What If the Mars Rover Does Find Lostgenius Whomerits Aplaceon Thepodium

Total Page:16

File Type:pdf, Size:1020Kb

What If the Mars Rover Does Find Lostgenius Whomerits Aplaceon Thepodium Thursday, August 30, 2012 THE IRISH TIMES 11 ScienceScience EditorTodayDick Ahlstrom e-mail [email protected] CORMAC Ó What if the Mars Rover does find RAIFEARTAIGH Lost genius Proof of who merits a place on the podium Who knows about Vesto Slipher, life? the astronomer who inspired the work of Edwin Hubble? NE OF the great surprises of 20th century science was the discovery that Oour universe is expanding. The finding caused a paradigm shift in cosmology and eventually led to today’s “Big Bang” model of the origin of the universe. It is therefore quite puzzling that a scientist who played a key role in the discovery remains virtually unknown to scientists and the general public alike. Step forward Vesto Slipher, the American astronomer who first established that the most distant objects in the sky are moving away from one another at high speed. Vesto Melvin Slipher was born in the US state of Indiana in 1875. He was educated at Indiana University and took up a position at the Lowell Observatory in Arizona after receiving his degree in 1901. There, he showed himself to be an astronomer of exceptional talent. In particular, he pioneered a method of measuring the motion of stars with the use of a spectrograph, an instrument that analyses the spectrum of light emitted by a body. Slipher used his new technique to study the attempting to answer questions “A laser on Curiosity’s mast cre- many details about the analysis of Is there anything out there? An Kevin Nolan, lecturer in physics at most enigmatic astronomical objects of the BECCA WILSON about Martian life. “We have tan- ates small pulses of plasma on data recently received from Curi- artist’s illustration of the Mars the Institute of Technology Tal- day, indistinct aggregations of gas and stars talising evidence from previous rock surfaces which are analysed osity, but confirms, “We are now Rover Curiosity on the surface laght and author of the book, known as the nebulae. Exactly 100 years ago, Nasa engineers are pleased with spacecraft and Martian meteor- by the ChemCam spectrometers getting a stream of exciting data of Mars. Photograph: Mars, A Cosmic Stepping Stone. he discovered that the spectrum of light the performance of the Curiosity ites for a warmer, wetter past on to determine compositions of ele- and images. Hopefully the MSL Encyclopaedia Britannica/UIG Via “Things that stand out with MSL emitted by the Andromeda nebula was Mars when life might have ments including hydrogen,” mission will last several years or Getty Images are the combination of its sophisti- significantly “Doppler-shifted”, indicating that Rover, but will it find evidence existed,” says Dr John Bridges, explains Bridges. more and there is much more to cation and its size.” it was moving at high speed. reader in planetary science at the “From this we can determine come.” The development of new In physics, the Doppler effect is a that Mars had the ability to University of Leicester. what the water temperatures, MSL builds on the decades of landing systems such as the “sky well-known phenomenon whereby the light harbour current or past life on Bridges is a member of the acidity and composition were and preceding Mars missions and crane” – remotely winching down measured by an observer is affected by the MSL science team and is leading a thus whether it was habitable.” advances in technology. “MSL is a a probe from a rocket-powered relative motion of source and observer: the Mars? group of scientists from the UK Nasa has released some anal- mission of our time, we couldn’t hovering platform – make it pos- light is measured as shifted in frequency and France that will study images yses from ChemCam, after Curi- have done it five years ago,” says sible to deliver larger rovers to a towards the higher (blue) end of the spectrum and data collected by the rover. osity zapped a rock with its laser planet’s surface. if the source is moving towards the observer, “MSL may provide the ‘ground for the first time. Initial data from This has meant that MSL has and towards the lower (red) end if the source SPY with my little eye – but truth’ necessary to accurately the multi-wavelength camera con- been able to take the most sophisti- is moving away. By 1917, Slipher had what does Curiosity see? determine how long water existed firms that the “Coronation” rock cated analytical equipment from established that the light from many of the Last week Nasa’s Curiosity on the surface of Mars, what the is basalt, a volcanic rock that is Earth laboratories to Mars for the distant nebulae was