Extraction and Modification of Macroalgal Polysaccharides For
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Phylogenetic Analysis of Rhizoclonium (Cladophoraceae, Cladophorales), and the Description of Rhizoclonium Subtile Sp
Phytotaxa 383 (2): 147–164 ISSN 1179-3155 (print edition) http://www.mapress.com/j/pt/ PHYTOTAXA Copyright © 2018 Magnolia Press Article ISSN 1179-3163 (online edition) https://doi.org/10.11646/phytotaxa.383.2.2 Phylogenetic analysis of Rhizoclonium (Cladophoraceae, Cladophorales), and the description of Rhizoclonium subtile sp. nov. from China ZHI-JUAN ZHAO1,2, HUAN ZHU3, GUO-XIANG LIU3* & ZHENG-YU HU4 1Key Laboratory of Environment Change and Resources Use in Beibu Gulf (Guangxi Teachers Education University), Ministry of Education, Nanning, 530001, P. R. China 2 Guangxi Key Laboratory of Earth Surface Processes and Intelligent Simulation (Guangxi Teachers Education University), Nanning, 530001, P. R. China 3Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P. R. China 4State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P. R. China *e-mail:[email protected] Abstract The genus Rhizoclonium (Cladophoraceae, Cladophorales) accommodates uniserial, unbranched filamentous algae, closely related to Cladophora and Chaetomorpha. Its taxonomy has been problematic for a long time due to the lack of diagnostic morphological characters. To clarify the species diversity and taxonomic relationships of this genus, we collected and analyzed thirteen freshwater Rhizoclonium specimens from China. The morphological traits of these specimens were observed and described in detail. Three nuclear gene markers small subunit ribosomal DNA (SSU), large subunit ribosomal DNA (LSU) and internal transcribed spacer 2 (ITS2) sequences were analyzed to elucidate their phylogenetic relationships. The results revealed that there were at least fifteen molecular species assignable to Rhizoclonium and our thirteen specimens were distributed in four clades. -
Morphometric Analysis of Surface Utricles in Halimeda Tuna (Bryopsidales, Ulvophyceae) Reveals Variation in Their Size and Symmetry Within Individual Segments
S S symmetry Article Morphometric Analysis of Surface Utricles in Halimeda tuna (Bryopsidales, Ulvophyceae) Reveals Variation in Their Size and Symmetry within Individual Segments Jiri Neustupa * and Yvonne Nemcova Department of Botany, Faculty of Science, Charles University, Prague, 12801 Benatska 2, Czech Republic; [email protected] * Correspondence: [email protected] Received: 26 June 2020; Accepted: 20 July 2020; Published: 1 August 2020 Abstract: Calcifying marine green algae of genus Halimeda have siphonous thalli composed of repeated segments. Their outer surface is formed by laterally appressed peripheral utricles which often form a honeycomb structure, typically with varying degrees of asymmetry in the individual polygons. This study is focused on a morphometric analysis of the size and symmetry of these polygons in Mediterranean H. tuna. Asymmetry of surface utricles is studied using a continuous symmetry measure quantifying the deviation of polygons from perfect symmetry. In addition, the segment shapes are also captured by geometric morphometrics and compared to the utricle parameters. The area of surface utricles is proved to be strongly related to their position on segments, where utricles near the segment bases are considerably smaller than those located near the apical and lateral margins. Interestingly, this gradient is most pronounced in relatively large reniform segments. The polygons are most symmetric in the central parts of segments, with asymmetry uniformly increasing towards the segment margins. Mean utricle asymmetry is found to be unrelated to segment shapes. Systematic differences in utricle size across different positions might be related to morphogenetic patterns of segment development, and may also indicate possible small-scale variations in CaCO3 content within segments. -
The Morphology of Contaminant Organism in Kappaphycus Alvarezii Tissue Culture
