Some Perfect Pythagorean Triangles Where Their Perimeters Are Quarternary Numbers
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Input for Carnival of Math: Number 115, October 2014
Input for Carnival of Math: Number 115, October 2014 I visited Singapore in 1996 and the people were very kind to me. So I though this might be a little payback for their kindness. Good Luck. David Brooks The “Mathematical Association of America” (http://maanumberaday.blogspot.com/2009/11/115.html ) notes that: 115 = 5 x 23. 115 = 23 x (2 + 3). 115 has a unique representation as a sum of three squares: 3 2 + 5 2 + 9 2 = 115. 115 is the smallest three-digit integer, abc , such that ( abc )/( a*b*c) is prime : 115/5 = 23. STS-115 was a space shuttle mission to the International Space Station flown by the space shuttle Atlantis on Sept. 9, 2006. The “Online Encyclopedia of Integer Sequences” (http://www.oeis.org) notes that 115 is a tridecagonal (or 13-gonal) number. Also, 115 is the number of rooted trees with 8 vertices (or nodes). If you do a search for 115 on the OEIS website you will find out that there are 7,041 integer sequences that contain the number 115. The website “Positive Integers” (http://www.positiveintegers.org/115) notes that 115 is a palindromic and repdigit number when written in base 22 (5522). The website “Number Gossip” (http://www.numbergossip.com) notes that: 115 is the smallest three-digit integer, abc, such that (abc)/(a*b*c) is prime. It also notes that 115 is a composite, deficient, lucky, odd odious and square-free number. The website “Numbers Aplenty” (http://www.numbersaplenty.com/115) notes that: It has 4 divisors, whose sum is σ = 144. -
Impartial Games
Combinatorial Games MSRI Publications Volume 29, 1995 Impartial Games RICHARD K. GUY In memory of Jack Kenyon, 1935-08-26 to 1994-09-19 Abstract. We give examples and some general results about impartial games, those in which both players are allowed the same moves at any given time. 1. Introduction We continue our introduction to combinatorial games with a survey of im- partial games. Most of this material can also be found in WW [Berlekamp et al. 1982], particularly pp. 81{116, and in ONAG [Conway 1976], particu- larly pp. 112{130. An elementary introduction is given in [Guy 1989]; see also [Fraenkel 1996], pp. ??{?? in this volume. An impartial game is one in which the set of Left options is the same as the set of Right options. We've noticed in the preceding article the impartial games = 0=0; 0 0 = 1= and 0; 0; = 2: {|} ∗ { | } ∗ ∗ { ∗| ∗} ∗ that were born on days 0, 1, and 2, respectively, so it should come as no surprise that on day n the game n = 0; 1; 2;:::; (n 1) 0; 1; 2;:::; (n 1) ∗ {∗ ∗ ∗ ∗ − |∗ ∗ ∗ ∗ − } is born. In fact any game of the type a; b; c;::: a; b; c;::: {∗ ∗ ∗ |∗ ∗ ∗ } has value m,wherem =mex a;b;c;::: , the least nonnegative integer not in ∗ { } the set a;b;c;::: . To see this, notice that any option, a say, for which a>m, { } ∗ This is a slightly revised reprint of the article of the same name that appeared in Combi- natorial Games, Proceedings of Symposia in Applied Mathematics, Vol. 43, 1991. Permission for use courtesy of the American Mathematical Society. -
Programming Exam 1 on the Assignments Page
COS 126 Midterm 1 Programming Exam Spring 2015 This part of your midterm exam is like a mini-programming assignment. You will create four programs, compile them, and run them on your laptop. Debug your code as needed. This exam is open book, open browser—but only our course website and booksite! Of course, no internal or external communication is permitted (e.g., talking, email, IM, texting, cell phones) during the exam. You may use code from your assignments or code found on the COS126 website. When you are done, submit your program via the course website using the submit link for Programming Exam 1 on the Assignments page. Grading. Your program will be graded on correctness, clarity (including comments), design, and efficiency. You will lose a substantial number of points if your program does not compile or does not have the proper API, or if it crashes on typical inputs. Even though you will electronically submit your code, you must turn in this paper so that we have a record that you took the exam and signed the Honor Code. Print your name, login ID, and precept number on this page (now), and write out and sign the Honor Code pledge before turning in this paper. Note: It is a violation of the Honor Code to discuss this midterm exam question with anyone until after everyone in the class has taken the exam. You have 90 minutes to complete the test. “I pledge my honor that I have not violated the Honor Code during this examination.” ___________________________________________________________________ ___________________________________________________________________ [copy the pledge onto these lines] _____________________________ [signature] NAME: ______________________ Part 0 /12 Part 1 /8 LOGIN: ______________________ Part 2 /5 Part 3 /5 PRECEPT: ______________________ TOTAL /30 !1 The aliquot sum of a positive integer is the sum of its positive divisors other than itself (these divisors are called its proper divisors). -
