Physics91-95.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Physics91-95.Pdf NOBEL LECTURES IN PHYSICS 1991-1995 NOBEL LECTURES I NCLUDING P RESENTATION S PEECHES AND LAUREATES' BIOGRAPHIES PHYSICS CHEMISTRY PHYSIOLOGY OR MEDICINE LITERATURE PEACE ECONOMIC SCIENCES NOBEL LECTURES I NCLUDING P RESENTATION S PEECHES AND LAUREATES' BIOGRAPHIES PHYSICS 1991-1995 EDITOR Gösta Ekspong Department of Physics University of Stockholm Published for the Nobel Foundation in 1997 by World Scientific Publishing Co. Pte. Ltd. PO Box 128, Farrer Road, Singapore 912805 USA office: Suite lB, 1060 Main Street, River Edge, NJ 07661 UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE NOBEL LECTURES IN PHYSICS (1991-1995) All rights reserved. ISBN 981-02-2677-2 ISBN 981-02-2678-0 (pbk) Printed in Singapore by Uto-Print FOREWORD Since 1901 the Nobel Foundation has published annually “Les Prix Nobel” with reports from the Nobel award ceremonies in Stockholm and Oslo as well as the biographies and Nobel lectures of the laureates. In order to make the lectures available for people with special interests in the different prize fields the Foundation gave Elsevier Publishing Company the right to publish in English the lectures for 1901-1970, which were published in 1964-1972 through the following volumes: Physics 1901-l 970 4 vols. Chemistry 1901-1970 4 vols. Physiology or Medicine 1901-1970 4 vols. Literature 1901-1967 1 vol. Peace 1901-1970 3 vols. Thereafter, and onwards the Nobel Foundation has given World Scientific Publishing Company the right to bring the series up to date and also publish the Prize lectures in Economics from the year 1969. The Nobel Foundation is very pleased that the intellectual and spiritual message to the world laid down in the laureates’ lectures, thanks to the efforts of World Scientific, will reach new readers all over the world. Bengt Samuelsson Michael Sohlman Chairman of the Board Executive Director Stockholm, October 1996 vii PREFACE The lectures in physics by the Nobel laureates in 1991-1995 are collected in this volume. These lectures have been given at the Royal Swedish Academy of Sciences in Stockholm in the Nobel week of the year and originally published in a yearly volume Les prix Nobel. The present volume also contains the presentation speeches held by a member of the Nobel Committee for physics during the prize-awarding ceremony on December 10 of each year. Included also are the short speeches by one of the physics laureates at the banquets on the evening of the same day. Very interesting reading can be found in the autobiographies of each prizewinner. Some have started life without any thought of becoming a physicist and others have had a determined will to enter the research world of international physics. What influences are guiding a child or a youth turn out to be so diverse, that one can hardly write a recipe of how to develop into a physicist - let alone how to become a Nobel prizewinner. The discoveries or inventions honoured by prizes during the five years covered here range from the smallest subatomic particles to one of the most extraordinary star systems in the sky. In 1991 the prize to Pierre-Gilles de Gennes focused on his investigations of liquid crystals and polymers, materials of great practical importance and scientific interest. The 1992 prize to Georges Charpak was given for his inventions and developments of charged particle detectors, in particular for his multiwire proportional counters, used in many high energy experiments the world over and more recently also applied to medicine. In 1993 astrophysics came into focus by awarding the prize in physics to Russell Hulse and Joseph Taylor for their discovery of a close system of two stars, one of which is a fast rotating pulsar, which acts as an extraordinary accurate clock. The discovery story is a most fascinating one. The ultimate result turned out to be the best test of Einstein’s theory of gravitation. Pioneering contributions to neutron scattering techniqueswas the motivation for the physics prize in 1994 to Bertram Brockhouse and Clifford Shull. Neutrons, discovered in 1932, became available in large numbers after the war and were then tamed to serve science and technology. The methods worked out by the two prizewinners have been widely used and have become indispensible tools for the study and investigation of solid matter and liquids. In 1995 the Academy focused on the smallest units of matter by honouring two achievements; the detection of the tiny neutrino was cited as motivation for the prize to Fredrick Reines and the discovery of the small but heavy tau-lepton for the prize to Martin Perl. Both particles are somewhat esoteric and remote from our everyday world, but both particles are believed to be of great importance for the life and development of the universe at large. Gösta Ekspong CONTENTS Foreword V Preface vii 1991 PIERRE-GILLES de GENNES Presentation by Ingvar Lindgren 3 Biography of Pierre-Gilles