENTS Most of the good work that my name appears on is directly due to my advisor, Prof. Nick Feamster. Nick is one of those few professors bold enough to offer funding to a green first-year PhD with no experience in networking or security, solely on the basis of a 7001 mini-project—all before he even started at Tech. I am glad he took that chance. Nick taught me almost everything I know about picking problems, crafting clever solutions, and, just as importantly, presenting it well. I’m also grateful for his suggestions, insights, and much-needed nudges in the right direction, as well as his informal advising style (hurrah for open-ended 3 AM meetings!). Despite his brilliance, Nick is also one of the hardest-working people I know, and I strive to emulate his work ethic.
    [Show full text]
  • White & Black Listing: Other Uses Of
    White & Black Listing Other uses of DNS Join FIRST/TF-CSIRT Jan 20th 2009 RIGA Index • SMTP Blacklist • problems • White list implementation • Build your own reputation system • Blocking malicious domains About Red IRIS • Spanish Academic & Research Network • Interconnect 250 Universities & Research centers • Part of government company, red.es • IRIS-CERT, CSIRT inside RedIRIS E-mail working group at RedIRIS • Working group with Universities & Research center since 1993 http://www.rediris.es/mail • Trusted community developing different tools & usage guides. Quality metrics for email services . Evaluation of new technologies .etc. • Information also used by people outside Universities Black List • Old initiative to block incoming SMTP at: . TCP connection handshake . Initial SMTP dialogue . Firewall , before establishing the connection • Usually a list of “supposed” bad email senders • Almost all the SMTP solutions used some kind of black list • DNSBL • Most of the Blacklist used DNS for query protocol: . Easy to query ,similar to reverse IP address resolution” . Provides “caching” of the information in DNS servers. Easy to implement in the server code . All of the SMTP servers implements this feature. How to build a black List ? • From users: (spamcop, …): • Users denounce spam email received. • After some hits the sender IP is listed in the blacklist. • Problems: • Some user subscribed to mailing list and forgot about their subscriptions: Easier to say “this is spam” that try to be removed from some mailer servers. • Users usually fills any web based forms providing their email How to build a black list ? • Gathering information: . Block IP blocks from IP addresses that are residential / end users space Dynamic allocated users Static allocates users.
    [Show full text]