significantly red-shifted; rover – the largest and most composition of brines were, and common on Mars. first time. they were moving away at speeds of up to high-tech space exploration thus whether Mars was habit- A compilation of 30 laser-shot ❝ MSL is a landmark mission in 1,000km per second. Irobot ever made – opened up its able.” analyses also detected the pres- our history of solar system explo- The discovery that the distant nebulae were “eyes, ears and nose” to examine Bridges has a particular ence of carbon from the carbon ration. Nolan likens it to the mile- receding at high speed was a great surprise to the surface of Mars. interest in the Alpha Proton X-ray dioxide-rich atmosphere. Studies of some of the hardiest life stones that were the Apollo pro- science and it was the first hint that the The rover is part of Nasa’s Mars Spectrometer and ChemCam Hydrogen was also found in the forms on Earth tell us that Mars may gramme, with MSL sure to leave a nebulae might constitute distinct galaxies of Science Laboratory (MSL) mis- instruments that are built into the first but not subsequent shots. “good legacy for the future of stars outside of the Milky Way. This was sion, with the prime goal of Curiosity. This equipment deter- This suggests that the element, a have been able to support life back space exploration”. confirmed a few years later, when the answering the question of mines the quantity and variety of constituent of water, is only astronomer Edwin Hubble used a new whether ancient Mars had the major elements in Martian rocks present on the outer surface of the then, and possibly even still today, Becca Wilson is a British Science method of measuring astronomical distance to capability to host microbial life. and soil, giving clues to the rock. Association Media Fellow on place- show that many of the nebulae lay far beyond Final and absolute confirma- ancient Martian environment. Bridges is unable to divulge underground ment at The Irish Times our own galaxy. Combining his own tion that life either exists or used measurements of distance with Slipher’s to exist on Mars raises profound measurements of motion, Hubble made an questions about life and its poten- even more astonishing discovery: the more tial to exist here and elsewhere. distant a galaxy, the faster it was speeding So the Curiosity is going to be away! answering some very big philo- Dutch company has reality TV plan for contestants on Mars Over the next few years, Hubble and his sophical and biological questions. assistant, Milton Humason, measured As life was just emerging on our distances and redshifts for more than 40 own planet 3.5 billion years ago, HUMAN SETTLEMENT on Mars, advisers, is that we feel it is time highly ambitious project has to the Martian surface.” galaxies. All obeyed the simple velocity/ Mars also contained liquid water as portrayed in the film Total that humans go to Mars,” says find solutions to a range of Kevin Nolan, a lecturer in distance relation above and, in time, it became on its surface. Recall (right), may only be a Mars One co-founder Bas problems that seem physics at the Institute of known as Hubble’s law. However, it should “In many respects Mars is a decade away. Dutch company Lansdorp. “It is the spirit of insurmountable, from ensuring Technology Tallaght and author really be called the Hubble-Slipher law, as very Earth-like world, or at least it Mars One wants to put members exploration that drives us. Mars the psychological well-being of of Mars, A Cosmic Stepping Slipher was the first to detect the motion of was billions of years ago. When of the public on the surface of One is a purely private endeavour, astronauts to the effect on the Stone, is more cautious. He the galaxies and, indeed, Hubble used life was first getting started on Mars by 2023 – filming this one- because we feel that it will be up human body of space flight. acknowledges that space is a free Slipher’s measurements to derive the relation. Earth we see extensive evidence way mission as a reality TV show. to private companies to take this “MSL is the first landing domain, that shouldn’t only be Today, one often reads that “Hubble for liquid water across the face of This may seem like a movie next giant leap.” mission to Mars to carry a explored by national discovered the expansion of the universe”, Mars,” says Dr Lewis Dartnell, plot, but the project is a reality. It There are distinct advantages radiation detector,” says Dr Lewis governments. while Slipher’s contribution is largely research fellow in astrobiology at is supported by some of the of private enterprise leading Dartnell, an astrobiologist at While private-sector space forgotten. In fact, the statement is doubly University College London.