The Morphology of Contaminant Organism in Kappaphycus alvarezii Tissue Culture Ulfatus Zahroh1, Apri Arisandi2 1Biotechnology of fisheries and Marine Science, Universitas Airlangga 2Departement of Marine Science, Universitas Trunojoyo Madura Keywords: Kappaphycus alvarezii, Tissue culture, Cell morphology. Abstract: The main problem in increasing the production of seaweed cultivation of Kappaphycus alvarezii is the availability of quality seeds. One of the causes is because the seeds are susceptible to infectious diseases. Tissue culture is one of the techniques to produce Specific Pathogen and Epiphyte Free /SPE Nevertheless, the presence or absence of contamination needs to be analyzed to determine the cause of contamination,, morphology of contaminating organisms, and changes of morphological cell of tissue culture which can be used to prevent contamination during the next tissue culture and cultivation at the sea. Based on the results, it could be revealed that the occurring contamination caused by bacteria and fungi as well as caused by the less sterill culture process. Thallus morphology affected by the disease has slower growth. There were also black spots, cotton-like substance as contaminated fungi (Saprolegnia sp and phytopthora), and the fading of green and slimy pigment as bacteria contamination. In addition, the morpology of ill seaweed cells has smaller cells and shrinked tissue compared to the healthy ones with their bigger cells and no shrinkage. 1 INTRODUCTION not specifically examine occuring contamination and identify the contaminant species. One of the The species of seaweed widely cultivated in Madura problems occurring in tissue culture is the is Euchema Cottonii which is also known as contamination. The condition of in vitro favored by Kappaphycus alvarezii. -
Modelling Potential Production and Environmental Effects Of
Biogeosciences Discuss., https://doi.org/10.5194/bg-2017-195 Manuscript under review for journal Biogeosciences Discussion started: 14 June 2017 c Author(s) 2017. CC BY 3.0 License. Modelling potential production and environmental effects of macroalgae farms in UK and Dutch coastal waters Johan van der Molen1,2, Piet Ruardij2, Karen Mooney4, Philip Kerrison5, Nessa E. O'Connor4, Emma Gorman4, Klaas Timmermans3, Serena Wright1, Maeve Kelly5, Adam D. Hughes5, Elisa Capuzzo1 5 1The Centre for Environment, Fisheries and Aquaculture Science (Cefas), Lowestoft, NR33 0HT, UK 2NIOZ Royal Netherlands Institute for Sea Research, Dept. of Coastal Systems and Utrecht University, Den Burg, 1797 SZ, The Netherlands 3NIOZ Royal Netherlands Institute for Sea Research, Dept. of Estuarine and Delta Systems and Utrecht University, Yerseke, 4401 NT, The Netherlands 10 4Queen’s University, Belfast, BT7 1NN, UK 5The Scottish Association for Marine Science (SAMS), Oban, PA37 1QA, UK Correspondence to: Johan van der Molen ([email protected], [email protected]) Abstract. There is increasing interest in macroalgae farming in European waters for a range of applications, including food, chemical extraction and as biofuels. This study uses a 3D numerical model of hydrodynamics and biogeochemistry to 15 investigate potential production and environmental effects of macroalgae farming in UK and Dutch coastal waters. The model included four experimental farms in different coastal settings in Strangford Lough (Northern Ireland), in Sound of Kerrera and Lynn of Lorne (northwest Scotland), and in the Rhine Plume (The Netherlands), as well as a hypothetical large- scale farm off the UK north Norfolk coast. -
Genetic Diversity Analysis of Cultivated Kappaphycus in Indonesian Seaweed Farms Using COI Gene
Squalen Bull. of Mar. and Fish. Postharvest and Biotech. 15(2) 2020, 65-72 www.bbp4b.litbang.kkp.go.id/squalen-bulletin Squalen Bulletin of Marine and Fisheries Postharvest and Biotechnology ISSN: 2089-5690 e-ISSN: 2406-9272 Genetic Diversity Analysis of Cultivated Kappaphycus in Indonesian Seaweed Farms using COI Gene Pustika Ratnawati1*, Nova F. Simatupang1, Petrus R. Pong-Masak1, Nicholas A. Paul2, and Giuseppe C. Zuccarello3 1) Research Institute for Seaweed Culture, Ministry of Marine Affairs and Fisheries, Jl. Pelabuhan Etalase Perikanan, Boalemo, Gorontalo, Indonesia 96265 2)School of Science and Engineering, University of the Sunshine Coast, Sippy Downs, Maroochydore DC, Australia 4556 3)School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand 6140 Article history: Received: 20 May 2020; Revised: 20 July 2020; Accepted: 11 August 2020 Abstract Indonesia is a major player in the aquaculture of red algae, especially carrageenan producing ‘eucheumatoids’ such as Kappaphycus and Eucheuma. However, many current trade names do not reflect the evolutionary species and updated taxonomy, this is especially the case for eucheumatoid seaweeds that are highly variable in morphology and pigmentation. Genetic variation is also not known for the cultivated eucheumatoids in Indonesia. Therefore, this study aimed to determine the species and the level of genetic variation within species of cultivated eucheumatoids from various farms across Indonesia, spanning 150-1500 km, using the DNA barcoding method. Samples of seaweed were randomly collected at 14 farmed locations between April 2017 and May 2018. For this study the 5- prime end (~ 600 bp) of the mitochondrial-encoded cytochrome oxidase subunit one (COI) was amplified and sequenced. -
