Functional Traits Variation Explains the Distribution of Aextoxicon Punctatum

Total Page:16

File Type:pdf, Size:1020Kb

Functional Traits Variation Explains the Distribution of Aextoxicon Punctatum ORIGINAL RESEARCH published: 23 July 2015 doi: 10.3389/fpls.2015.00511 Functional traits variation explains the distribution of Aextoxicon punctatum (Aextoxicaceae) in pronounced moisture gradients within fog-dependent forest fragments Edited by: Judy Simon, Beatriz Salgado-Negret1,2*, Rafaella Canessa2, Fernando Valladares3,JuanJ.Armesto2,4 University of Konstanz, Germany and Fernanda Pérez2,4* Reviewed by: Martin Karl-Friedrich Bader, 1 Instituto Humboldt, Bogotá, Colombia, 2 Departamento de Ecología, Pontificia Universidad Católica de Chile, Santiago, New Zealand Forest Research Chile, 3 LINCGlobal, Museo Nacional de Ciencias Naturales, Consejo Superior de Investigaciones Cientificas, Madrid, Spain, Institute (Scion), New Zealand 4 Instituto de Ecología y Biodiversidad, Santiago, Chile Ignacio García-González, Universidade de Santiago de Compostela, Spain Climate change and fragmentation are major threats to world forests. Understanding *Correspondence: how functional traits related to drought tolerance change across small-scale, Beatriz Salgado-Negret, pronounced moisture gradients in fragmented forests is important to predict species’ Instituto Humboldt, Calle 28A #15-09, responses to these threats. In the case of Aextoxicon punctatum, a dominant canopy Bogotá, Colombia [email protected]; tree in fog-dependent rain forest patches in semiarid Chile, we explored how the Fernanda Pérez, magnitude, variability and correlation patterns of leaf and xylem vessel traits and Departamento de Ecología, Pontificia Universidad Católica de Chile, hydraulic conductivity varied across soil moisture (SM) gradients established within and Alameda 340, Santiago, Chile among forest patches of different size, which are associated with differences in tree [email protected] establishment and mortality patterns. Leaf traits varied across soil-moisture gradients Specialty section: produced by fog interception. Trees growing at drier leeward edges showed higher This article was submitted to leaf mass per area, trichome and stomatal density than trees from the wetter core Functional Plant Ecology, a section of the journal and windward zones. In contrast, xylem vessel traits (vessels diameter and density) Frontiers in Plant Science did not vary producing loss of hydraulic conductivity at drier leeward edges. We also Received: 14 March 2015 detected higher levels of phenotypic integration and variability at leeward edges. The Accepted: 25 June 2015 ability of A. punctatum to modify leaf traits in response to differences in SM availability Published: 23 July 2015 established over short distances (<500 m) facilitates its persistence in contrasting Citation: Salgado-Negret B, Canessa R, microhabitats within forest patches. However, xylem anatomy showed limited plasticity, Valladares F, Armesto JJ and Pérez F which increases cavitation risk at leeward edges. Greater patch fragmentation, together (2015) Functional traits variation explains the distribution of Aextoxicon with fluctuations in irradiance and SM in small patches, could result in higher risk of punctatum (Aextoxicaceae) drought-related tree mortality, with profound impacts on hydrological balances at the in pronounced moisture gradients ecosystem scale. within fog-dependent forest fragments. Front. Plant Sci. 6:511. Keywords: climate change, fog-dependent forest, fragmentation, hydraulic traits, intraspecific phenotypic doi: 10.3389/fpls.2015.00511 variability, leaf traits, moisture gradient, phenotypic integration Frontiers in Plant Science | www.frontiersin.org 1 July 2015 | Volume 6 | Article 511 Salgado-Negret et al. Functional traits variation of Aextoxicon punctatum Introduction South American endemic Aextoxicon punctatum Ruiz and Pav, belonging to the monotypic and isolated family Aextoxicaceae. Reductions in precipitation expected under climate change and This species is broadly distributed in temperate rain forests of increasing forest fragmentation are major threats to temperate western South America. In Fray Jorge, it occurs in forest patches forests worldwide (Breshears et al., 2005; Echeverría et al., 2006; of all sizes and throughout the soil moisture (SM) gradient Choat et al., 2012). Particularly sensitive are forests located in the produced by fog influx from windward to leeward edges (del- boundary with drier formations, where drought intensification Val et al., 2006). Moreover, population genetic studies suggest may be fundamentally important for the persistence of forest that gene flow via seed dispersal across neighboring patches in communities (Pockman and Sperry, 2000; Engelbrecht et al., this patchy landscape has been highly significant (Fst < 0.05) 2007; Choat et