Recommended publications
  • An Overview of New Worlds, New Horizons in Astronomy and Astrophysics About the National Academies
    2020 VISION An Overview of New Worlds, New Horizons in Astronomy and Astrophysics About the National Academies The National Academies—comprising the National Academy of Sciences, the National Academy of Engineering, the Institute of Medicine, and the National Research Council—work together to enlist the nation’s top scientists, engineers, health professionals, and other experts to study specific issues in science, technology, and medicine that underlie many questions of national importance. The results of their deliberations have inspired some of the nation’s most significant and lasting efforts to improve the health, education, and welfare of the United States and have provided independent advice on issues that affect people’s lives worldwide. To learn more about the Academies’ activities, check the website at www.nationalacademies.org. Copyright 2011 by the National Academy of Sciences. All rights reserved. Printed in the United States of America This study was supported by Contract NNX08AN97G between the National Academy of Sciences and the National Aeronautics and Space Administration, Contract AST-0743899 between the National Academy of Sciences and the National Science Foundation, and Contract DE-FG02-08ER41542 between the National Academy of Sciences and the U.S. Department of Energy. Support for this study was also provided by the Vesto Slipher Fund. Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the authors and do not necessarily reflect the views of the agencies that provided support for the project. 2020 VISION An Overview of New Worlds, New Horizons in Astronomy and Astrophysics Committee for a Decadal Survey of Astronomy and Astrophysics ROGER D.
    [Show full text]
  • Experiencing Hubble
    PRESCOTT ASTRONOMY CLUB PRESENTS EXPERIENCING HUBBLE John Carter August 7, 2019 GET OUT LOOK UP • When Galaxies Collide https://www.youtube.com/watch?v=HP3x7TgvgR8 • How Hubble Images Get Color https://www.youtube.com/watch? time_continue=3&v=WSG0MnmUsEY Experiencing Hubble Sagittarius Star Cloud 1. 12,000 stars 2. ½ percent of full Moon area. 3. Not one star in the image can be seen by the naked eye. 4. Color of star reflects its surface temperature. Eagle Nebula. M 16 1. Messier 16 is a conspicuous region of active star formation, appearing in the constellation Serpens Cauda. This giant cloud of interstellar gas and dust is commonly known as the Eagle Nebula, and has already created a cluster of young stars. The nebula is also referred to the Star Queen Nebula and as IC 4703; the cluster is NGC 6611. With an overall visual magnitude of 6.4, and an apparent diameter of 7', the Eagle Nebula's star cluster is best seen with low power telescopes. The brightest star in the cluster has an apparent magnitude of +8.24, easily visible with good binoculars. A 4" scope reveals about 20 stars in an uneven background of fainter stars and nebulosity; three nebulous concentrations can be glimpsed under good conditions. Under very good conditions, suggestions of dark obscuring matter can be seen to the north of the cluster. In an 8" telescope at low power, M 16 is an impressive object. The nebula extends much farther out, to a diameter of over 30'. It is filled with dark regions and globules, including a peculiar dark column and a luminous rim around the cluster.
    [Show full text]
  • The Flint River Observer a Frac Special Edition The
    1 How it happened is an intriguing tale. Many astronomers considered the change to be a long- THE overdue step in advancing astronomy as a science -- and as many others regarded it as a deception perpetrated by the International Astronomical FLINT RIVER Union (IAU). Curiously, both sides were right. I’ve written about it before, but this Special OBSERVER Edition of the Observer is broader in scope. Written 22 yrs. after the event, it tells both sides of NEWSLETTER OF THE FLINT the story in far greater depth than previously. RIVER ASTRONOMY CLUB (Incidentally, this project began as a brief “This ‘n That” newsletter item about an article that An Affiliate of the appeared in Astronomy Magazine but quickly grew Astronomical League into something much larger. You’ll see what I was writing about on p. 6.) Special Edition October, 2018 -Bill __________________________________________ * * * A FRAC SPECIAL EDITION THE PLUTO QUESTION: What is a Planet? Beginnings. The discovery of Neptune by William Lassell in 1846 brought the solar system’s planet total to eight. However, wobbles in the by Bill Warren orbital paths of Uranus and Neptune led the American astronomer, founder and director of __________________ Lowell Observatory, Percival Lowell, to conclude that a ninth planet -- he called it Planet X – lay Introduction. If you were born before 1990, you somewhere beyond Neptune and was tugging probably remember how upset people were when gravitationally on that planet and Uranus. Lowell Pluto was removed from the solar system’s family died in 1916, but in 1929 Vesto Slipher, his of planets in 1996.