Imported Food Risk Statement Hijiki Seaweed and Inorganic Arsenic
Imported food risk statement Hijiki seaweed and inorganic arsenic Commodity: Hijiki seaweed Alternative names used for Hijiki include: Sargassum fusiforme (formerly Hizikia fusiforme, Hizikia fusiformis, Crystophyllum fusiforme, Turbinaria fusiformis), Hizikia, Hiziki, Cystophyllum fusiforme, deer-tail grass, sheep- nest grass, chiau tsai, gulfweed, gulf weed ,hai ti tun, hai toe din, hai tsao, hai tso, hai zao, Hijiki, me-hijiki, mehijiki, hijaki, naga-hijiki, hoi tsou, nongmichae. Analyte: Inorganic arsenic Recommendation and rationale Is inorganic arsenic in Hijiki seaweed a medium or high risk to public health? Yes No Uncertain, further scientific assessment required Rationale: Inorganic arsenic is genotoxic and is known to be carcinogenic in humans. Acute toxicity can result from high dietary exposure to inorganic arsenic. General description Nature of the analyte: Arsenic is a metalloid that occurs in inorganic and organic forms. It is routinely found in the environment as a result of natural occurrence and anthropogenic (human) activity (WHO 2011a). While individuals are often exposed to organic and inorganic arsenic through the diet, it is the inorganic species (which include arsenate V and arsenite III) that are more toxic to humans. Only inorganic arsenic is known to be carcinogenic in humans (WHO 2011a). Inorganic arsenic contamination of groundwater is common in certain parts of the world. Dietary exposure to inorganic arsenic occurs predominantly from groundwater derived drinking-water, groundwater used in cooking and commonly consumed foods such as rice and other cereal grains and their flours (EFSA 2009; WHO 2011a; WHO 2011b). However fruits and vegetables have also been found to contain levels of inorganic arsenic in the range of parts per billion (FSA 2012). -
Download PDF Version
MarLIN Marine Information Network Information on the species and habitats around the coasts and sea of the British Isles Dabberlocks (Alaria esculenta) MarLIN – Marine Life Information Network Biology and Sensitivity Key Information Review Dr Harvey Tyler-Walters 2008-05-29 A report from: The Marine Life Information Network, Marine Biological Association of the United Kingdom. Please note. This MarESA report is a dated version of the online review. Please refer to the website for the most up-to-date version [https://www.marlin.ac.uk/species/detail/1291]. All terms and the MarESA methodology are outlined on the website (https://www.marlin.ac.uk) This review can be cited as: Tyler-Walters, H., 2008. Alaria esculenta Dabberlocks. In Tyler-Walters H. and Hiscock K. (eds) Marine Life Information Network: Biology and Sensitivity Key Information Reviews, [on-line]. Plymouth: Marine Biological Association of the United Kingdom. DOI https://dx.doi.org/10.17031/marlinsp.1291.1 The information (TEXT ONLY) provided by the Marine Life Information Network (MarLIN) is licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 2.0 UK: England & Wales License. Note that images and other media featured on this page are each governed by their own terms and conditions and they may or may not be available for reuse. Permissions beyond the scope of this license are available here. Based on a work at www.marlin.ac.uk (page left blank) Date: 2008-05-29 Dabberlocks (Alaria esculenta) - Marine Life Information Network See online review for distribution map Exposed sublittoral fringe bedrock with Alaria esculenta, Isles of Scilly. -
Optimization of Seedling Production Using Vegetative Gametophytes Of