al., 2012; Salgado-Negret et al., 2013). As during recent history (Nuñez-Ávila et al., 2013). Patterns of tree a consequence, improved understanding of functional trait radial growth and regeneration dynamics of A. punctatum in this variation in relation to drought tolerance becomes critical for forest have shown constant growth and continuous regeneration modeling and predicting tree species responses to future climate for 200 years, despite a declining trend in rainfall during the change (Anderegg et al., 2013). last century. This suggests that this species can survive extreme Variation in functional traits can derive from phenotypic temporal fluctuations in water availability (Gutiérrez et al., 2008). plasticity, genetic variation, developmental instability, and direct Understanding the ability of A. punctatum to withstand spatial effects of stress on plant performance, or a combination of these and temporal fluctuations in water availability requires improved mechanisms (Valladares et al., 2007; Matesanz et al., 2010; Gianoli knowledge of the mechanisms involved in drought tolerance and and Valladares, 2012). In recent years, interest in drought- vulnerability to the combined effects of increased water shortage resistance trait variation at the intraspecific level has increased and forest fragmentation. (Choat et al., 2007; Cornwell and Ackerly, 2009; Figueroa et al., Plants often respond to water deficit by modifying leaf traits 2010; Fajardo and Piper, 2011), because of its relevance to and decreasing transpirational water losses through reductions understanding plant species responses to drought stress and the in stomatal size and density, greater trichome density (TM; Fahn, maintenance of biodiversity (Violle et al., 2012). Studies have 1986; Baldini et al., 1997), and enhanced leaf mass per unit area often focused on species distributions across broad geographic (LMA; Niinemets, 2001; Poorter et al., 2009). Large number of ranges and stress conditions (Choat et al., 2007; Figueroa et al., short and narrow vessels per unit area are also adaptive under 2010; Fajardo and Piper, 2011; Vasey et al., 2012; Jacobsen and arid conditions and reduces the chances of hydraulic embolism Pratt, 2013). However, intraspecific variation of functional plant (Pockman and Sperry, 2000; Carlquist, 2001; Hacke et al., 2001; traits across pronounced environmental gradients at small spatial Jacobsen et al., 2007; Markesteijn et al., 2011a,b). The above-cited scales can also provide clues to identifying species responses studies have generally focused on changes in mean trait values, to key environmental factors, such as water availability, and while changes in trait variability [measured by the coefficient their interactions with wide spread global change threats such as of variation (CV)] have received less attention (Violle et al., fragmentation (Matesanz et al., 2009). 2012). Likewise, comparative studies across moisture gradients In semiarid regions, ecosystems that depend on coastal fogs for have often ignored the phenotypic or morphological integration water supply (del-Val et al., 2006; Hildebrandt and Eltahir, 2006; (Nicotra et al., 2007), which refers to coordinated variation Katata et al., 2010; Vasey et al., 2012) represent an interesting case of morphological traits (Cheverud et al., 1989; Murren, 2002; with respect to acute moisture gradients. In such ecosystems, fog Pigliucci, 2003; Pigliucci and Preston, 2004) and it can result from interception by vegetation is the primary or even the only source different processes (Klingenberg, 2014) including pleiotropy or of moisture during prolonged dry periods (Dawson, 1998; del-Val coordinated gene expression, functional relation among traits et al., 2006; Ewing et al., 2009). Fog influx creates pronounced or development factors. Trait correlations among individuals asymmetries between windward to leeward edges of forest within a population or species are generally used to characterize patches (Weathers et al., 2000; del-Val et al., 2006; Ewing et al., integration patterns (static integration sensu Klingenberg, 2014), 2009; Stanton et al., 2013), as well as among different-size patches but variation among related species or across ontogenetic stages with contrasting edge effects. Fragmentation enhances sensitivity has also been considered. Correlations between leaf (Wright et al., to current and future changes in fog water supply (Hildebrandt 2004)andhydraulictraits(Chave et al., 2009; Zanne et al., and Eltahir, 2006; Gutiérrez et al., 2008; Johnstone and Dawson, 2010) have been documented by several recent studies (Brodribb 2010). Changes in fog frequency and intensity are predicted to and Feild, 2000; Brodribb et al., 2002; Santiago et al., 2004; occur in these areas due to changes in sea-surface temperature Wright et al., 2006; Meinzer et al., 2008; Baraloto et al., 2010).
