Discriminators of Integer Sequences
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
POWER FIBONACCI SEQUENCES 1. Introduction Let G Be a Bi-Infinite Integer Sequence Satisfying the Recurrence Relation G If
POWER FIBONACCI SEQUENCES JOSHUA IDE AND MARC S. RENAULT Abstract. We examine integer sequences G satisfying the Fibonacci recurrence relation 2 3 Gn = Gn−1 + Gn−2 that also have the property that G ≡ 1; a; a ; a ;::: (mod m) for some modulus m. We determine those moduli m for which these power Fibonacci sequences exist and the number of such sequences for a given m. We also provide formulas for the periods of these sequences, based on the period of the Fibonacci sequence F modulo m. Finally, we establish certain sequence/subsequence relationships between power Fibonacci sequences. 1. Introduction Let G be a bi-infinite integer sequence satisfying the recurrence relation Gn = Gn−1 +Gn−2. If G ≡ 1; a; a2; a3;::: (mod m) for some modulus m, then we will call G a power Fibonacci sequence modulo m. Example 1.1. Modulo m = 11, there are two power Fibonacci sequences: 1; 8; 9; 6; 4; 10; 3; 2; 5; 7; 1; 8 ::: and 1; 4; 5; 9; 3; 1; 4;::: Curiously, the second is a subsequence of the first. For modulo 5 there is only one such sequence (1; 3; 4; 2; 1; 3; :::), for modulo 10 there are no such sequences, and for modulo 209 there are four of these sequences. In the next section, Theorem 2.1 will demonstrate that 209 = 11·19 is the smallest modulus with more than two power Fibonacci sequences. In this note we will determine those moduli for which power Fibonacci sequences exist, and how many power Fibonacci sequences there are for a given modulus. -
Input for Carnival of Math: Number 115, October 2014
Input for Carnival of Math: Number 115, October 2014 I visited Singapore in 1996 and the people were very kind to me. So I though this might be a little payback for their kindness. Good Luck. David Brooks The “Mathematical Association of America” (http://maanumberaday.blogspot.com/2009/11/115.html ) notes that: 115 = 5 x 23. 115 = 23 x (2 + 3). 115 has a unique representation as a sum of three squares: 3 2 + 5 2 + 9 2 = 115. 115 is the smallest three-digit integer, abc , such that ( abc )/( a*b*c) is prime : 115/5 = 23. STS-115 was a space shuttle mission to the International Space Station flown by the space shuttle Atlantis on Sept. 9, 2006. The “Online Encyclopedia of Integer Sequences” (http://www.oeis.org) notes that 115 is a tridecagonal (or 13-gonal) number. Also, 115 is the number of rooted trees with 8 vertices (or nodes). If you do a search for 115 on the OEIS website you will find out that there are 7,041 integer sequences that contain the number 115. The website “Positive Integers” (http://www.positiveintegers.org/115) notes that 115 is a palindromic and repdigit number when written in base 22 (5522). The website “Number Gossip” (http://www.numbergossip.com) notes that: 115 is the smallest three-digit integer, abc, such that (abc)/(a*b*c) is prime. It also notes that 115 is a composite, deficient, lucky, odd odious and square-free number. The website “Numbers Aplenty” (http://www.numbersaplenty.com/115) notes that: It has 4 divisors, whose sum is σ = 144. -
Perfect Gaussian Integer Sequences of Arbitrary Length Soo-Chang Pei∗ and Kuo-Wei Chang† National Taiwan University∗ and Chunghwa Telecom†
