Edwin Hubble (1889-1953) Measured Distance to Andromeda Galaxy (M31) • Noticed Individual Bright Stars in Andromeda

Total Page:16

File Type:pdf, Size:1020Kb

Edwin Hubble (1889-1953) Measured Distance to Andromeda Galaxy (M31) • Noticed Individual Bright Stars in Andromeda The Resolution: Edwin Hubble (1889-1953) Measured Distance to Andromeda Galaxy (M31) • Noticed individual bright stars in Andromeda • Calculated the distance using the Period-Luminosity Relation for Cepheid Variable Stars The Resolution: Edwin Hubble (1889-1953) Measured Distance to Andromeda Galaxy (M31) • Noticed individual bright stars in Andromeda • Calculated the distance using the Period-Luminosity Relation for Cepheid Variable Stars 1. MEASURED magnitude & Period The Resolution: Edwin Hubble (1889-1953) Measured Distance to Andromeda Galaxy (M31) • Noticed individual bright stars in Andromeda • Calculated the distance using the Period-Luminosity Relation for Cepheid Variable Stars 1. MEASURED magnitude & Period 2. CALCULATED Luminosity The Resolution: Edwin Hubble (1889-1953) Measured Distance to Andromeda Galaxy (M31) • Noticed individual bright stars in Andromeda • Calculated the distance using the Period-Luminosity Relation for Cepheid Variable Stars 1. MEASURED magnitude & Period 2. CALCULATED Luminosity 3. CALCULATED Distance The Resolution: Edwin Hubble (1889-1953) Measured Distance to Andromeda Galaxy (M31) • Noticed individual bright stars in Andromeda • Calculated the distance using the Period-Luminosity Relation for Cepheid Variable Stars 1. MEASURED magnitude & Period 2. CALCULATED Luminosity 3. CALCULATED Distance • Result was MUCH farther than expected... • (2.3 Million Ly - well beyond Milky Way) Henrietta Leavitt & Period-Luminosity Relation Cepheid Variables: Bright stars whose Luminosity (energy output) varies every few days Henrietta Leavitt & Period-Luminosity Relation Cepheid Variables: Bright stars whose Luminosity (energy output) varies every few days Period-Luminosity Relation The Resolution: Vesto Slipher (1875-1969) •Obtained ____ Spectra of Galaxies The Resolution: Vesto Slipher (1875-1969) •Obtained ____ Spectra of Galaxies •Found that Galaxy spectra are REDSHIFTED The Resolution: Vesto Slipher (1875-1969) •Obtained ____ Spectra of Galaxies •Found that Galaxy spectra are REDSHIFTED •Used redshift to calculate ________? Redshift: Calculating Velocity • Relationship between red/blue shift and the velocity: Δλ v REDSHIFT (Z) = = λ c • c = speed of light, • λ is the “at rest” wavelength • Δλ is wavelength shift REDSHIFT Redshift shows up as shifted absorption or emission lines in galaxy spectra REDSHIFT Redshift shows up as shifted absorption or emission lines in galaxy spectra REDSHIFT Redshift shows up as shifted absorption or emission lines in galaxy spectra What part of the EM spectrum would you expect to see high z galaxies? Redshift vs. distance Blue Yellow Red IR The most distant galaxies are detected only in the infrared! Expansion of the Universe: Cosmological Redshift Distant galaxy redshifts caused by the “stretching” of light waves as space itself is expanding! Cosmological Redshift is slightly different from Doppler shift (why?) Hubble’s Law & Hubble Diagram Hubble found that recession velocity of galaxies is proportional to their distance away from us... (km/s) v = H0 * d (Mly) Hubble’s Law & Hubble Diagram Hubble found that recession velocity of galaxies is proportional to their distance away from us... (km/s) v = H0 * d (Mly) ...implying that the Universe is expanding!! Hubble’s Law: The Age of the Universe (km/s) v = H0 * d (Mly) Hubble’s law also implies that the Universe has a finite age! Age = 1/H0.