    [Show full text]
  • Edwin Hubble (1889-1953) Measured Distance to Andromeda Galaxy (M31) • Noticed Individual Bright Stars in Andromeda
    The Resolution: Edwin Hubble (1889-1953) Measured Distance to Andromeda Galaxy (M31) • Noticed individual bright stars in Andromeda • Calculated the distance using the Period-Luminosity Relation for Cepheid Variable Stars The Resolution: Edwin Hubble (1889-1953) Measured Distance to Andromeda Galaxy (M31) • Noticed individual bright stars in Andromeda • Calculated the distance using the Period-Luminosity Relation for Cepheid Variable Stars 1. MEASURED magnitude & Period The Resolution: Edwin Hubble (1889-1953) Measured Distance to Andromeda Galaxy (M31) • Noticed individual bright stars in Andromeda • Calculated the distance using the Period-Luminosity Relation for Cepheid Variable Stars 1. MEASURED magnitude & Period 2. CALCULATED Luminosity The Resolution: Edwin Hubble (1889-1953) Measured Distance to Andromeda Galaxy (M31) • Noticed individual bright stars in Andromeda • Calculated the distance using the Period-Luminosity Relation for Cepheid Variable Stars 1. MEASURED magnitude & Period 2. CALCULATED Luminosity 3. CALCULATED Distance The Resolution: Edwin Hubble (1889-1953) Measured Distance to Andromeda Galaxy (M31) • Noticed individual bright stars in Andromeda • Calculated the distance using the Period-Luminosity Relation for Cepheid Variable Stars 1. MEASURED magnitude & Period 2. CALCULATED Luminosity 3. CALCULATED Distance • Result was MUCH farther than expected... • (2.3 Million Ly - well beyond Milky Way) Henrietta Leavitt & Period-Luminosity Relation Cepheid Variables: Bright stars whose Luminosity (energy output) varies every
    [Show full text]
  • Victoria Centre
    ROYAL ASTRONOMICAL SOCIETY OF CANADA: VICTORIA CENTRE New Moon through the Trees, by Diane Bell The Littlest AGM After changing our society’s year end to December 31st, to be more in sync with RASC National and the rest of Western Civilization, the next step was having an annual general meeting, to fulfill our obligations to the BC Society’s Act. The February 13th meeting was chosen to do double duty as our monthly meeting and what President Reg Dunkley promised as a 5 minute AGM, to vote on the financials I prepared as the outgoing treasurer. SKYNEWS March 2019 ISSUE #406 Page 1 ROYAL ASTRONOMICAL SOCIETY OF CANADA: VICTORIA CENTRE The dining wasn’t what we’ve come to expect for our annual general meetings. In fact there was no food to be had at all, other than the usual snacks served in the astronomy teacher’s lounge for our after meeting social. Having just had our banquet in November, it was considered a bit gauche to have another one so soon, let alone the organizing required to make it happen on short notice. The weather was also unkind, as the meeting was scheduled at the end of a week of snow for the BC South Coast, something local denizens are generally less than prepared for. 19 RASC Victoria members were present and another 16 provided proxy votes so we could achieve quorum (there are currently 285 RASC Victoria Centre members). One of the proxy votes was made from as far away as Tasmania! The SkyNews Editor provided his proxy vote and watched the meeting via UTube, from his home, on the snowy plateau of North Saanich, where his summer tire equipped car remained parked for the week.
    [Show full text]
  • Extra! Extra! Read All About the Universe!