Recommended publications
  • Epiphyte Diversity and Biomass Loads of Canopy Emergent Trees in Chilean Temperate Rain Forests: a Neglected Functional Component
    Forest Ecology and Management 259 (2010) 1490–1501 Contents lists available at ScienceDirect Forest Ecology and Management journal homepage: www.elsevier.com/locate/foreco Epiphyte diversity and biomass loads of canopy emergent trees in Chilean temperate rain forests: A neglected functional component Iva´nA.Dı´az a,b,c,*, Kathryn E. Sieving b, Maurice E. Pen˜a-Foxon c, Juan Larraı´n d, Juan J. Armesto c,e a Instituto de Silvicultura, Facultad de Ciencias Forestales y Recursos Naturales, Universidad Austral de Chile, P.O. Box 567, Valdivia, Chile b Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL USA c Institute of Ecology and Biodiversity IEB, Las Palmeras 3425, N˜un˜oa, Santiago, Chile d Departamento de Bota´nica, Universidad de Concepcio´n, Concepcio´n, Chile e Center for Advanced Studies in Ecology and Biodiversity, Departamento de Ecologı´a, Pontificia Universidad Cato´lica de Chile, Santiago, Chile ARTICLE INFO ABSTRACT Article history: We document for the first time the epiphytic composition and biomass of canopy emergent trees from Received 11 August 2009 temperate, old-growth coastal rainforests of Chile (428300S). Through tree-climbing techniques, we Received in revised form 13 January 2010 accessed the crown of two large (c. 1 m trunk diameter, 25–30 m tall) individuals of Eucryphia cordifolia Accepted 14 January 2010 (Cunoniaceae) and one large Aextoxicon punctatum (Aextoxicaceae) to sample all epiphytes from the base to the treetop. Epiphytes, with the exception of the hemi-epiphytic tree Raukaua laetevirens (Araliaceae), Keywords: were removed, weighed and subsamples dried to estimate total dry mass. We recorded 22 species of Epiphytes vascular epiphytes, and 22 genera of cryptogams, with at least 30 species of bryophytes, liverworts and Emergent canopy trees lichens.
    [Show full text]
  • Ancistrocladaceae
    Soltis et al—American Journal of Botany 98(4):704-730. 2011. – Data Supplement S2 – page 1 Soltis, Douglas E., Stephen A. Smith, Nico Cellinese, Kenneth J. Wurdack, David C. Tank, Samuel F. Brockington, Nancy F. Refulio-Rodriguez, Jay B. Walker, Michael J. Moore, Barbara S. Carlsward, Charles D. Bell, Maribeth Latvis, Sunny Crawley, Chelsea Black, Diaga Diouf, Zhenxiang Xi, Catherine A. Rushworth, Matthew A. Gitzendanner, Kenneth J. Sytsma, Yin-Long Qiu, Khidir W. Hilu, Charles C. Davis, Michael J. Sanderson, Reed S. Beaman, Richard G. Olmstead, Walter S. Judd, Michael J. Donoghue, and Pamela S. Soltis. Angiosperm phylogeny: 17 genes, 640 taxa. American Journal of Botany 98(4): 704-730. Appendix S2. The maximum likelihood majority-rule consensus from the 17-gene analysis shown as a phylogram with mtDNA included for Polyosma. Names of the orders and families follow APG III (2009); other names follow Cantino et al. (2007). Numbers above branches are bootstrap percentages. 67 Acalypha Spathiostemon 100 Ricinus 97 100 Dalechampia Lasiocroton 100 100 Conceveiba Homalanthus 96 Hura Euphorbia 88 Pimelodendron 100 Trigonostemon Euphorbiaceae Codiaeum (incl. Peraceae) 100 Croton Hevea Manihot 10083 Moultonianthus Suregada 98 81 Tetrorchidium Omphalea 100 Endospermum Neoscortechinia 100 98 Pera Clutia Pogonophora 99 Cespedesia Sauvagesia 99 Luxemburgia Ochna Ochnaceae 100 100 53 Quiina Touroulia Medusagyne Caryocar Caryocaraceae 100 Chrysobalanus 100 Atuna Chrysobalananaceae 100 100 Licania Hirtella 100 Euphronia Euphroniaceae 100 Dichapetalum 100