Recommended publications
  • An Overview of New Worlds, New Horizons in Astronomy and Astrophysics About the National Academies
    2020 VISION An Overview of New Worlds, New Horizons in Astronomy and Astrophysics About the National Academies The National Academies—comprising the National Academy of Sciences, the National Academy of Engineering, the Institute of Medicine, and the National Research Council—work together to enlist the nation’s top scientists, engineers, health professionals, and other experts to study specific issues in science, technology, and medicine that underlie many questions of national importance. The results of their deliberations have inspired some of the nation’s most significant and lasting efforts to improve the health, education, and welfare of the United States and have provided independent advice on issues that affect people’s lives worldwide. To learn more about the Academies’ activities, check the website at www.nationalacademies.org. Copyright 2011 by the National Academy of Sciences. All rights reserved. Printed in the United States of America This study was supported by Contract NNX08AN97G between the National Academy of Sciences and the National Aeronautics and Space Administration, Contract AST-0743899 between the National Academy of Sciences and the National Science Foundation, and Contract DE-FG02-08ER41542 between the National Academy of Sciences and the U.S. Department of Energy. Support for this study was also provided by the Vesto Slipher Fund. Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the authors and do not necessarily reflect the views of the agencies that provided support for the project. 2020 VISION An Overview of New Worlds, New Horizons in Astronomy and Astrophysics Committee for a Decadal Survey of Astronomy and Astrophysics ROGER D.
    [Show full text]
  • Experiencing Hubble
    PRESCOTT ASTRONOMY CLUB PRESENTS EXPERIENCING HUBBLE John Carter August 7, 2019 GET OUT LOOK UP • When Galaxies Collide https://www.youtube.com/watch?v=HP3x7TgvgR8 • How Hubble Images Get Color https://www.youtube.com/watch? time_continue=3&v=WSG0MnmUsEY Experiencing Hubble Sagittarius Star Cloud 1. 12,000 stars 2. ½ percent of full Moon area. 3. Not one star in the image can be seen by the naked eye. 4. Color of star reflects its surface temperature. Eagle Nebula. M 16 1. Messier 16 is a conspicuous region of active star formation, appearing in the constellation Serpens Cauda. This giant cloud of interstellar gas and dust is commonly known as the Eagle Nebula, and has already created a cluster of young stars. The nebula is also referred to the Star Queen Nebula and as IC 4703; the cluster is NGC 6611. With an overall visual magnitude of 6.4, and an apparent diameter of 7', the Eagle Nebula's star cluster is best seen with low power telescopes. The brightest star in the cluster has an apparent magnitude of +8.24, easily visible with good binoculars. A 4" scope reveals about 20 stars in an uneven background of fainter stars and nebulosity; three nebulous concentrations can be glimpsed under good conditions. Under very good conditions, suggestions of dark obscuring matter can be seen to the north of the cluster. In an 8" telescope at low power, M 16 is an impressive object. The nebula extends much farther out, to a diameter of over 30'. It is filled with dark regions and globules, including a peculiar dark column and a luminous rim around the cluster.
    [Show full text]
  • Throughout the Universe, Galaxies Are Rushing Away from Us – and from Each Other – at Tremendously High Speeds
    Our Universe Began with a Bang Throughout the Universe, galaxies are rushing away from us – and from each other – at tremendously high speeds. This fact tells us that the Universe is expanding over time. Edwin Hubble (after whom the Hubble Space Telescope was named) first measured the expansion in 1929. Observatories of the Carnegie Institution of Washington Edwin Hubble This posed a big question. If we could run the cosmic movie backward in time, would everything in the Universe be crammed together in a blazing fireball – the starting point of Edwin Hubble & Proceedings of The National Academy of Sciences Hubble’s famous diagram showing the the Big Bang? A lot of scientific distance versus velocity of the galaxies he debate and many new theories observed. The farther away the galaxies, the faster they are moving, showing that the followed Hubble’s discovery. Universe is expanding. Among those in the front lines of the debate were physicists Ralph Alpher and Robert Herman. In 1948 they predicted that an afterglow of this fireball should still exist, though at a much lower temperature than at the time of the Big Bang. Here’s why: As the Universe Fun Fact: expands, the waves of heat About radiation from the Big Bang are 1% of the stretched out, and cool from “snow” you see visible energy to infrared and on broadcast TV then to microwave wavelengths. is caused by the Microwaves are just short- cosmic microwave wavelength radio waves, the same background. form of energy used in microwave ovens. The prediction of an afterglow could be tested! Scientists began building instruments to detect this “cosmic microwave background”, or CMB.