de Gennes 7 Soft Matter 8 1992 GEORGES CHARPAK Presentation by Carl Nordling 17 Biography of Georges Charpak 21 Electronic Imaging of Ionizing Radiation with Limited Avalanches in Gases 23 1993 RUSSELL A. HULSE and JOSEPH H. TAYLOR, JR. Presentation by Carl Nordling 39 Biography of Russell A. Hulse 43 The Discovery of the Binary Pulsar 48 Biography of Joseph H. Taylor, Jr. 71 Binary Pulsars and Relativistic Gravity 73 1994 BERTRAM N. BROCKHOUSE and CLIFFORD G. SHULL Presentation by Carl Nordling 95 Biography of Bertram N. Brockhouse 99 Slow Neutron Spectroscopy and the Grand Atlas of the Physical World 107 Biography of Clifford G. Shull 141 Early Development of Neutron Scattering 145 1995 MARTIN L. PERL and FREDERICK REINES Presentation by Carl Nordling 157 Biography of Martin L. Per1 161 Rejections on the Discovery of the Tau Lepton 168 Biography of Frederick Reines 197 The Neutrino: From Poltergeist to Particle 202 Physics 1991 PIERRE-GILLES de GENNES for discovering that methods developed for studying order phenomena in simple systems can be generalized to more complex forms of matter, in particular to liquid crystals and polymers 3 THE NOBEL PRIZE IN PHYSICS Speech by Professor Ingvar Lindgren of the Royal Swedish Academy of Sciences. Translation from the Swedish text. Your Majesties, Your Royal Highnesses, Ladies and Gentlemen. This year’s Nobel Prize in Physics has been awarded to Pierre-Gilles de Gennes, College de France, Paris, for his investigations of liquid crystals and polymers. De Gennes has shown that mathematical models, developed for studying simpler systems, are applicable also to such complicated systems. De Gennes has discovered relations between different, seemingly quite unrelated, fields of physics - connections which noboby has seen before. Liquid crystals and polymers can be regarded as intermediate states between order and disorder. A simple crystal, such as ordinary salt, is an example of almost perfect order - its atoms or ions are located in exact positions relative to each other. An ordinary liquid is an example of the opposite, complete disorder, its atoms or ions seem to move in completely irregular fashion. These examples represent two extremes of the concept order-disorder. In nature, there are more subtle forms of order and a liquid crystal is an example of that. It can be well ordered in one dimension but completely disordered in another. De Gennes has generalized the descrip- tion of order for media of this type and been able to see analogies with, e.g. magnetic and superconducting materials. The discovery of the remarkable substances we now call liquid crystals was made by the Austrian botanist Friedrich Reinitzer slightly more than a hundred years ago. In studying plants, he found that a substance related to the cholesterol had two distinct melting points. At the lower temperature, the substance became liquid but opaque and at the higher temperature com- pletely transparent. Earlier, similar properties had been found in stearin. The German physicist Otto Lehmann found that the material was completely uniform between these temperatures with properties characteristic of a liquid as well as a crystal. Therefore, he named it “liquid crystal”. All of us have seen liquid crystals in the display of digital watches and pocket calculators. Most likely, we shall shortly see them also on the screen of our TV sets. Applications of this kind depend upon the unique optical properties of the liquid crystals and the fact that these can easily be changed, e.g. by an electric field. It has been known for a long time that liquid crystals scatter light in an exceptional way, but all early explanations of this phenomenon failed. De Gennes found the explanation in the special way the molecules of a liquid crystal are ordered. One of the phases of a liquid crystal, called nemutic, can be compared with a ferromagnet, where the atoms, which are themselves 4 Physics 1991 tiny magnets, are ordered so that they point in essentially the same direction - with slight variations. These variations follow a strict mathematical rule, which near the so-called critical temperature, where the magnet ceases to be magnetic, attains a very special form. In the liquid crystal the molecules are ordered in a similar way at every temperature, which explains its remarkable optical properties. Another large field, where de Gennes has been very active, is that of polymer physics. A polymer consists of a large number of molecular frag- ments, monomers, which are linked together to form long chains or other structures. These molecules can be formed in a countless number of ways, giving the polymer materials a great variety of chemical and physical proper- ties. We are quite familiar with some of the applications, which range from plastic bags to parts of automobiles and aircraft. Also in these materials, de Gennes has found analogies with critical phenomena appearing in magnetic and superconducting materials.