Perfect Gaussian Integer Sequences of Arbitrary Length Soo-Chang Pei∗ and Kuo-Wei Chang† National Taiwan University∗ and Chunghwa Telecom† m Objectives N = p or N = p using Legendre N = pq where p and q are coprime Conclusion sequence and Gauss sum To construct perfect Gaussian integer sequences Simple zero padding method: We propose several methods to generate zero au- of arbitrary length N: Legendre symbol is defined as 1) Take a ZAC from p and q. tocorrelation sequences in Gaussian integer. If the 8 2 2) Interpolate q − 1 and p − 1 zeros to these signals sequence length is prime number, we can use Leg- • Perfect sequences are sequences with zero > 1, if ∃x, x ≡ n(mod N) n ! > autocorrelation. = < 0, n ≡ 0(mod N) to get two signals of length N. endre symbol and provide more degree of freedom N > 3) Convolution these two signals, then we get a than Yang’s method. If the sequence is composite, • Gaussian integer is a number in the form :> −1, otherwise. ZAC. we develop a general method to construct ZAC se- a + bi where a and b are integer. And the Gauss sum is defined as N−1 ! Using the idea of prime-factor algorithm: quences. Zero padding is one of the special cases of • A Perfect Gaussian sequence is a perfect X n −2πikn/N G(k) = e Recall that DFT of size N = N1N2 can be done by this method, and it is very easy to implement. sequence that each value in the sequence is a n=0 N taking DFT of size N1 and N2 seperately[14]. -
Impartial Games
Combinatorial Games MSRI Publications Volume 29, 1995 Impartial Games RICHARD K. GUY In memory of Jack Kenyon, 1935-08-26 to 1994-09-19 Abstract. We give examples and some general results about impartial games, those in which both players are allowed the same moves at any given time. 1. Introduction We continue our introduction to combinatorial games with a survey of im- partial games. Most of this material can also be found in WW [Berlekamp et al. 1982], particularly pp. 81{116, and in ONAG [Conway 1976], particu- larly pp. 112{130. An elementary introduction is given in [Guy 1989]; see also [Fraenkel 1996], pp. ??{?? in this volume. An impartial game is one in which the set of Left options is the same as the set of Right options. We've noticed in the preceding article the impartial games = 0=0; 0 0 = 1= and 0; 0; = 2: {|} ∗ { | } ∗ ∗ { ∗| ∗} ∗ that were born on days 0, 1, and 2, respectively, so it should come as no surprise that on day n the game n = 0; 1; 2;:::; (n 1) 0; 1; 2;:::; (n 1) ∗ {∗ ∗ ∗ ∗ − |∗ ∗ ∗ ∗ − } is born. In fact any game of the type a; b; c;::: a; b; c;::: {∗ ∗ ∗ |∗ ∗ ∗ } has value m,wherem =mex a;b;c;::: , the least nonnegative integer not in ∗ { } the set a;b;c;::: . To see this, notice that any option, a say, for which a>m, { } ∗ This is a slightly revised reprint of the article of the same name that appeared in Combi- natorial Games, Proceedings of Symposia in Applied Mathematics, Vol. 43, 1991. Permission for use courtesy of the American Mathematical Society. -
Arxiv:1804.04198V1 [Math.NT] 6 Apr 2018 Rm-Iesequence, Prime-Like Hoy H Function the Theory
CURIOUS CONJECTURES ON THE DISTRIBUTION OF PRIMES AMONG THE SUMS OF THE FIRST 2n PRIMES ROMEO MESTROVIˇ C´ ∞ ABSTRACT. Let pn be nth prime, and let (Sn)n=1 := (Sn) be the sequence of the sums 2n of the first 2n consecutive primes, that is, Sn = k=1 pk with n = 1, 2,.... Heuristic arguments supported by the corresponding computational results suggest that the primes P are distributed among sequence (Sn) in the same way that they are distributed among positive integers. In other words, taking into account the Prime Number Theorem, this assertion is equivalent to # p : p is a prime and p = Sk for some k with 1 k n { ≤ ≤ } log n # p : p is a prime and p = k for some k with 1 k n as n , ∼ { ≤ ≤ }∼ n → ∞ where S denotes the cardinality of a set S. Under the assumption that this assertion is | | true (Conjecture 3.3), we say that (Sn) satisfies the Restricted Prime Number Theorem. Motivated by this, in Sections 1 and 2 we give some definitions, results and examples concerning the generalization of the prime counting function π(x) to increasing positive integer sequences. The remainder of the paper (Sections 3-7) is devoted to the study of mentioned se- quence (Sn). Namely, we propose several conjectures and we prove their consequences concerning the distribution of primes in the sequence (Sn). These conjectures are mainly motivated by the Prime Number Theorem, some heuristic arguments and related computational results. Several consequences of these conjectures are also established. 1. INTRODUCTION, MOTIVATION AND PRELIMINARIES An extremely difficult problem in number theory is the distribution of the primes among the natural numbers. -
