Hubble's Law and the Expanding Universe
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Olbers' Paradox
Astro 101 Fall 2013 Lecture 12 Cosmology T. Howard Cosmology = study of the Universe as a whole • ? What is it like overall? • ? What is its history? How old is it? • ? What is its future? • ? How do we find these things out from what we can observe? • In 1996, researchers at the Space Telescope Science Institute used the Hubble to make a very long exposure of a patch of seemingly empty sky. Q: What did they find? A: Galaxies “as far as The eye can see …” (nearly everything in this photo is a galaxy!) 40 hour exposure What do we know already (about the Universe) ? • Galaxies in groups; clusters; superclusters • Nearby universe has “filament” and void type of structure • More distant objects are receding from us (light is redshifted) • Hubble’s Law: V = H0 x D (Hubble's Law) Structure in the Universe What is the largest kind of structure in the universe? The ~100-Mpc filaments, shells and voids? On larger scales, things look more uniform. 600 Mpc Olbers’ Paradox • Assume the universe is homogeneous, isotropic, infinte, and static • Then: Why don’t we see light everywhere? Why is the night sky (mostly) dark? Olbers’ Paradox (cont’d.) • We believe the universe is homogeneous and isotropic • So, either it isn’t infinite OR it isn’t static • “Big Bang” theory – universe started expanding a finite time ago Given what we know of structure in the universe, assume: The Cosmological Principle On the largest scales, the universe is roughly homogeneous (same at all places) and isotropic (same in all directions). Laws of physics are everywhere the same. -
Friedmann Equation (1.39) for a Radiation Dominated Universe Will Thus Be (From Ada ∝ Dt)
Lecture 2 The quest for the origin of the elements The quest for the origins of the elements, C. Bertulani, RISP, 2016 1 Reading2.1 - material Geometry of the Universe 2-dimensional analogy: Surface of a sphere. The surface is finite, but has no edge. For a creature living on the sphere, having no sense of the third dimension, there is no center (on the sphere). All points are equal. Any point on the surface can be defined as the center of a coordinate system. But, how can a 2-D creature investigate the geometry of the sphere? Answer: Measure curvature of its space. Flat surface (zero curvature, k = 0) Closed surface Open surface (posiDve curvature, k = 1) (negave curvature, k = -1) The quest for the origins of the elements, C. Bertulani, RISP, 2016 2 ReadingGeometry material of the Universe These are the three possible geometries of the Universe: closed, open and flat, corresponding to a density parameter Ωm = ρ/ρcrit which is greater than, less than or equal to 1. The relation to the curvature parameter is given by Eq. (1.58). The closed universe is of finite size. Traveling far enough in one direction will lead back to one's starting point. The open and flat universes are infinite and traveling in a constant direction will never lead to the same point. The quest for the origins of the elements, C. Bertulani, RISP, 2016 3 2.2 - Static Universe 2 2 The static Universe requires a = a0 = constant and thus d a/dt = da/dt = 0. From Eq. -
The Reionization of Cosmic Hydrogen by the First Galaxies Abstract 1
David Goodstein’s Cosmology Book The Reionization of Cosmic Hydrogen by the First Galaxies Abraham Loeb Department of Astronomy, Harvard University, 60 Garden St., Cambridge MA, 02138 Abstract Cosmology is by now a mature experimental science. We are privileged to live at a time when the story of genesis (how the Universe started and developed) can be critically explored by direct observations. Looking deep into the Universe through powerful telescopes, we can see images of the Universe when it was younger because of the finite time it takes light to travel to us from distant sources. Existing data sets include an image of the Universe when it was 0.4 million years old (in the form of the cosmic microwave