Recommended publications
  • State of the Nation 2008 Canada’S Science, Technology and Innovation System
    State of the Nation 2008 Canada’s Science, Technology and Innovation System Science, Technology and Innovation Council Science, Technology and Innovation Council Permission to Reproduce Except as otherwise specifically noted, the information in this publication may be reproduced, in part or in whole and by any means, without charge or further permission from the Science, Technology and Innovation Council (STIC), provided that due diligence is exercised in ensuring the accuracy of the information, that STIC is identified as the source institution, and that the reproduction is not represented as an official version of the information reproduced, nor as having been made in affiliation with, or with the endorsement of, STIC. © 2009, Government of Canada (Science, Technology and Innovation Council). Canada’s Science, Technology and Innovation System: State of the Nation 2008. All rights reserved. Aussi disponible en français sous le titre Le système des sciences, de la technologie et de l’innovation au Canada : l’état des lieux en 2008. This publication is also available online at www.stic-csti.ca. This publication is available upon request in accessible formats. Contact the Science, Technology and Innovation Council Secretariat at the number listed below. For additional copies of this publication, please contact: Science, Technology and Innovation Council Secretariat 235 Queen Street 9th Floor Ottawa ON K1A 0H5 Tel.: 613-952-0998 Fax: 613-952-0459 Web: www.stic-csti.ca Email: [email protected] Cat. No. 978-1-100-12165-9 50% ISBN Iu4-142/2009E recycled 60579 fiber State of the Nation 2008 Canada’s Science, Technology and Innovation System Science, Technology and Innovation Council Canada’s Science, Technology and Innovation System iii State of the Nation 2008 Canada’s Science, Technology and Innovation System Context and Executive Summary .
    [Show full text]
  • NMD, National Security Issues Featured at 2001 April Meeting In
    April 2001 NEWS Volume 10, No. 4 A Publication of The American Physical Society http://www.aps.org/apsnews NMD, National Security Issues Featured Phase I CPU Report to be at 2001 April Meeting in Washington Discussed at Attendees of the 2001 APS April include a talk on how the news me- Meeting, which returns to Wash- dia cover science by David April Meeting ington, DC, this year, should arrive Kestenbaum, a self-described “es- The first phase of a new Na- just in time to catch the last of the caped physicist who is hiding out tional Research Council report of cherry blossom season in between at National Public Radio,” and a lec- the Committee on the Physics of scheduled sessions and special ture on entangled photons for the Universe (CPU) will be the events. The conference will run quantum information by the Uni- topic of discussion during a spe- April 28 through May 1, and will versity of Illinois’ Paul Kwiat. Other cial Sunday evening session at the feature the latest results in nuclear scheduled topics include imaging APS April Meeting in Washing- physics, astrophysics, chemical the cosmic background wave back- ton, DC. The session is intended physics, particles and fields, com- ground, searching for extra to begin the process of collect- putational physics, plasma physics, dimensions, CP violation in B me- ing input from the scientific the physics of beams, and physics sons, neutrino oscillations, and the community on some of the is- history, among other subdisci- amplification of atoms and light in The White House and (inset) some of its famous fictional sues outlined in the draft report, plines.