Some Combinatorics of Factorial Base Representations
1 2 Journal of Integer Sequences, Vol. 23 (2020), 3 Article 20.3.3 47 6 23 11 Some Combinatorics of Factorial Base Representations Tyler Ball Joanne Beckford Clover Park High School University of Pennsylvania Lakewood, WA 98499 Philadelphia, PA 19104 USA USA [email protected] [email protected] Paul Dalenberg Tom Edgar Department of Mathematics Department of Mathematics Oregon State University Pacific Lutheran University Corvallis, OR 97331 Tacoma, WA 98447 USA USA [email protected] [email protected] Tina Rajabi University of Washington Seattle, WA 98195 USA [email protected] Abstract Every non-negative integer can be written using the factorial base representation. We explore certain combinatorial structures arising from the arithmetic of these rep- resentations. In particular, we investigate the sum-of-digits function, carry sequences, and a partial order referred to as digital dominance. Finally, we describe an analog of a classical theorem due to Kummer that relates the combinatorial objects of interest by constructing a variety of new integer sequences. 1 1 Introduction Kummer’s theorem famously draws a connection between the traditional addition algorithm of base-p representations of integers and the prime factorization of binomial coefficients. Theorem 1 (Kummer). Let n, m, and p all be natural numbers with p prime. Then the n+m exponent of the largest power of p dividing n is the sum of the carries when adding the base-p representations of n and m. Ball et al. [2] define a new class of generalized binomial coefficients that allow them to extend Kummer’s theorem to base-b representations when b is not prime, and they discuss connections between base-b representations and a certain partial order, known as the base-b (digital) dominance order. -
Single Digits
...................................single digits ...................................single digits In Praise of Small Numbers MARC CHAMBERLAND Princeton University Press Princeton & Oxford Copyright c 2015 by Princeton University Press Published by Princeton University Press, 41 William Street, Princeton, New Jersey 08540 In the United Kingdom: Princeton University Press, 6 Oxford Street, Woodstock, Oxfordshire OX20 1TW press.princeton.edu All Rights Reserved The second epigraph by Paul McCartney on page 111 is taken from The Beatles and is reproduced with permission of Curtis Brown Group Ltd., London on behalf of The Beneficiaries of the Estate of Hunter Davies. Copyright c Hunter Davies 2009. The epigraph on page 170 is taken from Harry Potter and the Half Blood Prince:Copyrightc J.K. Rowling 2005 The epigraphs on page 205 are reprinted wiht the permission of the Free Press, a Division of Simon & Schuster, Inc., from Born on a Blue Day: Inside the Extraordinary Mind of an Austistic Savant by Daniel Tammet. Copyright c 2006 by Daniel Tammet. Originally published in Great Britain in 2006 by Hodder & Stoughton. All rights reserved. Library of Congress Cataloging-in-Publication Data Chamberland, Marc, 1964– Single digits : in praise of small numbers / Marc Chamberland. pages cm Includes bibliographical references and index. ISBN 978-0-691-16114-3 (hardcover : alk. paper) 1. Mathematical analysis. 2. Sequences (Mathematics) 3. Combinatorial analysis. 4. Mathematics–Miscellanea. I. Title. QA300.C4412 2015 510—dc23 2014047680 British Library -
My Favorite Integer Sequences