    [Show full text]
  • The Flint River Observer a Frac Special Edition The
    1 How it happened is an intriguing tale. Many astronomers considered the change to be a long- THE overdue step in advancing astronomy as a science -- and as many others regarded it as a deception perpetrated by the International Astronomical FLINT RIVER Union (IAU). Curiously, both sides were right. I’ve written about it before, but this Special OBSERVER Edition of the Observer is broader in scope. Written 22 yrs. after the event, it tells both sides of NEWSLETTER OF THE FLINT the story in far greater depth than previously. RIVER ASTRONOMY CLUB (Incidentally, this project began as a brief “This ‘n That” newsletter item about an article that An Affiliate of the appeared in Astronomy Magazine but quickly grew Astronomical League into something much larger. You’ll see what I was writing about on p. 6.) Special Edition October, 2018 -Bill __________________________________________ * * * A FRAC SPECIAL EDITION THE PLUTO QUESTION: What is a Planet? Beginnings. The discovery of Neptune by William Lassell in 1846 brought the solar system’s planet total to eight. However, wobbles in the by Bill Warren orbital paths of Uranus and Neptune led the American astronomer, founder and director of __________________ Lowell Observatory, Percival Lowell, to conclude that a ninth planet -- he called it Planet X – lay Introduction. If you were born before 1990, you somewhere beyond Neptune and was tugging probably remember how upset people were when gravitationally on that planet and Uranus. Lowell Pluto was removed from the solar system’s family died in 1916, but in 1929 Vesto Slipher, his of planets in 1996.
    [Show full text]
  • A New Universe to Discover: a Guide to Careers in Astronomy
    A New Universe to Discover A Guide to Careers in Astronomy Published by The American Astronomical Society What are Astronomy and Astrophysics? Ever since Galileo first turned his new-fangled one-inch “spyglass” on the moon in 1609, the popular image of the astronomer has been someone who peers through a telescope at the night sky. But astronomers virtually never put eye to lens these days. The main source of astronomical data is still photons (particles of light) from space, but the tools used to gather and analyze them are now so sophisticated that it’s no longer necessary (or even possible, in most cases) for a human eye to look through them. But for all the high-tech gadgetry, the 21st-Century astronomer is still trying to answer the same fundamental questions that puzzled Galileo: How does the universe work, and where did it come from? Webster’s dictionary defines “astronomy” as “the science that deals with the material universe beyond the earth’s atmosphere.” This definition is broad enough to include great theoretical physicists like Isaac Newton, Albert Einstein, and Stephen Hawking as well as astronomers like Copernicus, Johanes Kepler, Fred Hoyle, Edwin Hubble, Carl Sagan, Vera Rubin, and Margaret Burbidge. In fact, the words “astronomy” and “astrophysics” are pretty much interchangeable these days. Whatever you call them, astronomers seek the answers to many fascinating and fundamental questions. Among them: *Is there life beyond earth? *How did the sun and the planets form? *How old are the stars? *What exactly are dark matter and dark energy? *How did the Universe begin, and how will it end? Astronomy is a physical (non-biological) science, like physics and chemistry.
    [Show full text]
  • The Universe.Pdf
    Standard 1: Students will o understand the scientific Terms to know evidence that supports theories o Big Bang Theory that explain how the universe o Doppler Effect and the solar system developed. o Redshift They will compare Earth to other o Universe objects in the solar system. Standard 1, Objective 1: Describe both the big bang theory of universe formation and the nebular theory of solar system formation and evidence supporting them. Lesson Objectives • Explain the evidence for an expanding universe. • Describe the formation of the universe according to the Big Bang Theory. Introduction The study of the universe is called cosmology. Cosmologists study the structure and changes in the present universe. The universe contains all of the star systems, galaxies, gas and dust, plus all the matter and energy that exist. The universe also includes all of space and time. Evolution of Human Understanding of the Universe What did the ancient Greeks recognize as the universe? In their model, the universe contained Earth at the center, the Sun, the Moon, five planets, and a sphere to which all the stars were attached. This idea held for many centuries until Galileo's telescope allowed people to recognize that Earth is not the center of the universe. They also found out that there are many more stars than were visible to the naked eye. All of those stars were in the Milky Way Galaxy. 13 Timeline of cosmological theories 4th century BCE — Aristotle proposes a Geocentric (Earth-centered) universe in which the Earth is stationary and the cosmos (or universe) revolves around the Earth.