Single Digits
...................................single digits ...................................single digits In Praise of Small Numbers MARC CHAMBERLAND Princeton University Press Princeton & Oxford Copyright c 2015 by Princeton University Press Published by Princeton University Press, 41 William Street, Princeton, New Jersey 08540 In the United Kingdom: Princeton University Press, 6 Oxford Street, Woodstock, Oxfordshire OX20 1TW press.princeton.edu All Rights Reserved The second epigraph by Paul McCartney on page 111 is taken from The Beatles and is reproduced with permission of Curtis Brown Group Ltd., London on behalf of The Beneficiaries of the Estate of Hunter Davies. Copyright c Hunter Davies 2009. The epigraph on page 170 is taken from Harry Potter and the Half Blood Prince:Copyrightc J.K. Rowling 2005 The epigraphs on page 205 are reprinted wiht the permission of the Free Press, a Division of Simon & Schuster, Inc., from Born on a Blue Day: Inside the Extraordinary Mind of an Austistic Savant by Daniel Tammet. Copyright c 2006 by Daniel Tammet. Originally published in Great Britain in 2006 by Hodder & Stoughton. All rights reserved. Library of Congress Cataloging-in-Publication Data Chamberland, Marc, 1964– Single digits : in praise of small numbers / Marc Chamberland. pages cm Includes bibliographical references and index. ISBN 978-0-691-16114-3 (hardcover : alk. paper) 1. Mathematical analysis. 2. Sequences (Mathematics) 3. Combinatorial analysis. 4. Mathematics–Miscellanea. I. Title. QA300.C4412 2015 510—dc23 2014047680 British Library -
Std XII Computer Science
J.H. TARAPORE SCHOOL WORKSHEET NO- 5 STD XII :A/B/C COMPUTER SCIENCE (2020-2021) Topic : Java Practical Programs General Instructions: • Give the program name as “yournameQ1” eg : “SamikshaQ1,Samiksha Q2” • Execute the programs in your laptop. • Save the program and output together in a Microsoft Word File. • Submit the pendrive on the first day of the school reopening. Question 1. Write a program to check whether the given number is a Prime Adam Number or Not. Prime Number:A number which has only two factors,i.e 1 and the number itself. Adam Number : The square of a number and the square of its reverse are reverse to each other.Example,if n=31 and reverse of n=13,then 312=961 and 132= 169,which is reverse of 961.Thus ,31 is an Adam Number. So, 31 is a Prime Adam Number. Question 2. Write a program to check whether the given number is a Evil Number or Not. An Evil number is a positive whole number which has even number of 1’s in its binary equivalent. Example: Binary equivalent of 9 is 1001, which contains even number of 1’s. Thus, 9 is an Evil Number. A few Evil numbers are 3, 5, 6, 9.... Question 3. Write a program to check whether the given number is a Smith Number or Not. A Smith Number is a composite number,the sum of the digits of a number is equal to the sum of the digits of its prime factors (excluding 1). Example: 666 Prime factors of 666 : 2,3,3 and 37. -
POWERFUL AMICABLE NUMBERS 1. Introduction Let S(N) := ∑ D Be the Sum of the Proper Divisors of the Natural Number N. Two Disti
POWERFUL AMICABLE NUMBERS PAUL POLLACK P Abstract. Let s(n) := djn; d<n d denote the sum of the proper di- visors of the natural number n. Two distinct positive integers n and m are said to form an amicable pair if s(n) = m and s(m) = n; in this case, both n and m are called amicable numbers. The first example of an amicable pair, known already to the ancients, is f220; 284g. We do not know if there are infinitely many amicable pairs. In the opposite direction, Erd}osshowed in 1955 that the set of amicable numbers has asymptotic density zero. Let ` ≥ 1. A natural number n is said to be `-full (or `-powerful) if p` divides n whenever the prime p divides n. As shown by Erd}osand 1=` Szekeres in 1935, the number of `-full n ≤ x is asymptotically c`x , as x ! 1. Here c` is a positive constant depending on `. We show that for each fixed `, the set of amicable `-full numbers has relative density zero within the set of `-full numbers. 1. Introduction P Let s(n) := djn; d<n d be the sum of the proper divisors of the natural number n. Two distinct natural numbers n and m are said to form an ami- cable pair if s(n) = m and s(m) = n; in this case, both n and m are called amicable numbers. The first amicable pair, 220 and 284, was known already to the Pythagorean school. Despite their long history, we still know very little about such pairs. -