My Favorite Integer Sequences N. J. A. Sloane Information Sciences Research AT&T Shannon Lab Florham Park, NJ 07932-0971 USA Email: [email protected] Abstract. This paper gives a brief description of the author's database of integer sequences, now over 35 years old, together with a selection of a few of the most interesting sequences in the table. Many unsolved problems are mentioned. This paper was published (in a somewhat different form) in Sequences and their Applications (Proceedings of SETA '98), C. Ding, T. Helleseth and H. Niederreiter (editors), Springer-Verlag, London, 1999, pp. 103- 130. Enhanced pdf version prepared Apr 28, 2000. The paragraph on \Sorting by prefix reversal" on page 7 was revised Jan. 17, 2001. The paragraph on page 6 concerning sequence A1676 was corrected on Aug 02, 2002. 1 How it all began I started collecting integer sequences in December 1963, when I was a graduate student at Cornell University, working on perceptrons (or what are now called neural networks). Many graph-theoretic questions had arisen, one of the simplest of which was the following. Choose one of the nn−1 rooted labeled trees with n nodes at random, and pick a random node: what is its expected height above the root? To get an integer sequence, let an be the sum of the heights of all nodes in all trees, and let Wn = an=n. The first few values W1; W2; : : : are 0, 1, 8, 78, 944, 13800, 237432, : : :, a sequence engraved on my memory. I was able to calculate about ten terms, but n I needed to know how Wn grew in comparison with n , and it was impossible to guess this from so few terms. -
Rational Tree Morphisms and Transducer Integer Sequences: Definition and Examples
1 2 Journal of Integer Sequences, Vol. 10 (2007), 3 Article 07.4.3 47 6 23 11 Rational Tree Morphisms and Transducer Integer Sequences: Definition and Examples Zoran Suni´cˇ 1 Department of Mathematics Texas A&M University College Station, TX 77843-3368 USA [email protected] Abstract The notion of transducer integer sequences is considered through a series of ex- amples (the chosen examples are related to the Tower of Hanoi problem on 3 pegs). By definition, transducer integer sequences are integer sequences produced, under a suitable interpretation, by finite transducers encoding rational tree morphisms (length and prefix preserving transformations of words that have only finitely many distinct sections). 1 Introduction It is known from the work of Allouche, B´etr´ema, and Shallit (see [1, 2]) that a squarefree sequence on 6 letters can be obtained by encoding the optimal solution to the standard Tower of Hanoi problem on 3 pegs by an automaton on six states. Roughly speaking, after reading the binary representation of the number i as input word, the automaton ends in one of the 6 states. These states represent the six possible moves between the three pegs; if the automaton ends in state qxy, this means that the one needs to move the top disk from peg x to peg y in step i of the optimal solution. The obtained sequence over the 6-letter alphabet { qxy | 0 ≤ x,y ≤ 2, x =6 y } is an example of an automatic sequence. We choose to work with a slightly different type of automata, which under a suitable interpretation, produce integer sequences in the output. -
Std XII Computer Science
J.H. TARAPORE SCHOOL WORKSHEET NO- 5 STD XII :A/B/C COMPUTER SCIENCE (2020-2021) Topic : Java Practical Programs General Instructions: • Give the program name as “yournameQ1” eg : “SamikshaQ1,Samiksha Q2” • Execute the programs in your laptop. • Save the program and output together in a Microsoft Word File. • Submit the pendrive on the first day of the school reopening. Question 1. Write a program to check whether the given number is a Prime Adam Number or Not. Prime Number:A number which has only two factors,i.e 1 and the number itself. Adam Number : The square of a number and the square of its reverse are reverse to each other.Example,if n=31 and reverse of n=13,then 312=961 and 132= 169,which is reverse