    [Show full text]
  • Investigation and Analysis of Gravitational Waves Using Data from the Lvt151012 Event
    INVESTIGATION AND ANALYSIS OF GRAVITATIONAL WAVES USING DATA FROM THE LVT151012 EVENT Joalda Morancy September 11th, 2017 Pioneer Academics: Summer 2017 Mentor: Eric Myers ABSTRACT The LVT151012 event produces numerous questions on its validity due to various factors. In this paper, I investigate this and analyze the LIGO data for this specific event. I will first give background on what gravitational waves are and how they’re measured, my methodology in investigating the event, and a conclusion of my results. This paper is targeted at anyone who is interested in learning about gravitational waves and has a basic understanding of physics. INTRODUCTION On October 12th, 2015, LIGO made its second detection of gravitational waves. This event, known as LVT151012, is theorized to be the result of the inspiral of two black holes in a binary system of 23 and 13 solar masses (Figure 1). This event isn’t confirmed completely yet, which is the reason why it is given the acronym LVT, meaning “LIGO-Virgo Trigger”, and not GW like others, which stands for “Gravitational Wave” [1]. Figure 1: Graphic showing the number of solar masses of all known gravitational wave detections, including the LVT151012 event. [2] A major difference between this specific detection and others is that the confidence is significantly lower, and it is not enough to make the cut for an official detection. The confidence level is 1.7σ, and the traditional amount that a detection has to be greater than is 5σ. LVT151012 also has a much greater distance compared to all other detections, which comes out to be approximately 1000 Mpc.
    [Show full text]
  • 6 8 Myriam Sarachik Elected APS Vice President
    November 2000 NEWS Volume 9, No. 10 A Publication of The American Physical Society http://www.aps.org/apsnews Myriam Sarachik Elected APS Vice President Members of the APS have chosen Sciences Research at Lucent. Only and government labs, and to pro- Myriam Sarachik, a distinguished two new general councillors were vide the next generation of professor of physics at City College elected, compared to the four educators at our universities,” she of New York’s City University of New elected in previous years, to reflect says. One of her goals as President York, to be the Society’s next vice recent changes in the APS Consti- will be to strengthen the society’s president. Sarachik is the third tution, designed to reduce the size efforts to make a career in physics woman to be elected to the presi- of the APS Council. These changes attractive. “We need to be more ef- dential line in the Society’s 101-year were published in the March 2000 fective in explaining the pleasures history, following C.S. Wu of Colum- issue of APS News. that a career in physics can bring, bia in 1975, and Mildred the satisfaction garnered from VICE PRESIDENT CHAIR-ELECT OF THE Dresselhaus of MIT (who became VICE PRESIDENT teaching, and the excitement of re- Myriam Sarachik NOMINATING COMMITTEE Director of the Department of MYRIAM SARACHIK search and discovery; we must also Susan Coppersmith Energy’s Office of Science in August) City College of New York/CUNY have salaries competitive with other in 1984. Sarachik’s term begins Born in Antwerp, Belgium, professional options,” she says.
    [Show full text]
  • DPF NEWSLETTER - April 15, 1996
    DPF NEWSLETTER - April 15, 1996 To: Members of the Division of Particles and Fields From: Jonathan Bagger, Secretary-Treasurer, [email protected] 1995 DPF Elections Howard Georgi was elected Vice-Chair of the DPF. Tom Devlin and Heidi Schellman were elected to the Executive Committee. George Trilling was elected as a Division Councillor. The current members of the DPF Executive Committee and the final years of their terms are Chair: Frank Sciulli (1996) Chair-Elect: Paul Grannis (1996) Vice-Chair: Howard Georgi (1996) Past Chair: David Cassel (1996) Secretary-Treasurer: Jonathan Bagger (1997) Division Councillor: Henry Frisch (1997), George Trilling (1998) Executive Board: Sally Dawson (1996), Tom Devlin (1998), Martin Einhorn (1997), John Rutherfoord (1997), Heidi Schellman (1998), Michael Shaevitz (1996) Call for Nominations: 1996 DPF Elections The 1996 Nominating Committee is hard at work. Please send suggestions for candidates to the Chair, Abe Seiden of Santa Cruz ([email protected]). The other members of the Nominating Committee are Melissa Franklin, Robert Jaffe, Michael Murtagh, Helen Quinn, and Bill Reay. DPF Members are also entitled to nominate candidates by petition. Twenty signatures from DPF members are required. Nominations will be accepted by Jonathan Bagger until May 15, 1996. Snowmass 1996: New Directions for High Energy Physics The 1996 Snowmass Workshop on New Directions in High Energy Physics will be held in Snowmass, Colorado, from June 24 to July 12, 1996. Arrival, registration, and a reception will be on June 24. Full-day plenary sessions will be held on June 25-26 and July 11-12. This workshop will provide an opportunity to begin to develop a coherent plan for the longer term future for U.S.