Mathematical Constants and Sequences
Mathematical Constants and Sequences a selection compiled by Stanislav Sýkora, Extra Byte, Castano Primo, Italy. Stan's Library, ISSN 2421-1230, Vol.II. First release March 31, 2008. Permalink via DOI: 10.3247/SL2Math08.001 This page is dedicated to my late math teacher Jaroslav Bayer who, back in 1955-8, kindled my passion for Mathematics. Math BOOKS | SI Units | SI Dimensions PHYSICS Constants (on a separate page) Mathematics LINKS | Stan's Library | Stan's HUB This is a constant-at-a-glance list. You can also download a PDF version for off-line use. But keep coming back, the list is growing! When a value is followed by #t, it should be a proven transcendental number (but I only did my best to find out, which need not suffice). Bold dots after a value are a link to the ••• OEIS ••• database. This website does not use any cookies, nor does it collect any information about its visitors (not even anonymous statistics). However, we decline any legal liability for typos, editing errors, and for the content of linked-to external web pages. Basic math constants Binary sequences Constants of number-theory functions More constants useful in Sciences Derived from the basic ones Combinatorial numbers, including Riemann zeta ζ(s) Planck's radiation law ... from 0 and 1 Binomial coefficients Dirichlet eta η(s) Functions sinc(z) and hsinc(z) ... from i Lah numbers Dedekind eta η(τ) Functions sinc(n,x) ... from 1 and i Stirling numbers Constants related to functions in C Ideal gas statistics ... from π Enumerations on sets Exponential exp Peak functions (spectral) .. -
Eureka Issue 61
Eureka 61 A Journal of The Archimedeans Cambridge University Mathematical Society Editors: Philipp Legner and Anja Komatar © The Archimedeans (see page 94 for details) Do not copy or reprint any parts without permission. October 2011 Editorial Eureka Reinvented… efore reading any part of this issue of Eureka, you will have noticed The Team two big changes we have made: Eureka is now published in full col- our, and printed on a larger paper size than usual. We felt that, with Philipp Legner Design and Bthe internet being an increasingly large resource for mathematical articles of Illustrations all kinds, it was necessary to offer something new and exciting to keep Eu- reka as successful as it has been in the past. We moved away from the classic Anja Komatar Submissions LATEX-look, which is so common in the scientific community, to a modern, more engaging, and more entertaining design, while being conscious not to Sean Moss lose any of the mathematical clarity and rigour. Corporate Ben Millwood To make full use of the new design possibilities, many of this issue’s articles Publicity are based around mathematical images: from fractal modelling in financial Lu Zou markets (page 14) to computer rendered pictures (page 38) and mathemati- Subscriptions cal origami (page 20). The Showroom (page 46) uncovers the fundamental role pictures have in mathematics, including patterns, graphs, functions and fractals. This issue includes a wide variety of mathematical articles, problems and puzzles, diagrams, movie and book reviews. Some are more entertaining, such as Bayesian Bets (page 10), some are more technical, such as Impossible Integrals (page 80), or more philosophical, such as How to teach Physics to Mathematicians (page 42). -
Using Formal Concept Analysis in Mathematical Discovery
Using Formal Concept Analysis in Mathematical Discovery Simon Colton and Daniel Wagner sgc, [email protected] Combined Reasoning Group Department of Computing Imperial College, London http://www.doc.ic.ac.uk/crg/ Abstract. Formal concept analysis (FCA) comprises a set of powerful algorithms which can be used for data analysis and manipulation, and a set of visualisation tools which enable the discovery of meaningful re- lationships between attributes of the data. We explore the potential of combining FCA and mathematical discovery tools in order to better fa- cilitate discovery tasks. In particular, we propose a novel lookup method for the Encyclopedia of Integer Sequences, and we show how conjectures from the Graffiti discovery program can be better understood using FCA visualisation tools. We argue that, not only can FCA tools greatly en- hance the management and visualisation of mathematical knowledge, but they can also be used to drive exploratory processes. 1 Introduction Formal Concept Analysis (FCA) consists of a set of well established techniques for the analysis and manipulation of data. FCA has a strong theoretical un- derpinning, efficient implementations of fast algorithms, and useful visualisation tools. There are strong links between FCA and machine learning, and the con- nection of both fields is an active area of research [8,12,13]. We concentrate here on the combination of FCA tools with systems developed to aid mathemat- ical discovery. In particular, we are interested in addressing (i) whether FCA algorithms can be used to enhance the discovery process and (ii) whether FCA visualisation tools can enable better understanding of the discoveries made. -