of 961.Thus ,31 is an Adam Number. So, 31 is a Prime Adam Number. Question 2. Write a program to check whether the given number is a Evil Number or Not. An Evil number is a positive whole number which has even number of 1’s in its binary equivalent. Example: Binary equivalent of 9 is 1001, which contains even number of 1’s. Thus, 9 is an Evil Number. A few Evil numbers are 3, 5, 6, 9.... Question 3. Write a program to check whether the given number is a Smith Number or Not. A Smith Number is a composite number,the sum of the digits of a number is equal to the sum of the digits of its prime factors (excluding 1). Example: 666 Prime factors of 666 : 2,3,3 and 37. -
Fast Tabulation of Challenge Pseudoprimes
Fast Tabulation of Challenge Pseudoprimes Andrew Shallue Jonathan Webster Illinois Wesleyan University Butler University ANTS-XIII, 2018 1 / 18 Outline Elementary theorems and definitions Challenge pseudoprime Algorithmic theory Sketch of analysis Future work 2 / 18 Definition If n is a composite integer with gcd(b, n) = 1 and bn−1 ≡ 1 (mod n) then we call n a base b Fermat pseudoprime. Fermat’s Little Theorem Theorem If p is prime and gcd(b, p) = 1 then bp−1 ≡ 1 (mod p). 3 / 18 Fermat’s Little Theorem Theorem If p is prime and gcd(b, p) = 1 then bp−1 ≡ 1 (mod p). Definition If n is a composite integer with gcd(b, n) = 1 and bn−1 ≡ 1 (mod n) then we call n a base b Fermat pseudoprime. 3 / 18 Lucas Sequences Definition Let P, Q be integers, and let D = P2 − 4Q (called the discriminant). Let α and β be the two roots of x 2 − Px + Q. Then we have an integer sequence Uk defined by αk − βk U = k α − β called the (P, Q)-Lucas sequence. Definition Equivalently, we may define this as a recurrence relation: U0 = 0, U1 = 1, and Un = PUn−1 − QUn−2. 4 / 18 Definition If n is a composite integer with gcd(n, 2QD) = 1 such that Un−(n) ≡ 0 (mod n) then we call n a (P, Q)-Lucas pseudoprime. An Analogous Theorem Theorem Let the (P, Q)-Lucas sequence be given, and let (n) = (D|n) be the Jacobi symbol. If p is an odd prime and gcd(p, 2QD) = 1, then Up−(p) ≡ 0 (mod p) 5 / 18 An Analogous Theorem Theorem Let the (P, Q)-Lucas sequence be given, and let (n) = (D|n) be the Jacobi symbol. -
ON NUMBERS N DIVIDING the Nth TERM of a LINEAR RECURRENCE
Proceedings of the Edinburgh Mathematical Society (2012) 55, 271–289 DOI:10.1017/S0013091510001355 ON NUMBERS n DIVIDING THE nTH TERM OF A LINEAR RECURRENCE JUAN JOSE´ ALBA GONZALEZ´ 1, FLORIAN LUCA1, CARL POMERANCE2 AND IGOR E. SHPARLINSKI3 1Instituto de Matem´aticas, Universidad Nacional Autonoma de M´exico, CP 58089, Morelia, Michoac´an, M´exico ([email protected]; fl[email protected]) 2Mathematics Department, Dartmouth College, Hanover, NH 03755, USA ([email protected]) 3Department of Computing, Macquarie University, Sydney, NSW 2109, Australia ([email protected]) (Received 25 October 2010) Abstract We give upper and lower bounds on the count of positive integers n x dividing the nth term of a non-degenerate linearly recurrent sequence with simple roots. Keywords: linear recurrence; Lucas sequence; divisibility 2010 Mathematics subject classification: Primary 11B37 Secondary 11A07; 11N25 1. Introduction Let {un}n0 be a linear recurrence sequence of integers satisfying a homogeneous linear recurrence relation un+k = a1un+k−1 + ···+ ak−1un+1 + akun for n =0, 1,..., (1.1) where a1,...,ak are integers with ak =0. In this paper, we study the set of indices n which divide the corresponding term un, that is, the set Nu := {n 1: n|un}. But first, some background on linear recurrence sequences. To the recurrence (1.1) we associate its characteristic polynomial m k k−1 σi fu(X):=X − a1X −···−ak−1X − ak = (X − αi) ∈ Z[X], i=1 c 2012 The Edinburgh Mathematical Society 271 272 J. J. Alba Gonz´alez and others where α1,...,αm ∈ C are the distinct roots of fu(X) with multiplicities σ1,...,σm, respectively.