    [Show full text]
  • Ay 21 - Galaxies and Cosmology Prof
    Ay 21 - Galaxies and Cosmology Prof. S. G. Djorgovski Winter 2021 Cosmology* as a Science • A study of the universe as a whole, its global geometry, dynamics, history, fate, and its major constituents - galaxies and large-scale structures, their formation and evolution • A basic assumption: the physical laws are the same at all times and everywhere – Some aspects of this are testable – But a new and unexpected physics can show up, e.g., dark matter, dark energy • Only one object of study, and all we can do is look at the surface of the past light cone • Observations tend to be difficult, and subject to biases and selection effects * From Greek kosmos = order; see also cosmetology … The Evolution of the Cosmological Thought … From magical and arbitrary to rational and scientific Folklore to theology to philosophy to physics … Away from anthropocentric/anthropomorphic The Copernican revolution … From final and static to evolving and open-ended The Darwinian revolution … From absolute certainty to an ever expanding sphere of knowledge and a boundary of unknown Cosmology today is a branch of physics Dust Off Your Astronomical Units! • Distance: – Astronomical unit: the distance from the Earth to the Sun, 1 au = 1.496Í1013 cm – Light year: c Í1 yr, 1 ly = 9.463 Í1017 cm – Parsec: the distance from which 1 au subtends an angle of 1 arcsec, 1 pc = 3.086 Í1018 cm = 3.26 ly = 206,264.8 au • Mass and Luminosity: 33 – Solar mass: 1 M = 1.989 Í10 g 33 – Solar luminosity: 1 L = 3.826Í10 erg/s Fluxes and Magnitudes For historical reasons, fluxes in the optical and IR are measured in magnitudes: m = −2.5log10 F + constant Usually integrated over some finite bandpass, e.g., V band (l ~ 550 nm): € fl mV = −2.5log10 F + constant flux integrated over the range l of wavelengths for this band € If the flux is integrated over the entire spectrum, then m is the bolometric magnitude.
    [Show full text]
  • What If the Mars Rover Does Find Lostgenius Whomerits Aplaceon Thepodium
    Thursday, August 30, 2012 THE IRISH TIMES 11 ScienceScience EditorTodayDick Ahlstrom e-mail [email protected] CORMAC Ó What if the Mars Rover does find RAIFEARTAIGH Lost genius Proof of who merits a place on the podium Who knows about Vesto Slipher, life? the astronomer who inspired the work of Edwin Hubble? NE OF the great surprises of 20th century science was the discovery that Oour universe is expanding. The finding caused a paradigm shift in cosmology and eventually led to today’s “Big Bang” model of the origin of the universe. It is therefore quite puzzling that a scientist who played a key role in the discovery remains virtually unknown to scientists and the general public alike. Step forward Vesto Slipher, the American astronomer who first established that the most distant objects in the sky are moving away from one another at high speed. Vesto Melvin Slipher was born in the US state of Indiana in 1875. He was educated at Indiana University and took up a position at the Lowell Observatory in Arizona after receiving his degree in 1901. There, he showed himself to be an astronomer of exceptional talent. In particular, he pioneered a method of measuring the motion of stars with the use of a spectrograph, an instrument that analyses the spectrum of light emitted by a body. Slipher used his new technique to study the attempting to answer questions “A laser on Curiosity’s mast cre- many details about the analysis of Is there anything out there? An Kevin Nolan, lecturer in physics at most enigmatic astronomical objects of the BECCA WILSON about Martian life.
    [Show full text]
  • Victoria Centre
    ROYAL ASTRONOMICAL SOCIETY OF CANADA: VICTORIA CENTRE New Moon through the Trees, by Diane Bell The Littlest AGM After changing our society’s year end to December 31st, to be more in sync with RASC National and the rest of Western Civilization, the next step was having an annual general meeting, to fulfill our obligations to the BC Society’s Act. The February 13th meeting was chosen to do double duty as our monthly meeting and what President Reg Dunkley promised as a 5 minute AGM, to vote on the financials I prepared as the outgoing treasurer. SKYNEWS March 2019 ISSUE #406 Page 1 ROYAL ASTRONOMICAL SOCIETY OF CANADA: VICTORIA CENTRE The dining wasn’t what we’ve come to expect for our annual general meetings. In fact there was no food to be had at all, other than the usual snacks served in the astronomy teacher’s lounge for our after meeting social. Having just had our banquet in November, it was considered a bit gauche to have another one so soon, let alone the organizing required to make it happen on short notice. The weather was also unkind, as the meeting was scheduled at the end of a week of snow for the BC South Coast, something local denizens are generally less than prepared for. 19 RASC Victoria members were present and another 16 provided proxy votes so we could achieve quorum (there are currently 285 RASC Victoria Centre members). One of the proxy votes was made from as far away as Tasmania! The SkyNews Editor provided his proxy vote and watched the meeting via UTube, from his home, on the snowy plateau of North Saanich, where his summer tire equipped car remained parked for the week.