    [Show full text]
  • Date: To: September 22, 1 997 Mr Ian Johnston©
    22-SEP-1997 16:36 NOBELSTIFTELSEN 4& 8 6603847 SID 01 NOBELSTIFTELSEN The Nobel Foundation TELEFAX Date: September 22, 1 997 To: Mr Ian Johnston© Company: Executive Office of the Secretary-General Fax no: 0091-2129633511 From: The Nobel Foundation Total number of pages: olO MESSAGE DearMrJohnstone, With reference to your fax and to our telephone conversation, I am enclosing the address list of all Nobel Prize laureates. Yours sincerely, Ingr BergstrSm Mailing address: Bos StU S-102 45 Stockholm. Sweden Strat itddrtSMi Suircfatan 14 Teleptelrtts: (-MB S) 663 » 20 Fsuc (*-«>!) «W Jg 47 22-SEP-1997 16:36 NOBELSTIFTELSEN 46 B S603847 SID 02 22-SEP-1997 16:35 NOBELSTIFTELSEN 46 8 6603847 SID 03 Professor Willis E, Lamb Jr Prof. Aleksandre M. Prokhorov Dr. Leo EsaJki 848 North Norris Avenue Russian Academy of Sciences University of Tsukuba TUCSON, AZ 857 19 Leninskii Prospect 14 Tsukuba USA MSOCOWV71 Ibaraki Ru s s I a 305 Japan 59* c>io Dr. Tsung Dao Lee Professor Hans A. Bethe Professor Antony Hewlsh Department of Physics Cornell University Cavendish Laboratory Columbia University ITHACA, NY 14853 University of Cambridge 538 West I20th Street USA CAMBRIDGE CB3 OHE NEW YORK, NY 10027 England USA S96 014 S ' Dr. Chen Ning Yang Professor Murray Gell-Mann ^ Professor Aage Bohr The Institute for Department of Physics Niels Bohr Institutet Theoretical Physics California Institute of Technology Blegdamsvej 17 State University of New York PASADENA, CA91125 DK-2100 KOPENHAMN 0 STONY BROOK, NY 11794 USA D anni ark USA 595 600 613 Professor Owen Chamberlain Professor Louis Neel ' Professor Ben Mottelson 6068 Margarldo Drive Membre de rinstitute Nordita OAKLAND, CA 946 IS 15 Rue Marcel-Allegot Blegdamsvej 17 USA F-92190 MEUDON-BELLEVUE DK-2100 KOPENHAMN 0 Frankrike D an m ar k 599 615 Professor Donald A.
    [Show full text]
  • Recent Observations of Gravitational Waves by LIGO and Virgo Detectors
    universe Review Recent Observations of Gravitational Waves by LIGO and Virgo Detectors Andrzej Królak 1,2,* and Paritosh Verma 2 1 Institute of Mathematics, Polish Academy of Sciences, 00-656 Warsaw, Poland 2 National Centre for Nuclear Research, 05-400 Otwock, Poland; [email protected] * Correspondence: [email protected] Abstract: In this paper we present the most recent observations of gravitational waves (GWs) by LIGO and Virgo detectors. We also discuss contributions of the recent Nobel prize winner, Sir Roger Penrose to understanding gravitational radiation and black holes (BHs). We make a short introduction to GW phenomenon in general relativity (GR) and we present main sources of detectable GW signals. We describe the laser interferometric detectors that made the first observations of GWs. We briefly discuss the first direct detection of GW signal that originated from a merger of two BHs and the first detection of GW signal form merger of two neutron stars (NSs). Finally we present in more detail the observations of GW signals made during the first half of the most recent observing run of the LIGO and Virgo projects. Finally we present prospects for future GW observations. Keywords: gravitational waves; black holes; neutron stars; laser interferometers 1. Introduction The first terrestrial direct detection of GWs on 14 September 2015, was a milestone Citation: Kro´lak, A.; Verma, P. discovery, and it opened up an entirely new window to explore the universe. The combined Recent Observations of Gravitational effort of various scientists and engineers worldwide working on the theoretical, experi- Waves by LIGO and Virgo Detectors.