background), as well as images of individual galaxies when the Universe was older than a billion years. But there is a serious challenge: in between these two epochs was a period when the Universe was dark, stars had not yet formed, and the cosmic microwave background no longer traced the distribution of matter. And this is precisely the most interesting period, when the primordial soup evolved into the rich zoo of objects we now see. The observers are moving ahead along several fronts. The first involves the construction of large infrared telescopes on the ground and in space, that will provide us with new photos of the first galaxies. Current plans include ground-based telescopes which are 24-42 meter in diameter, and NASA’s successor to the Hubble Space Telescope, called the James Webb Space Telescope. In addition, several observational groups around the globe are constructing radio arrays that will be capable of mapping the three-dimensional distribution of cosmic hydrogen in the infant Universe. -
Throughout the Universe, Galaxies Are Rushing Away from Us – and from Each Other – at Tremendously High Speeds
Our Universe Began with a Bang Throughout the Universe, galaxies are rushing away from us – and from each other – at tremendously high speeds. This fact tells us that the Universe is expanding over time. Edwin Hubble (after whom the Hubble Space Telescope was named) first measured the expansion in 1929. Observatories of the Carnegie Institution of Washington Edwin Hubble This posed a big question. If we could run the cosmic movie backward in time, would everything in the Universe be crammed together in a blazing fireball – the starting point of Edwin Hubble & Proceedings of The National Academy of Sciences Hubble’s famous diagram showing the the Big Bang? A lot of scientific distance versus velocity of the galaxies he debate and many new theories observed. The farther away the galaxies, the faster they are moving, showing that the followed Hubble’s discovery. Universe is expanding. Among those in the front lines of the debate were physicists Ralph Alpher and Robert Herman. In 1948 they predicted that an afterglow of this fireball should still exist, though at a much lower temperature than at the time of the Big Bang. Here’s why: As the Universe Fun Fact: expands, the waves of heat About radiation from the Big Bang are 1% of the stretched out, and cool from “snow” you see visible energy to infrared and on broadcast TV then to microwave wavelengths. is caused by the Microwaves are just short- cosmic microwave wavelength radio waves, the same background. form of energy used in microwave ovens. The prediction of an afterglow could be tested! Scientists began building instruments to detect this “cosmic microwave background”, or CMB. -
The Evolution of the IR Luminosity Function and Dust-Obscured Star Formation Over the Past 13 Billion Years
The Astrophysical Journal, 909:165 (15pp), 2021 March 10 https://doi.org/10.3847/1538-4357/abdb27 © 2021. The American Astronomical Society. All rights reserved. The Evolution of the IR Luminosity Function and Dust-obscured Star Formation over the Past 13 Billion Years J. A. Zavala1 , C. M. Casey1 , S. M. Manning1 , M. Aravena2 , M. Bethermin3 , K. I. Caputi4,5 , D. L. Clements6 , E. da Cunha7 , P. Drew1 , S. L. Finkelstein1 , S. Fujimoto5,8 , C. Hayward9 , J. Hodge10 , J. S. Kartaltepe11 , K. Knudsen12 , A. M. Koekemoer13 , A. S. Long14 , G. E. Magdis5,8,15,16 , A. W. S. Man17 , G. Popping18 , D. Sanders19 , N. Scoville20 , K. Sheth21 , J. Staguhn22,23 , S. Toft5,8 , E. Treister24 , J. D. Vieira25 , and M. S. Yun26 1 The University of Texas at Austin, 2515 Speedway Boulevard, Stop C1400, Austin, TX 78712, USA; [email protected] 2 Núcleo de Astronomía, Facultad de Ingeniería y Ciencias, Universidad Diego Portales, Av. Ejército 441, Santiago, Chile 3 Aix Marseille Univ, CNRS, LAM, Laboratoire d’Astrophysique de Marseille, Marseille, France 4 Kapteyn Astronomical Institute, University of Groningen, P.O. Box 800, 9700AV Groningen, The Netherlands 5 Cosmic Dawn Center (DAWN), Denmark 6 Imperial College London, Blackett Laboratory, Prince Consort Road, London, SW7 2AZ, UK 7 International Centre for Radio Astronomy Research, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia 8 Niels Bohr Institute, University of Copenhagen, Lyngbyvej 2, DK-2100 Copenhagen, Denmark 9 Center for Computational Astrophysics, Flatiron -