Answer Key for Grade 5 – Quarter #4
Answer Key for Grade 5 – Quarter #4 (for both individual work and for group work) Notes for Parents: • This document is intended for parents and teachers – not for students. • This answer key doesn’t include all answers. Week 25 Individual Work: Triangular numbers: 1, 3, 6, 10, 15, 21,15, 21, 28, 36, 45, 55, 66, 78, 91, 105, 120, 136, 153, 171, etc. Sequences: 1) Add 6 to previous number: 9, 15, 21, 27, 33, 39, 45, 51, etc. 2) Multiply by 3: 7, 21, 63, 189, 567, 1701, etc. 3) Add previous two numbers: 4, 7, 11, 18, 29, 47, 76, 123, 199, 322, etc. 4) Powers of Two. 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2,048, 4,096, 8,192, etc. Group Assignment: for Tuesday. 1) no 2) yes 3) yes 4) no 5) yes 6) no 7) yes 8) yes 9) 13 is a factor of 403. 403 is in the 13’s table. If you divide 403 by 13, there is no remainder. 10) 43 and 68 11) 4 and 45 for Thursday. Goldbach’s Conjecture: 36: 5+31; 7+29; 13+23; 17+19 54: 7+47; 11+43; 13+41; 17+37; 23+31 90: 7+83; 11+79; 17+73; 19+71; 23+67; 29+61; 31+59; 37+53; 43+47 120: 7+113; 11+109; 13+107; 17+103; 19+101; 23+97; 31+89; 37+83; 41+79; 47+73; 53+67; 59+61. Week 26 Individual Work: Powers of 11: 11, 121, 1331, 14,641, 161,051, 1,771,561, 19,487,171, 214,358,881, 2,357,947,691, etc. -
Three Algorithmic Journeys * * * DRAFT 0.3 *
Three Algorithmic Journeys * * * DRAFT 0.3 * * * Alexander A. Stepanov Daniel E. Rose January 4, 2013 c 2012, 2013 by Alexander A. Stepanov and Daniel E. Rose i ii January 4, 2013 *** DRAFT 0.3 *** Contents Authors’ Note vii Prologue 1 Journey One: Legacy of Ahmes 7 1 Egyptian Multiplication 7 1.1 Proofs . .7 1.2 Mathematical Traditions Around the World . 12 1.3 Thales and Egyptian Mathematics . 12 1.4 Ahmes’ Multiplication Algorithm . 15 1.5 Improving the Algorithm . 18 1.6 Rewriting Code . 21 2 From Multiplication to Power 23 2.1 Untangling the Requirements . 23 2.2 Requirements on A ................................. 24 2.3 Requirements on N ................................. 27 2.4 Semigroups, Monoids, and Groups . 29 2.5 Turning Multiply Into Power . 32 2.6 Generalizing the Operation . 33 2.7 Reduction . 36 2.8 Fibonacci Numbers . 37 2.9 Generalizing Matrix Multiplication . 39 3 Greek Origins of Number Theory 43 3.1 Pythagoras and Some Geometric Properties of Integers . 43 3.2 Sifting Primes . 46 3.3 Perfect Numbers . 52 iii iv CONTENTS 3.4 A Millennium Without Mathematics . 56 4 The Emergence of Modern Number Theory 59 4.1 Mersenne Primes and Fermat Primes . 59 4.2 The Little Fermat Theorem . 62 4.3 Rethinking Our Results Using Modular Arithmetic . 70 4.4 Euler’s Theorem . 72 5 Public-Key Cryptography 77 5.1 Primality Testing . 77 5.2 Cryptology . 81 5.3 The RSA Algorithm: How and Why It Works . 83 5.4 Lessons of the Journey . 86 Journey Two: Heirs of Pythagoras 89 6 Euclid and the Greatest Common Measure 89 6.1 The Original Pythagorean Program . -
GENERATING a PRIME NUMBER FUNCTION Ppppp Pf 1
GENERATING A PRIME NUMBER FUNCTION We have shown in several earlier notes that any positive integer has associated with it a number fraction- {sum of the divisors of N (N 1)} ( (N ) (N 1) f (N ) N N , where (N) is the sigma function of number theory. The function f(N) , which is a rational fraction, has the important property that it vanishes if and only if N is a prime number. Proceeding to higher powers of the primes p, we have- 1 1 p 1 p p2 ) f ( p 2 ) , f ( p3 ) , and f ( p4 ) p p 2 p3 From these results one can conclude that- n2 pk 1 1 1 f ( p n ) k1 ..... p n1 p n1 p n2 p Thus f(121)=1/11, f(625)=f(54)=31/125, and f(343)=f(73)=8/49 etc. It is also noted that one can manipulate the above results to obtain- 1 ( 1) p f ( p 2 ) 1 1 p(1 p) pf ( p3 ) p 2 , provided that p remains a prime number. So for p=7, we find {7(8/49)-(1/7)}=1. If we now introduce a new function- f (N 2 ) 1 [ (N 2 ) 1] g(N 2 ) F(N ) Nf (N 3 ) [ (N 3 ) 1] N 3 g(N 3 ) N 3 , it is clear that F(N) will always be equal to one if N=p. However, when N is not a prime then F(N) will typically be less than one such as F[6]=(f(36)+1)/(6f(216))= 90/283 and F(8)=21/85.