    [Show full text]
  • Evolution of Angiosperm Pollen. 5. Early Diverging Superasteridae
    Evolution of Angiosperm Pollen. 5. Early Diverging Superasteridae (Berberidopsidales, Caryophyllales, Cornales, Ericales, and Santalales) Plus Dilleniales Author(s): Ying Yu, Alexandra H. Wortley, Lu Lu, De-Zhu Li, Hong Wang and Stephen Blackmore Source: Annals of the Missouri Botanical Garden, 103(1):106-161. Published By: Missouri Botanical Garden https://doi.org/10.3417/2017017 URL: http://www.bioone.org/doi/full/10.3417/2017017 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/ page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non- commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. EVOLUTION OF ANGIOSPERM Ying Yu,2 Alexandra H. Wortley,3 Lu Lu,2,4 POLLEN. 5. EARLY DIVERGING De-Zhu Li,2,4* Hong Wang,2,4* and SUPERASTERIDAE Stephen Blackmore3 (BERBERIDOPSIDALES, CARYOPHYLLALES, CORNALES, ERICALES, AND SANTALALES) PLUS DILLENIALES1 ABSTRACT This study, the fifth in a series investigating palynological characters in angiosperms, aims to explore the distribution of states for 19 pollen characters on five early diverging orders of Superasteridae (Berberidopsidales, Caryophyllales, Cornales, Ericales, and Santalales) plus Dilleniales.
    [Show full text]
  • Distribution Patterns of Flora and Fauna in Southern Chilean Coastal Rain
    Biodivers Conserv (2007) 16:2627–2648 DOI 10.1007/s10531-006-9073-2 ORIGINAL PAPER Distribution patterns of flora and fauna in southern Chilean Coastal rain forests: Integrating Natural History and GIS Cecilia Smith-Ramı´rez Æ Iva´n Dı´az Æ Patricio Pliscoff Æ Claudio Valdovinos Æ Marco A. Me´ndez Æ Juan Larraı´n Æ Horacio Samaniego Received: 17 August 2005 / Accepted: 19 May 2006 / Published online: 27 October 2006 Ó Springer Science+Business Media B.V. 2006 Abstract Knowledge of species richness centers is necessary for the design of conservation areas. In this study, we present a GIS analysis of two years of field data on animal and plant diversity distributions in evergreen, coastal rain forests of southern Chile (39°30¢–41°25¢ S). Despite their high endemism, these forests have remained largely unprotected. Field records were complemented with data from museum collections and scientific literature. We used selected environmental vari- ables (evapotranspiration, altitude) and, in some cases, forest types as predictors of species distributions. Our study focused on the distribution of forest bryophytes, vascular plants, soil invertebrates, amphibians and birds. We generated distribu- tional maps for each taxa based on their field records in the study area, comple- C. Smith-Ramı´rez (&) Center for Advanced Studies in Ecology and Biodiversity (CASEB), P. Universidad Cato´ lica and Fundacio´ n Senda Darwin (FSD), 1220, Valdivia, Chile e-mail: [email protected] I. Dı´az Department of Wildlife Ecology and Conservation, University of Florida and FSD, Gainesville, FL, USA P. Pliscoff FSD, Roman Dı´az 390, dpto. 902, Providencia, Santiago, Chile C.