A New Universe to Discover: a Guide to Careers in Astronomy
A New Universe to Discover A Guide to Careers in Astronomy Published by The American Astronomical Society What are Astronomy and Astrophysics? Ever since Galileo first turned his new-fangled one-inch “spyglass” on the moon in 1609, the popular image of the astronomer has been someone who peers through a telescope at the night sky. But astronomers virtually never put eye to lens these days. The main source of astronomical data is still photons (particles of light) from space, but the tools used to gather and analyze them are now so sophisticated that it’s no longer necessary (or even possible, in most cases) for a human eye to look through them. But for all the high-tech gadgetry, the 21st-Century astronomer is still trying to answer the same fundamental questions that puzzled Galileo: How does the universe work, and where did it come from? Webster’s dictionary defines “astronomy” as “the science that deals with the material universe beyond the earth’s atmosphere.” This definition is broad enough to include great theoretical physicists like Isaac Newton, Albert Einstein, and Stephen Hawking as well as astronomers like Copernicus, Johanes Kepler, Fred Hoyle, Edwin Hubble, Carl Sagan, Vera Rubin, and Margaret Burbidge. In fact, the words “astronomy” and “astrophysics” are pretty much interchangeable these days. Whatever you call them, astronomers seek the answers to many fascinating and fundamental questions. Among them: *Is there life beyond earth? *How did the sun and the planets form? *How old are the stars? *What exactly are dark matter and dark energy? *How did the Universe begin, and how will it end? Astronomy is a physical (non-biological) science, like physics and chemistry. -
The High Redshift Universe: Galaxies and the Intergalactic Medium
The High Redshift Universe: Galaxies and the Intergalactic Medium Koki Kakiichi M¨unchen2016 The High Redshift Universe: Galaxies and the Intergalactic Medium Koki Kakiichi Dissertation an der Fakult¨atf¨urPhysik der Ludwig{Maximilians{Universit¨at M¨unchen vorgelegt von Koki Kakiichi aus Komono, Mie, Japan M¨unchen, den 15 Juni 2016 Erstgutachter: Prof. Dr. Simon White Zweitgutachter: Prof. Dr. Jochen Weller Tag der m¨undlichen Pr¨ufung:Juli 2016 Contents Summary xiii 1 Extragalactic Astrophysics and Cosmology 1 1.1 Prologue . 1 1.2 Briefly Story about Reionization . 3 1.3 Foundation of Observational Cosmology . 3 1.4 Hierarchical Structure Formation . 5 1.5 Cosmological probes . 8 1.5.1 H0 measurement and the extragalactic distance scale . 8 1.5.2 Cosmic Microwave Background (CMB) . 10 1.5.3 Large-Scale Structure: galaxy surveys and Lyα forests . 11 1.6 Astrophysics of Galaxies and the IGM . 13 1.6.1 Physical processes in galaxies . 14 1.6.2 Physical processes in the IGM . 17 1.6.3 Radiation Hydrodynamics of Galaxies and the IGM . 20 1.7 Bridging theory and observations . 23 1.8 Observations of the High-Redshift Universe . 23 1.8.1 General demographics of galaxies . 23 1.8.2 Lyman-break galaxies, Lyα emitters, Lyα emitting galaxies . 26 1.8.3 Luminosity functions of LBGs and LAEs . 26 1.8.4 Lyα emission and absorption in LBGs: the physical state of high-z star forming galaxies . 27 1.8.5 Clustering properties of LBGs and LAEs: host dark matter haloes and galaxy environment . 30 1.8.6 Circum-/intergalactic gas environment of LBGs and LAEs . -
Appendix a the Return of a Static Universe and the End of Cosmology