Optimization of seedling production using vegetative gametophytes of Alaria esculenta Aires Duarte Mestrado em Biologia Funcional e Biotecnologia de Plantas Departamento de Biologia 2017 Orientador Isabel Sousa Pinto, associate professor, CIIMAR Coorientador Jorunn Skjermo, Senior Scientist, SINTEF OCEAN 2 3 Acknowledgments First and foremost, I would like to express my sincere gratitude to: professor Isabel Sousa Pinto of Universidade do Porto and senior research scientist Jorunn Skjermo of SINTEF ocean. From the beginning I had an interest to work aboard with macroalgae, after talking with prof. Isabel Sousa Pinto about this interest, she immediately suggested me a few places that I could look over. One of the suggestions was SINTEF ocean where I got to know Jorunn Skjermo. The door to Jorunn’s office was always open whenever I ran into a trouble spot or had a question about my research. She consistently allowed this study to be my own work, but steered me in the right the direction whenever she thought I needed it. Thank you!! I want to thank Isabel Azevedo, Silje Forbord and Kristine Steinhovden for all the guidance provided in the beginning and until the end of my internship. I would also like to thank the experts who were involved in the different subjects of my research project: Arne Malzahn, Torfinn Solvang-Garten, Trond Storseth and to the amazing team of SINTEF ocean. I also want to thank my master’s director professor Paula Melo, who was a relentless person from the first day, always taking care of her “little F1 plants”. A huge thanks to my fellows Mónica Costa, Fernando Pagels and Leonor Martins for all the days and nights that we spent working and studying hard. -
Neoproterozoic Origin and Multiple Transitions to Macroscopic Growth in Green Seaweeds
Neoproterozoic origin and multiple transitions to macroscopic growth in green seaweeds Andrea Del Cortonaa,b,c,d,1, Christopher J. Jacksone, François Bucchinib,c, Michiel Van Belb,c, Sofie D’hondta, f g h i,j,k e Pavel Skaloud , Charles F. Delwiche , Andrew H. Knoll , John A. Raven , Heroen Verbruggen , Klaas Vandepoeleb,c,d,1,2, Olivier De Clercka,1,2, and Frederik Leliaerta,l,1,2 aDepartment of Biology, Phycology Research Group, Ghent University, 9000 Ghent, Belgium; bDepartment of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Zwijnaarde, Belgium; cVlaams Instituut voor Biotechnologie Center for Plant Systems Biology, 9052 Zwijnaarde, Belgium; dBioinformatics Institute Ghent, Ghent University, 9052 Zwijnaarde, Belgium; eSchool of Biosciences, University of Melbourne, Melbourne, VIC 3010, Australia; fDepartment of Botany, Faculty of Science, Charles University, CZ-12800 Prague 2, Czech Republic; gDepartment of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742; hDepartment of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138; iDivision of Plant Sciences, University of Dundee at the James Hutton Institute, Dundee DD2 5DA, United Kingdom; jSchool of Biological Sciences, University of Western Australia, WA 6009, Australia; kClimate Change Cluster, University of Technology, Ultimo, NSW 2006, Australia; and lMeise Botanic Garden, 1860 Meise, Belgium Edited by Pamela S. Soltis, University of Florida, Gainesville, FL, and approved December 13, 2019 (received for review June 11, 2019) The Neoproterozoic Era records the transition from a largely clear interpretation of how many times and when green seaweeds bacterial to a predominantly eukaryotic phototrophic world, creat- emerged from unicellular ancestors (8). ing the foundation for the complex benthic ecosystems that have There is general consensus that an early split in the evolution sustained Metazoa from the Ediacaran Period onward. -
Seaweed Harvesting and Processing
FISHERIES DIVERSIFICATION PROGRAM Productivity and Product Enhancement Project Summary: FDP 17 2002 Sea Kelp Health Products Developed and Marketing Goals Pursued This project involves the marketing and development of certain types of seaweed or kelp found near Ramea as new health food products. This project assisted Newfoundland Aqua Products Inc. (NAPI) with the design and con- struction of a prototype food grade product shredder, the hiring of a full-time marketing person and improvements to the company website - www.nfkelp.com. Background Newfoundland Aqua Products Inc. produced and sold the first encapsulated marine plant One of many kelp products available. nutritional supplements every manufactured in Newfoundland at Ramea in 1998. From the Methodology harvesting to the bottling and labeling, all This company has been inspected and is reg- aspects of the creation of these new kelp ulated by the Canadian Food Inspection products were completed in this province. Agency. Their harvesting sites