    [Show full text]
  • Hubble's Cosmology
    2nd Crisis in Cosmology Conference, CCC-2 ASP Conference Series, Vol. 413, c 2009 Frank Potter, ed. Hubble’s Cosmology: From a Finite Expanding Universe to a Static Endless Universe A. K. T. Assis,1 M. C. D. Neves,1,2 and D. S. L. Soares3 1. Institute of Physics “Gleb Wataghin,” University of Campinas UNICAMP, 13083-970 Campinas, SP, Brazil email: assis@ifi.unicamp.br 2. Departamento de F´ısica, Funda¸c˜ao Universidade Estadual de Maring´a — FUEM, 87020-900 Maring´a, PR, Brazil email: [email protected] 3. Departamento de F´ısica, ICEx, Universidade Federal de Minas Gerais, C. P. 702, 30123-970 Belo Horizonte, MG, Brazil email: dsoares@fisica.ufmg.br Abstract. We analyze the views of Edwin Hubble (1889–1953) as regards the large scale structure of the universe. In 1929 he initially accepted a finite ex- panding universe in order to explain the redshifts of distant galaxies. Later on he turned to an infinite stationary universe and a new principle of nature in order to explain the same phenomena. Initially, he was impressed by the agreement of his redshift-distance relation with one of the predictions of de Sitter’s cosmological model, namely, the so-called “de Sitter effect,” the phenomenon of the scattering of material particles, leading to an expanding universe. A number of observa- tional evidences, though, made him highly skeptical with such a scenario. They were better accounted for by an infinite static universe. The evidences he found were: (i) the huge values he was getting for the “recession” velocities of the neb- ulae (1,800 km s−1 in 1929 up to 42,000 km s−1 in 1942, leading to v/c = 1/7), with the redshifts interpreted as velocity-shifts.
    [Show full text]
  • Worksheet 3: the Big Bang Model – Founded by a Priest Edwin Hubble's Investigations Into the Redshift of Galaxy Spectra Were
    The expansion of the universe Matthias Borchardt Worksheet 3: The Big Bang model – founded by a priest Edwin Hubble’s investigations into the redshift of galaxy spectra were scientifically extremely valuable, opening up completely new possibilities for observational astronomy. But even though Hubble is often called the “father of the Big Bang model”, this is not historically justi- fied. Hubble was indeed the one who realised that galaxies further away from us are moving faster. However, he never challenged the concept that this movement is taking place within a vast, pre-existing space. The idea that space itself is constantly expanding, dragging the galaxies along with it, was first for- mulated by the Belgian priest and astrophysicist Georges Lemaître after studying the results of Hubble’s research more closely. Lemaître’s own research soon convinced him that a constantly expanding universe must have a point of origin. According to Lemaître, at this point, space was extremely small – but the universe was already present in its full diversity. He named this initial state the primeval atom – a kind of cell from which everything else was created and that has been constantly expanding ever since. The term “Big Bang” came from the famous British physicist and astronomer Fred Hoyle, who strictly rejected Lemaître’s ideas, instead jokingly speaking of a “Big Bang” that created the universe like an explosion. The striking idea of the Big Bang has been around ever since. The assumption that space is expanding also implies that we should expect redshift in the spectral lines. However, this redshift does not come from the Doppler effect.
    [Show full text]
  • Extra! Extra! Read All About the Universe!
    Extra! Extra! Read All About the Universe! Barb Mattson (USRA/GSFC) JHU Space Grant July 8, 2013 1 Nature of Supernovae You will receive the Cosmic Times posters at the end of this workshop Gallery Walk Take a tour of the Cosmic Times posters Gallery Walk ' • ' Start at one Cosmic Times poster station Ø Cosmic Times poster Ø 3 versions of the newsletter: early edition (7-8 grade), home edition (9-10 grade), late edition (11-12 grade, same readings as on posters) • ' At each poster, use the chart paper to record the answers to the following two questions, as they relate to that issue of Cosmic Times Ø What big questions are facing scientists? Ø What answers have scientists just found? • ' You will have 4 minutes at the first poster, and 2 minutes at each subsequent poster • ' Return to first poster and prepare a 1-minute summary of all the responses (write it down!) The year is 1919… ' • What’s going on? • What’s going on in science? • What is your view of the Universe? ª Infinite ª Unchanging/static ª Ageless ' 5 1919 – Einstein’s Gravity • ' What is Gravity? • ' Gravity is curved space- time. Ø Gravity bends light. Ø Amount of deflection ' differs from Newton’s prediction. ' ➜ 1919 Solar Eclipse verified Einstein’s prediction. 1919 – Einstein’s Gravity • What is Gravity? • Gravity is curved space- time. Ø Gravity bends light. Ø Amount of deflection differs from Newton’s prediction. ➜ 1919 Solar Eclipse verified Einstein’s prediction. Fundamental science concepts: motions of the Earth, Moon & Sun, solar eclipse, gravity, curved space-time 1929 - Expanding Universe ' • Vesto Slipher showed the “nebulae” were red- shifted.
    [Show full text]