Appendix A The Return of a Static Universe and the End of Cosmology Lawrence M. Krauss and Robert J. Scherrer Abstract We demonstrate that as we extrapolate the current CDM universe forward in time, all evidence of the Hubble expansion will disappear, so that observers in our “island universe” will be fundamentally incapable of determining the true nature of the universe, including the existence of the highly dominant vacuum energy, the existence of the CMB, and the primordial origin of light elements. With these pillars of the modern Big Bang gone, this epoch will mark the end of cosmology and the return of a static universe. In this sense, the coordinate system appropriate for future observers will perhaps fittingly resemble the static coordinate system in which the de Sitter universe was first presented. Shortly after Einstein’s development of general relativity, the Dutch astronomer Willem de Sitter proposed a static model of the universe containing no matter, which he thought might be a reasonable approximation to our low-density uni- verse. One can define a coordinate system in which the de Sitter metric takes a static form by defining de Sitter spacetime with a cosmological constant ƒ S W A B D 2 2 D 1 as a four-dimensional hyperboloid ƒ AB R ;R 3ƒ em- 2 D A B D bedded in a 5d Minkowski spacetime with ds AB d d ; and .AB / diag.1; 1; 1; 1; 1/;A;B D 0;:::;4: The static form of the de Sitter metric is then dr2 ds2 D .1 r2=R2/dt 2 s r2d2; s s s 2 2 s 1 rs =R L.M. -
Edwin Hubble (1889-1953) Measured Distance to Andromeda Galaxy (M31) • Noticed Individual Bright Stars in Andromeda
The Resolution: Edwin Hubble (1889-1953) Measured Distance to Andromeda Galaxy (M31) • Noticed individual bright stars in Andromeda • Calculated the distance using the Period-Luminosity Relation for Cepheid Variable Stars The Resolution: Edwin Hubble (1889-1953) Measured Distance to Andromeda Galaxy (M31) • Noticed individual bright stars in Andromeda • Calculated the distance using the Period-Luminosity Relation for Cepheid Variable Stars 1. MEASURED magnitude & Period The Resolution: Edwin Hubble (1889-1953) Measured Distance to Andromeda Galaxy (M31) • Noticed individual bright stars in Andromeda • Calculated the distance using the Period-Luminosity Relation for Cepheid Variable Stars 1. MEASURED magnitude & Period 2. CALCULATED Luminosity The Resolution: Edwin Hubble (1889-1953) Measured Distance to Andromeda Galaxy (M31) • Noticed individual bright stars in Andromeda • Calculated the distance using the Period-Luminosity Relation for Cepheid Variable Stars 1. MEASURED magnitude & Period 2. CALCULATED Luminosity 3. CALCULATED Distance The Resolution: Edwin Hubble (1889-1953) Measured Distance to Andromeda Galaxy (M31) • Noticed individual bright stars in Andromeda • Calculated the distance using the Period-Luminosity Relation for Cepheid Variable Stars 1. MEASURED magnitude & Period 2. CALCULATED Luminosity 3. CALCULATED Distance • Result was MUCH farther than expected... • (2.3 Million Ly - well beyond Milky Way) Henrietta Leavitt & Period-Luminosity Relation Cepheid Variables: Bright stars whose Luminosity (energy output) varies every -
The First Galaxies
The First Galaxies Abraham Loeb and Steven R. Furlanetto PRINCETON UNIVERSITY PRESS PRINCETON AND OXFORD To our families Contents Preface vii Chapter 1. Introduction 1 1.1 Preliminary Remarks 1 1.2 Standard Cosmological Model 3 1.3 Milestones in Cosmic Evolution 12 1.4 Most Matter is Dark 16 Chapter 2. From Recombination to the First Galaxies 21 2.1 Growth of Linear Perturbations 21 2.2 Thermal History During the Dark Ages: Compton Cooling on the CMB 24 Chapter 3. Nonlinear Structure 27 3.1 Cosmological Jeans Mass 27 3.2 Halo Properties 33 3.3 Abundance of Dark Matter Halos 36 3.4 Nonlinear Clustering: the Halo Model 41 3.5 Numerical Simulations of Structure Formation 41 Chapter 4. The Intergalactic Medium 43 4.1 The Lyman-α Forest 43 4.2 Metal-Line Systems 43 4.3 Theoretical Models 43 Chapter 5. The First Stars 45 5.1 Chemistry and Cooling of Primordial Gas 45 5.2 Formation of the First Metal-Free Stars 49 5.3 Later Generations of