    [Show full text]
  • Descriptions of the Plant Types
    APPENDIX A Descriptions of the plant types The plant life forms employed in the model are listed, with examples, in the main text (Table 2). They are described in this appendix in more detail, including environmental relations, physiognomic characters, prototypic and other characteristic taxa, and relevant literature. A list of the forms, with physiognomic characters, is included. Sources of vegetation data relevant to particular life forms are cited with the respective forms in the text of the appendix. General references, especially descriptions of regional vegetation, are listed by region at the end of the appendix. Plant form Plant size Leaf size Leaf (Stem) structure Trees (Broad-leaved) Evergreen I. Tropical Rainforest Trees (lowland. montane) tall, med. large-med. cor. 2. Tropical Evergreen Microphyll Trees medium small cor. 3. Tropical Evergreen Sclerophyll Trees med.-tall medium seier. 4. Temperate Broad-Evergreen Trees a. Warm-Temperate Evergreen med.-small med.-small seier. b. Mediterranean Evergreen med.-small small seier. c. Temperate Broad-Leaved Rainforest medium med.-Iarge scler. Deciduous 5. Raingreen Broad-Leaved Trees a. Monsoon mesomorphic (lowland. montane) medium med.-small mal. b. Woodland xeromorphic small-med. small mal. 6. Summergreen Broad-Leaved Trees a. typical-temperate mesophyllous medium medium mal. b. cool-summer microphyllous medium small mal. Trees (Narrow and needle-leaved) Evergreen 7. Tropical Linear-Leaved Trees tall-med. large cor. 8. Tropical Xeric Needle-Trees medium small-dwarf cor.-scler. 9. Temperate Rainforest Needle-Trees tall large-med. cor. 10. Temperate Needle-Leaved Trees a. Heliophilic Large-Needled medium large cor. b. Mediterranean med.-tall med.-dwarf cor.-scler.
    [Show full text]
  • Journal Arnold Arboretum
    JOURNAL OF THE ARNOLD ARBORETUM HARVARD UNIVERSITY G. SCHUBERT T. G. HARTLEY PUBLISHED BY THE ARNOLD ARBORETUM OF HARVARD UNIVERSITY CAMBRIDGE, MASSACHUSETTS DATES OF ISSUE No. 1 (pp. 1-104) issued January 13, 1967. No. 2 (pp. 105-202) issued April 16, 1967. No. 3 (pp. 203-361) issued July 18, 1967. No. 4 (pp. 363-588) issued October 14, 1967. TABLE OF CONTENTS COMPARATIVE MORPHOLOGICAL STUDIES IN DILLENL ANATOMY. William C. Dickison A SYNOPSIS OF AFRICAN SPECIES OF DELPHINIUM J Philip A. Munz FLORAL BIOLOGY AND SYSTEMATICA OF EUCNIDE Henry J. Thompson and Wallace R. Ernst .... THE GENUS DUABANGA. Don M. A. Jayaweera .... STUDIES IX SWIFTENIA I MKUACKAE) : OBSERVATION UALITY OF THE FLOWERS. Hsueh-yung Lee .. SOME PROBLEMS OF TROPICAL PLANT ECOLOGY, I Pompa RHIZOME. Martin H. Zimmermann and P. B Two NEW AMERICAN- PALMS. Harold E. Moure, Jr NOMENCLATURE NOTES ON GOSSYPIUM IMALVACE* Brizicky A SYNOPSIS OF THE ASIAN SPECIES OF CONSOLIDA CEAE). Philip A. Munz RESIN PRODUCER. Jean H. Langenheim COMPARATIVE MORPHOLOGICAL STUDIES IN DILLKNI POLLEN. William C. Dickison THE CHROMOSOMES OF AUSTROBAILLVA. Lily Eudi THE SOLOMON ISLANDS. George W. G'dUtt A SYNOPSIS OF THE ASIAN SPECIES OF DELPII STRICTO. Philip A. Munz STATES. Grady L. Webster THE GENERA OF EUPIIORBIACEAE IN THE SOT TUFA OF 1806, AN OVERLOOI EST. C. V. Morton REVISION OF THE GENI Hartley JOURNAL OF THE ARNOLD ARBORETUM HARVARD UNIVERSITY T. G. HARTLEY C. E. WOOD, JR. LAZELLA SCHWARTEN Q9 ^ JANUARY, 1967 THE JOURNAL OF THE ARNOLD ARBORETUM Published quarterly by the Arnold Arboretum of Harvard University. Subscription price $10.00 per year.