    [Show full text]
  • IOP, Quarks Leptons and the Big Bang (2002) 2Ed Een
    Quarks, Leptons and the Big Bang Second Edition Quarks, Leptons and the Big Bang Second Edition Jonathan Allday The King’s School, Canterbury Institute of Physics Publishing Bristol and Philadelphia c IOP Publishing Ltd 2002 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the publisher. Multiple copying is permitted in accordance with the terms of licences issued by the Copyright Licensing Agency under the terms of its agreement with the Committee of Vice- Chancellors and Principals. British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British Library. ISBN 0 7503 0806 0 Library of Congress Cataloging-in-Publication Data are available First edition printed 1998 First edition reprinted with minor corrections 1999 Commissioning Editor: James Revill Production Editor: Simon Laurenson Production Control: Sarah Plenty Cover Design: Fr´ed´erique Swist Marketing Executive: Laura Serratrice Published by Institute of Physics Publishing, wholly owned by The Institute of Physics, London Institute of Physics Publishing, Dirac House, Temple Back, Bristol BS1 6BE, UK US Office: Institute of Physics Publishing, The Public Ledger Building, Suite 1035, 150 South Independence Mall West, Philadelphia, PA 19106, USA Typeset in LATEX2ε by Text 2 Text, Torquay, Devon Printed in the UK by MPG Books Ltd, Bodmin, Cornwall Contents
    [Show full text]
  • December 2007 Volume 16, No
    December 2007 Volume 16, No. 11 www.aps.org/publications/apsnews Physicist is New York Times APS NEWS War Correspondent A PublicAtion of the AmericAn PhysicAl society • www.APs.org/PublicAtions/APsnews see page 5 Fellows by the Bay The Big Easy Hosts 2008 March Meeting The 2008 APS March Meet- ics sing-along, and a High Conditional Quantum Evolu- ing will be held March 10-14 School Teachers’ Day on Tues- tion; and Ethics Education. in New Orleans, Louisiana. It day, March 11, which will be The 5th APS Workshop on is the largest annual gathering held at LIGO-Livingston. Opportunities in Biological of professional physicists in In addition to the regular Physics, organized by the Di- the country. The scientific vision of Biological Phys- program will feature more ics, will be held on Sunday, than 90 invited sessions March 9. and 550 contributed ses- On Saturday, March 8 sions, at which approxi- and Sunday, March 9, the mately 7000 papers will Division of Polymer Phys- be presented, covering ics will host a special short the latest research in areas course: High-throughput represented by the APS Approaches to Polymer divisions of condensed Physics and Materials Sci- matter physics, materials ence. Photo by Darlene logan physics, polymer phys- New Orleans is an excit- APs fellows (l to r) Janice button-shafer (berkeley), george trilling (berkeley), ics, chemical physics, ing city, and has achieved and Elliott Bloom (SLAC) enjoy the Bay Area Fellows reception that APS hosted biological physics, fluid significant recovery from at the berkeley faculty club on october 16.