Stars 59 5.4 Global Parameters of High-Redshift Galaxies 59 5.5 Gamma-Ray Bursts: The Brightest Explosions 62 Chapter 6. Supermassive Black holes 65 6.1 Basic Principles of Astrophysical Black Holes 65 6.2 Accretion of Gas onto Black Holes 68 6.3 The First Black Holes and Quasars 75 6.4 Black Hole Binaries 81 Chapter 7. The Reionization of Cosmic Hydrogen by the First Galaxies 85 iv CONTENTS 7.1 Ionization Scars by the First Stars 85 7.2 Propagation of Ionization Fronts 86 7.3 Swiss Cheese Topology 92 7.4 Reionization History 95 7.5 Global Ionization History 95 7.6 Statistical Description of Size Distribution and Topology of Ionized Regions 95 7.7 Radiative Transfer 95 7.8 Recombination of Ionized Regions 95 7.9 The Sources of Reionization 95 7.10 Helium Reionization 95 Chapter 8. -
Physics of the Cosmic Microwave Background Anisotropy∗
Physics of the cosmic microwave background anisotropy∗ Martin Bucher Laboratoire APC, Universit´eParis 7/CNRS B^atiment Condorcet, Case 7020 75205 Paris Cedex 13, France [email protected] and Astrophysics and Cosmology Research Unit School of Mathematics, Statistics and Computer Science University of KwaZulu-Natal Durban 4041, South Africa January 20, 2015 Abstract Observations of the cosmic microwave background (CMB), especially of its frequency spectrum and its anisotropies, both in temperature and in polarization, have played a key role in the development of modern cosmology and our understanding of the very early universe. We review the underlying physics of the CMB and how the primordial temperature and polarization anisotropies were imprinted. Possibilities for distinguish- ing competing cosmological models are emphasized. The current status of CMB ex- periments and experimental techniques with an emphasis toward future observations, particularly in polarization, is reviewed. The physics of foreground emissions, especially of polarized dust, is discussed in detail, since this area is likely to become crucial for measurements of the B modes of the CMB polarization at ever greater sensitivity. arXiv:1501.04288v1 [astro-ph.CO] 18 Jan 2015 1This article is to be published also in the book \One Hundred Years of General Relativity: From Genesis and Empirical Foundations to Gravitational Waves, Cosmology and Quantum Gravity," edited by Wei-Tou Ni (World Scientific, Singapore, 2015) as well as in Int. J. Mod. Phys. D (in press). -
The Universe.Pdf
Standard 1: Students will o understand the scientific Terms to know evidence that supports theories o Big Bang Theory that explain how the universe o Doppler Effect and the solar system developed. o Redshift They will compare Earth to other o Universe objects in the solar system. Standard 1, Objective 1: Describe both the big bang theory of universe formation and the nebular theory of solar system formation and evidence supporting them. Lesson Objectives • Explain the evidence for an expanding universe. • Describe the formation of the universe according to the Big Bang Theory. Introduction The study of the universe is called cosmology. Cosmologists study the structure and changes in the present universe. The universe contains all of the star systems, galaxies, gas and dust, plus all the matter and energy that exist. The universe also includes all of space and time. Evolution of Human Understanding of the Universe What did the ancient Greeks recognize as the universe? In their model, the universe contained Earth at the center, the Sun, the Moon, five planets, and a sphere to which all the stars were attached. This idea held for many centuries until Galileo's telescope allowed people to recognize that Earth is not the center of the universe. They also found out that there are many more stars than were visible to the naked eye. All of those stars were in the Milky Way Galaxy. 13 Timeline of cosmological theories 4th century BCE — Aristotle proposes a Geocentric (Earth-centered) universe in which the Earth is stationary and the cosmos (or universe) revolves around the Earth.