    Extra! Extra! Read All About the Universe! Barb Mattson (USRA/GSFC) JHU Space Grant July 8, 2013 1 Nature of Supernovae You will receive the Cosmic Times posters at the end of this workshop Gallery Walk Take a tour of the Cosmic Times posters Gallery Walk ' • ' Start at one Cosmic Times poster station Ø Cosmic Times poster Ø 3 versions of the newsletter: early edition (7-8 grade), home edition (9-10 grade), late edition (11-12 grade, same readings as on posters) • ' At each poster, use the chart paper to record the answers to the following two questions, as they relate to that issue of Cosmic Times Ø What big questions are facing scientists? Ø What answers have scientists just found? • ' You will have 4 minutes at the first poster, and 2 minutes at each subsequent poster • ' Return to first poster and prepare a 1-minute summary of all the responses (write it down!) The year is 1919… ' • What’s going on? • What’s going on in science? • What is your view of the Universe? ª Infinite ª Unchanging/static ª Ageless ' 5 1919 – Einstein’s Gravity • ' What is Gravity? • ' Gravity is curved space- time. Ø Gravity bends light. Ø Amount of deflection ' differs from Newton’s prediction. ' ➜ 1919 Solar Eclipse verified Einstein’s prediction. 1919 – Einstein’s Gravity • What is Gravity? • Gravity is curved space- time. Ø Gravity bends light. Ø Amount of deflection differs from Newton’s prediction. ➜ 1919 Solar Eclipse verified Einstein’s prediction. Fundamental science concepts: motions of the Earth, Moon & Sun, solar eclipse, gravity, curved space-time 1929 - Expanding Universe ' • Vesto Slipher showed the “nebulae” were red- shifted.
    [Show full text]
  • NATIONAL NEWSLETTER C/O Norman Green Mclaughlin Planetarium 100 Queen’S Park Toronto, Ontario M5S 2C6
    L33 N AT I O N A L N E W S L E T T E R August, 1977 M42, le 13 déc. 1976. Célestron 8 avec télécompresseurs (f/5) sur 103a F; 15 minutes. (Photo par LOUIS GAGNÉ et MARIO LAPOINTE.) L34 N AT I O N A L N E W S L E T T E R August, 1977 Editor: HARLAN CREIGHTON Assistant Editors: RALPH CHOU, J. D. FERNIE, NICK FRASER, NORMAN GREEN Western Regional Editor: PAUL DEANS, 10707 UNIVERSITY AVE., EDMONTON, ALBERTA T6E 4P8 Art Director: BILL IRELAND Photographic Editor: RICHARD MCDONALD Please submit all material and communications to: NATIONAL NEWSLETTER c/o Norman Green McLaughlin Planetarium 100 Queen’s Park Toronto, Ontario M5S 2C6 Deadline is two months prior to the month of issue. Figure 1. L’Observatoire du Collège de Lévis, tel qu’il apparaît depuis le chemin. Remarquez le dôme à l’extrémité est de la bâtisse ainsi que la plate-forme d’observation. L35 Figure 2. Lamonture équatoriale à fourche est mise en evidence. Notez le coutre-poids sous le Celestron-8 ainsi que le fils flexible fournissant le pouvoir pour la commande de la déclinaison. L’Observatoire du Collège de Lévis par Damien Lemay Centre de Québec Depuis 1974, les amateurs d’astronomie de Levis et des environs, ont à leur disposition un observatoire astronomique confortable. Située a St-Nérée de Bellechasse, i.e. quelques 30-40 minutes d’automobile du centre-ville de Lévis, cette facilitée est l’œuvre de M. Alphonse Tardif, professeur au collège de Levis. La bâtisse mesurant 14¢ ´ 28¢ ´ 8¢, est surmontée d’une plate-forme d’observation et d’un dôme.
    [Show full text]
  • The Big Bang: Fact Or Fiction?