and process- One main goal since those times has been to ing methods are Certified Organic. The try and secure a number of contracts with dis- species available in commercial quantities tributors and manufacturers for their products are Laminaria digitata, Ascophyllum under the SeaviteTM name. The company nodosum, fucus species and alaria esculenta. also sought others who would be interested in The company employs up to 11 people who buying bulk amounts of their products. The harvest the marine vegetables with knives company has been told by a number of busi- and scissors. The company has been careful ness contacts that the marine plant industry to develop a harvesting plan based on an has great potential and is just at the start of its approved crop rotation system with a strong growth potential as people accept marine priority on sustainability. -
Edible Seaweed from Wikipedia, the Free Encyclopedia
Edible seaweed From Wikipedia, the free encyclopedia Edible seaweed are algae that can be eaten and used in the preparation of food. They typically contain high amounts of fiber.[1] They may belong to one of several groups of multicellular algae: the red algae, green algae, and brown algae. Seaweeds are also harvested or cultivated for the extraction of alginate, agar and carrageenan, gelatinous substances collectively known as hydrocolloids or phycocolloids. Hydrocolloids have attained commercial significance, especially in food production as food A dish of pickled spicy seaweed additives.[2] The food industry exploits the gelling, water-retention, emulsifying and other physical properties of these hydrocolloids. Most edible seaweeds are marine algae whereas most freshwater algae are toxic. Some marine algae contain acids that irritate the digestion canal, while some others can have a laxative and electrolyte-balancing effect.[3] The dish often served in western Chinese restaurants as 'Crispy Seaweed' is not seaweed but cabbage that has been dried and then fried.[4] Contents 1 Distribution 2 Nutrition and uses 3 Common edible seaweeds 3.1 Red algae (Rhodophyta) 3.2 Green algae 3.3 Brown algae (Phaeophyceae) 3.3.1 Kelp (Laminariales) 3.3.2 Fucales 3.3.3 Ectocarpales 4 See also 5 References 6 External links Distribution Seaweeds are used extensively as food in coastal cuisines around the world. Seaweed has been a part of diets in China, Japan, and Korea since prehistoric times.[5] Seaweed is also consumed in many traditional European societies, in Iceland and western Norway, the Atlantic coast of France, northern and western Ireland, Wales and some coastal parts of South West England,[6] as well as Nova Scotia and Newfoundland. -
The Valorisation of Sargassum from Beach Inundations
Journal of Marine Science and Engineering Review Golden Tides: Problem or Golden Opportunity? The Valorisation of Sargassum from Beach Inundations John J. Milledge * and Patricia J. Harvey Algae Biotechnology Research Group, School of Science, University of Greenwich, Central Avenue, Chatham Maritime, Kent ME4 4TB, UK; [email protected] * Correspondence: [email protected]; Tel.: +44-0208-331-8871 Academic Editor: Magnus Wahlberg Received: 12 August 2016; Accepted: 7 September 2016; Published: 13 September 2016 Abstract: In recent years there have been massive inundations of pelagic Sargassum, known as golden tides, on the beaches of the Caribbean, Gulf of Mexico, and West Africa, causing considerable damage to the local economy and environment. Commercial exploration of this biomass for food, fuel, and pharmaceutical products could fund clean-up and offset the economic impact of these golden tides. This paper reviews the potential uses and obstacles for exploitation of pelagic Sargassum. Although Sargassum has considerable potential as a source of biochemicals, feed, food, fertiliser, and fuel, variable and undefined composition together with the possible presence of marine pollutants may make golden tides unsuitable for food, nutraceuticals, and pharmaceuticals and limit their use in feed and fertilisers. Discontinuous and unreliable supply of Sargassum also presents considerable challenges. Low-cost methods of preservation such as solar drying and ensiling may address the problem of discontinuity. The use of processes that can handle a variety of biological and waste feedstocks in addition to Sargassum is a solution to unreliable supply, and anaerobic digestion for the production of biogas is one such process.