    [Show full text]
  • Weathers GCB 1482.Pdf
    Global Change Biology (2008) 14, 161–176, doi: 10.1111/j.1365-2486.2007.01482.x Regeneration patterns and persistence of the fog- dependent Fray Jorge forest in semiarid Chile during the past two centuries ALVARO G. GUTIE´ RREZ*w ,OLGABARBOSAz§, DUNCAN A. CHRISTIE} , EK DEL-VALk, HOLLY A. EWING**,CLIVEG.JONESww, PABLO A. MARQUETw §, KATHLEEN C. WEATHERSww and J U A N J . A R M E S T O w § ww *Department of Ecological Modelling, Helmholtz Centre for Environmental Research (UFZ), Permoser Strae 15, 04318 Leipzig, Germany, wDepartamento de Ciencias Ecolo´gicas, Instituto de Ecologı´a y Biodiversidad (IEB). Facultad de Ciencias. Universidad de Chile. Casilla 653, Santiago, Chile, zDepartment of Animal & Plant Sciences, Biodiversity & Macroecology Group, The University of Sheffield, S10 2TN, UK, §Departamento de Ecologı´a, Center for Advanced Studies in Ecology & Biodiversity (CASEB), Facultad de Ciencias Biolo´gicas, Pontificia Universidad Cato´lica de Chile, Alameda 340, Santiago, Chile, }Laboratorio de Dendrocronologı´a, Facultad de Ciencias Forestales, Universidad Austral de Chile, Casilla 567, Valdivia, Chile, kCentro de Estudios Ecosistemas, Universidad Nacional Auto´noma de Me´xico, Ap. 27–3, Santa Maria de Guido Morelia, Michoaca´n 58089, Me´xico, **Program in Environmental Studies, Bates College, 111 Bardwell St., Lewiston, ME 04240, USA, wwInstitute of Ecosystem Studies, Box AB, Millbrook, NY 12545, USA Abstract The persistence of rainforest patches at Fray Jorge National Park (FJNP) in semiarid Chile (301400S), a region receiving approximately 147 mm of annual rainfall, has been a source of concern among forest managers. These forests are likely dependent on water inputs from oceanic fog and their persistence seems uncertain in the face of climate change.
    [Show full text]
  • Chile's Frontier Forests
    Linking forests & people www.globalforestwatch.org CHILE´S FRONTIER FORESTS: CONSERVING A GLOBAL TREASURE Eduardo Neira Hernán Verscheure Carmen Revenga Map production and GIS Analysis Eduardo Neira and Patricio Rutherford Global Forest Watch is an Initiative of the World Resources Institute 2002 CHILE’S FRONTIER FORESTS: CONSERVING A GLOBAL TREASURE 1 REPORT PRODUCTION Publication Manager Hyacinth Billings Editor Karen Holmes Design Paulina Veloso Layout Paulina Veloso and Juan Carlos Cancino Production Offset Bellavista Limitada Cover Photograps Augusto Domínguez Manuel Gedda Each World Resources Institute Report represents a timely, scholarly treatment of a subject of public concern. WRI takes responsibility for choosing the study topics and guarantees its authors and researchers freedom of inquiry. It also solicits and responds to the guidance of advisory panels and expert reviewers. Unless otherwise stated, however, all the interpretations and findings set forth in WRI publications are those of the authors. Copyright ©: World Resources Institute Comité Nacional Pro Defensa de la Fauna y Flora University Austral of Chile 2002 All right reserved. ISBN 1-56973-495-x Library of Congress Control Number: 2002103301 Printed in Chile Available in Spanish as BOSQUES FRONTERA DE CHILE: UN PATRIMONIO NATURAL A CONSERVAR. ISBN: 1-56973-517-4 2 CHILE’S FRONTIER FORESTS: CONSERVING A GLOBAL TREASURE CONTENTS ACKNOWLEDGMENTS 5 FOREWORD 6 KEY FINDINGS 8 EXECUTIVE SUMMARY 9 1. INTRODUCTION 11 2. CHILE’S FORESTS 13 2.1 Description of Chilean Forests 13 2.1.1 Forest cover in Chile: a historical perspective 16 2.1.2 Current forest cover in Chile 16 2.2 Global and Local Significance of Chile’s Forests 18 2.2.1 The need for forest conservation 18 2.2.2 State of forest conservation in Chile 19 2.2.3 Destruction and degradation of native forests 20 3.