    The discovery of the expanding universe The Big Bang: Fact or Fiction? Dr Cormac O’Raifeartaigh Waterford Institute of Technology Three major discoveries The size of the universe (-1925) Vesto Slipher 1875-1969 Redshifts and the great debate The expanding universe (1930, 31) Redshifts and Lemaitre’s relativity An origin for the universe (1931-) Redshifts and the big bang On the philosophy of discovery Hypothesis, observation and discovery Theory vs experiment Discovery vs justification Francis Bacon Credit in science Re-discovery The unimportance of social context Kuhn, Feyerabend, Latour The discovery of the heliocentric universe • Copernicus (1473 - 1543 ) Commentariolus, On the revolutions Explanation for retrograde motion Circles and epicycles • Kepler (1571 – 1630) Copernicus Elliptical orbits of the planets Observations of Tyco de Brahe • Galileo (1571 – 1630) Moons of Jupiter, phases of Venus Criticized by peers and Church Kepler Newton’s universe • Kepler orbits due to gravity • Attractive force caused by mass • Explanation for solar system • Universal law of gravity Isaac Newton (1642-1727) • Incomplete - mechanism? Paradigm ‘shift’ or slow dawning? Accumulation of theory and evidence I The discovery of the nebulae Observed by Marius (1614), Halley, Messier Island universes: Kant, Laplace Collections of stars at immense distance? Evolving universe? (1755-96) Wilhem Herschel 36-inch reflecting telescope Catalogue of a thousand (1786) Problem of resolution, distance The Leviathan of Birr Castle Third Earl of Ross (1800-1867) 72-inch
    [Show full text]
  • Copyright© 2021 TCAA 1 All Rights Reserved Vol
    Peculiar galaxies Hoag’s object: Here is a ring galaxy. Unique and beautiful. Inside the ring at 1:00 and far in the distance is a second ring galaxy. Peculiar isn’t it? TCAA Treasurer’s Report as of Image Credit: NASA, R. Lucas (STScI/AURA) July 27, 2021 By Sandullah Epsicokhan Here is a picture of a ring galaxy. This is an unusual object that does not fit the usual galactic form. As human beings, we tried to see patterns in things that we observe. Originally galaxies were classified based on how they looked. Exactly what classification does a galaxy like this fall into? We often talk about Edwin Hubble and how he came up with the discovery of galaxies outside of the Milky Way and a basic classification of galaxies. But it is the case, as it is in many cases, that discovery was a combination of factors. Some of the most important people behind the scenes that led up to this groundbreaking concept remain in the shadows of Dr. Hubble. Additionally, we have learned more about how peculiar galaxies are formed. Also, visit the North Visit Astronomical League Central Region of the at www.astroleague.org/ Astronomical League for more information (NCRAL) website at about the League and ncral.wordpress.com its numerous member for information about benefits and observing our North Central programs. Region and the status of our regional activities. Copyright© 2021 TCAA 1 All rights Reserved Vol. 46, No. 8 The OBSERVER Twin City Amateur Astronomers The OBSERVER is the monthly electronic newsletter of President’s note Twin City Amateur Astronomers, Inc., a registered 501(c)(3) non-profit educational By Tim Stone organization of amateur astronomers interested in studying astronomy and With another death in my family and a flooded basement sharing their hobby with the public.
    [Show full text]
  • Science, Civic Identity, and Tourism at the Dominion Astrophysical Observatory, Victoria B.C
    “Gateway to the Stars:” Science, Civic Identity, and Tourism at the Dominion Astrophysical Observatory, Victoria B.C. 1903-1941 by Daniel Posey BA, University of Victoria, 2013 A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of MASTER OF ARTS in the Department of History © Daniel Posey, 2016 University of Victoria All rights reserved. This thesis may not be reproduced in whole or in part, by photocopy or other means, without the permission of the author. ii Supervisory Committee “Gateway to the Stars:” Science, Civic Identity, and Tourism at the Dominion Astrophysical Observatory, Victoria B.C. 1903-1941 by Daniel Posey BA, University of Victoria, 2013 Supervisory Committee Dr. Richard A. Rajala, (Department of History) Supervisor Dr. Eric W. Sager, (Department of History) Departmental Member iii Abstract Supervisory Committee Dr. Richard A. Rajala, (Department of History) Supervisor Dr. Eric W. Sager, (Department of History) Departmental Member The Canadian astrophysics program rapidly developed between 1903 and 1914, leading to the wartime construction of what was hoped to be the world’s largest research telescope. The institution opened in Victoria British Columbia in 1918 with fanfare. Throughout the 1920s, the new Dominion Astrophysical Observatory (DAO) contributed to discoveries on the frontiers of astrophysics, while educating residents of Victoria about astronomy. In a history often overshadowed by the advent of cosmology in the 1920s, the discoveries of Victoria’s astronomers produced lasting insight into the size and scale of our own galaxy. Accordingly, historians of astronomy have probed the scientific accomplishments of Canadian astronomers, devoting relatively little attention to the regional importance of these scientific facilities.