    [Show full text]
  • Angiosperm Phylogeny Inferred from Sequences of Four Mitochondrial Genes 1Yin-Long QIU∗ 1Libo LI 1Bin WANG 1,2Jia-Yu XUE 1Tory A
    Journal of Systematics and Evolution 48 (6): 391–425 (2010) doi: 10.1111/j.1759-6831.2010.00097.x Angiosperm phylogeny inferred from sequences of four mitochondrial genes 1Yin-Long QIU∗ 1Libo LI 1Bin WANG 1,2Jia-Yu XUE 1Tory A. HENDRY 1Rui-Qi LI 1Joseph W. BROWN 1Ya n g L I U 1Geordan T. HUDSON 3Zhi-Duan CHEN 1(Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA) 2(School of Life Sciences, Nanjing University, Nanjing 210093, China) 3(Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China) Abstract An angiosperm phylogeny was reconstructed in a maximum likelihood analysis of sequences of four mitochondrial genes, atp1, matR, nad5, and rps3, from 380 species that represent 376 genera and 296 families of seed plants. It is largely congruent with the phylogeny of angiosperms reconstructed from chloroplast genes atpB, matK, and rbcL, and nuclear 18S rDNA. The basalmost lineage consists of Amborella and Nymphaeales (including Hydatellaceae). Austrobaileyales follow this clade and are sister to the mesangiosperms, which include Chloranthaceae, Ceratophyllum, magnoliids, monocots, and eudicots. With the exception of Chloranthaceae being sister to Ceratophyllum, relationships among these five lineages are not well supported. In eudicots, Ranunculales, Sabiales, Proteales, Trochodendrales, Buxales, Gunnerales, Saxifragales, Vitales, Berberidopsidales, and Dilleniales form a basal grade of lines that diverged before the diversification of rosids and asterids. Within rosids, the COM (Celastrales–Oxalidales–Malpighiales) clade is sister to malvids (or rosid II), instead of to the nitrogen-fixing clade as found in all previous large-scale molecular analyses of angiosperms. Santalales and Caryophyllales are members of an expanded asterid clade.
    [Show full text]
  • Rain Forest Islands in the Chilean Semiarid Region: Fog-Dependency, Ecosystem Persistence and Tree Regeneration
    Rain Forest Islands in the Chilean Semiarid Region: Fog-dependency, Ecosystem Persistence and Tree Regeneration Ek del-Val,1*à Juan J. Armesto,1,2,3 Olga Barbosa,1 Duncan A. Christie,1,2 Alvaro G. Gutie´rrez,2 Clive G. Jones,3 Pablo A. Marquet,1 and Kathleen C. Weathers3 1Center for Advanced Studies in Ecology and Biodiversity, Departamento de Ecologı´a, Facultad Ciencias Biolo´ gicas, Pontificia Universidad Cato´ lica de Chile, Casilla 114-D, Santiago, Chile; 2Centro milenio para Estudios Avanzados en Ecologia e Investigacio´ n en Biodiversidad (CMEB), Departamento de Ciencias Ecolo´ gicas, Facultad de Ciencias Universidad de Chile, Casilla 653, Santiago, Chile; 3Institute of Ecosystem Studies, Box AB, Millbrook, New York 12545, USA. ABSTRACT Tree presence in semiarid ecosystems is generally edges (WE), leeward edges (LE), and the interior constrained by insufficient annual rainfall. How- (center) of rainforest patches varying in area from ever, in semiarid Chile, rainforest patches domi- 0.2 to 22 ha. Mean fog-water input was estimated nated by Aextoxicon punctatum are unexpectedly from passive collectors over 1 year in WE and LE of found on coastal mountaintops (450–600 m) at patches. Tree regeneration was greater in the WE 30°S, surrounded by a xerophytic vegetation ma- and forest interior (FI) and decreased toward the LE trix that receives only 147 mm of annual precipi- of patches, following a marked pattern of decline in tation. It has been proposed that these forests fog inputs. Older trees and coarse woody debris persist as a result of fog-water inputs. If so, then were concentrated in the FI and LE of patches.
    [Show full text]
  • Vascular Flora in Public Spaces of Santiago, Chile
    Gayana Bot. 73(1): 85-103, 2016 ISSN 0016-5301 Vascular flora in public spaces of Santiago, Chile Flora vascular en el espacio público de Santiago, Chile JAVIER A. FIGUEROA1*, SEBASTIÁN TEILLIER2, NICOLE GUERRERO-LEIVA3,4, CRISTIAN RAY-BOBADILLA3, SIMONÉ RIVANO2, DIEGO SAAVEDRA3 & SERGIO A. CASTRO3,4 1Centro de Estudios Arquitectónicos, Urbanísticos y del Paisaje, Facultad de Arquitectura, Urbanismo y Paisaje, Universidad Central de Chile. Avenida Santa Isabel 1186, Santiago. 2Escuela de Arquitectura del Paisaje, Universidad Central de Chile. Avenida Santa Isabel 1186, Santiago. 3Laboratorio de Ecología y Biodiversidad Vegetal, Departamento de Biología, Universidad de Santiago de Chile. Casilla 40, Correo 33, Santiago. Av. Lib. B. O’Higgins 3363, Santiago, Chile. 4Centro para el Desarrollo de la Nanociencia y Nanotecnología, CEDENNA, 917-0124 Santiago, Chile. Av. Lib. B. O’Higgins 3363, Santiago, Chile. *[email protected] ABSTRACT After an extensive two-year long research effort, the results document the diversity of vascular plants that grow in the public spaces of Santiago, Chile. We analyze the taxonomic composition, life-forms and phytogeographic origin of the vascular flora of Santiago and, finally, we compare the results with those of urban areas in the Northern Hemisphere. We identified 508 species, 100 families, and 338 genera. The families that showed the greatest richness were Asteraceae and Poaceae. We found that at least 85.1% of the species are exotic. The life-forms are similarly represented, although chamaephytes and geophytes are poorly represented. We conclude that the composition of the urban flora of Santiago differs from that of most Northern Hemisphere cities, due to the increased presence of exotic species, which is likely a consequence of the historical and cultural patterns of ornamentation.
    [Show full text]
  • Redalyc.Seedling Density According to Structure, Dominance And
    Revista Chilena de Historia Natural ISSN: 0716-078X [email protected] Sociedad de Biología de Chile Chile J. DONOSO, PABLO; NYLAND, RALPH D. Seedling density according to structure, dominance and understory cover in old-growth forest stands of the evergreen forest type in the coastal range of Chile Revista Chilena de Historia Natural, vol. 78, núm. 1, 2005, pp. 51-63 Sociedad de Biología de Chile Santiago, Chile Available in: http://www.redalyc.org/articulo.oa?id=369944273005 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative SEEDLING DENSITY IN COASTAL EVERGREEN FORESTSRevista Chilena de Historia Natural51 78: 51-63, 2005 Seedling density according to structure, dominance and understory cover in old-growth forest stands of the evergreen forest type in the coastal range of Chile Densidad de plántulas de acuerdo a la estructura, dominancia y cobertura del sotobosque en bosques siempreverdes adultos en la cordillera de la Costa de Chile PABLO J. DONOSO1 & RALPH D. NYLAND** 1Instituto de Silvicultura, Universidad Austral de Chile, Casilla 567, Valdivia, Chile; e-mail: [email protected] 2College of Environmental Science and Forestry, State University of New York, One Forestry Drive, Syracuse, NY 13210, USA; e-mail: [email protected] ABSTRACT Securing timely regeneration is essential in maintaining the long-term ecological or silvicultural functions and values of forests. Its establishment, in turn, depends on many factors, including the structure and composition of the forest itself.
    [Show full text]