    [Show full text]
  • Open Night Andy Lubenow 1956
    The discovery of two new satellites of Pluto Max Mutchler Space Telescope Science Institute Open Night 3 January 2006 Andy Lubenow 1956 - 2005 Hubble Pluto Satellite Search Team reporting the discovery to the New Horizons Science Team on November 2, 2005 at the Kennedy Space Center Left to Right: Hal Weaver (JHU/APL), Andrew Steffl (SwRI), S. Alan Stern (SwRI), Leslie Young (SwRI), John Spencer (SwRI), Marc Buie (Lowell Observatory), Bill Merline (SwRI), Max Mutchler (STScI), and…Eliot Young (SwRI) 1 Overview • Discovery of Pluto, Charon, and the Kuiper Belt •Early Hubble observations of Pluto • Hubble mission support for New Horizons: discovery of two more Pluto satellites • Confirming and following-up the discovery • Implications, and recent related discoveries • New Horizons mission update by Hal Weaver • Questions? The search for “Planet X” Lowell Observatory, Flagstaff, Arizona Percival Lowell Vesto Slipher Clyde Tombaugh The discovery of Pluto in 1930, and confirmation 2 The discovery of Pluto’s moon Charon in 1978 James Christy and Robert Harrington, U.S. Naval Observatory, Washington, D.C. • 1950 Kuiper & Humason, 1950 (didn’t find Charon) • 1978 Christy & Harrington (serendipitous discovery of Charon; above) • 1991 Stern 1991: found nothing beyond 6 arcsec • 2005 Gladman & ??? paper that seemed to doom Weaver The slowly emerging picture of Pluto 3 Charon 1200 km Earth Pluto Moon 12,800 km 2300 km 3000 km 4 Everything we know about Pluto 1 • 1930 Pluto discovered; eccentric orbit * • 1955 rotation period 6.4 days Pluto has not
    [Show full text]
  • LOWELL OBSERVER | Fall 2012 LOWELL EXPANDING OUR UNIVERSE OBSERVER the Quarterly Newsletter of Lowell Observatory Issue 95 Fall 2012
    1 THE THE LOWELL OBSERVER | Fall 2012 LOWELL EXPANDING OUR UNIVERSE OBSERVER The quarterly newsletter of Lowell Observatory Issue 95 Fall 2012 First Light Gala by Tom Vitron On an overcast July evening, more than 700 guests convened at the High Country Conference Center for the most memorable gala event in Flagstaff history. The First Light Gala Celebrating the Commissioning of the Discovery Channel Telescope (DCT) was a big success, punctuated by a surreal and breathtaking presentation by former astronaut Mr. Neil Armstrong (which, sadly, turned out to be his last public appearance). Mr. Neil Armstrong speaks to a riveted sellout crowd. Right: DCT First Light images: M104, The Sombrero Galaxy, and M51, The Whirlpool Galaxy. With Chuck Wendt, Deputy Director for Advancement, as Master of Mr. Armstrong during his opening descended towards the lunar surface. Ceremonies, the Gala featured remarks. “Alarm 1201…,” Armstrong recounted, speeches by people who played crucial Offering a very learned yet referring to one of two non-critical alarms roles in completing the telescope and understandable rundown of the past that rang during the final descent. “I achieving “first light.” few centuries of astronomy innovation decided this was not the moment to pull “DCT stemmed from Lowell’s and discovery, Armstrong led into an out the owner’s manual to figure out what institutional commitment to remain unforgettable play-by-play reenactment Alarm 1201 was.” a leading research organization, of the last four minutes of lunar Midway through the video, Armstrong attracting top researchers to do top module Eagle’s flight to the surface paused it to point out a huge crater he science,” said Director Emeritus Dr.
    [Show full text]