    [Show full text]
  • A Joint Fermilab/SLAC Publication Dimensions of Particle Physics Issue
    dimensions volume 03 of particle physics symmetryA joint Fermilab/SLAC publication issue 05 june/july 06 Cover Physicists at Fermilab ponder the physics of the proposed International Linear Collider, as outlined in the report Discovering the Quantum Universe. Photos: Reidar Hahn, Fermilab Office of Science U.S. Department of Energy volume 03 | issue 05 | june/july 06 symmetryA joint Fermilab/SLAC publication 3 Commentary: John Beacom “In a global fi eld, keeping up with all the literature is impossible. Personal contact is essential, and I always urge students and postdocs to go to meetings and talk to strangers.” 4 Signal to Background An industrial waterfall; education by placemats; a super-clean surface; horned owls; Garden Club for particle physicists; Nobel banners; US Congress meets Quantum Universe. 8 Voices: Milestones vs. History Celebrating a milestone is always enjoyable, but a complete and accurate historical record is invalu- able for the past to inform the future. 10 A Report Like No Other Can the unique EPP2010 panel steer US particle physics away from a looming crisis? Physicists and policy makers are depending on it. 14 SNS: Neutrons for ‘molecular movies’ A new research facility at Oak Ridge National Laboratory has produced its fi rst neutrons, presenting new opportunities for studying materials from semiconductors to human enzymes. 20 Battling the Clouds Electron clouds could reduce the brightness—and discovery potential—of the proposed International Linear Collider. Innovative solutions are on the way and might reduce the cost of the machine, too. 24 A (Magnus) Force on the Mound Professional baseball player Jeff Francis of the Colorado Rockies brings a strong arm and a physics background to the playing fi eld: “I bet Einstein couldn’t throw a curveball.” 26 Deconstruction: Spallation Neutron Source Accelerator-based neutron sources such as the SNS can provide pulses of neutrons to probe superconductors, aluminum bridges, lighter and stronger plastic products, and pharmaceuticals.
    [Show full text]
  • US Neutron Facility Development in the Last Half-Century: a Cautionary Tale
    Phys. Perspect. Ó 2015 The Author(s). This article is published with open access at Springerlink.com DOI 10.1007/s00016-015-0158-8 Physics in Perspective US Neutron Facility Development in the Last Half-Century: A Cautionary Tale John J. Rush* Large multi-user facilities serve many thousands of researchers in fields from particle physics to fundamental biology. The great expense—up to billions of current-day dollars— and the complexity of such facilities required access to extensive engineering and research infrastructures, most often found at national laboratories and the largest research univer- sities. Although the development of such facilities has been largely successful and the research results unique and often spectacular, the processes for choosing, funding, and locating them were complex and not always productive. In this review, I describe the troubled efforts over the past fifty years to develop neutron research facilities in the United States. During this period, the US has moved from a preeminent position in neutron-based science to a lesser status with respect to Europe. Several major US centers of excellence have been shut down and replaced with more focused capabilities. I compare the US efforts in neutron facilities with parallel developments in Europe and Asia, discuss the reasons for this state of affairs, and make some suggestions to help prevent similar consequences in the future. Key words: neutron research; national laboratories; Department of Energy; National Institute of Standards and Technology; research reactors; spallation neutron sources; Institut Laue-Langevin; National Academy of Sciences. Introduction A major element in the great expansion both of US and international science since the Second World War has been the development of large multi-user facilities to serve many thousands of researchers around the world with applications in almost all fields, ranging from particle physics to fundamental biology.
    [Show full text]
  • Cryptographer Sherry Shannon- Vanstone Says the Status Quo Isn’T Working for Women Entering STEM Fields
    the Perimeter spring/summer 2017 Editor Natasha Waxman [email protected] Managing Editor Tenille Bonoguore Contributing Authors Tenille Bonoguore Colin Hunter Stephanie Keating Arthur B. McDonald Roger Melko Robert Myers Percy Paul Neil Turok Copy Editors Tenille Bonoguore Mike Brown Colin Hunter Stephanie Keating Sonya Walton Natasha Waxman Graphic Design Gabriela Secara Photo Credits Adobe Stock Tenille Bonoguore Jens Langen National Research Council of Canada Masoud Rafiei-Ravandi Gabriela Secara SNOLAB Tonia Williams Inside the Perimeter is published by Perimeter Institute for Theoretical Physics. www.perimeterinstitute.ca To subscribe, email us at [email protected]. 31 Caroline Street North, Waterloo, Ontario, Canada p: 519.569.7600 I f: 519.569.7611 02 IN THIS ISSUE 04/ We are innovators, Neil Turok 06/ Young women encouraged to follow curiosity to success in STEM, Tenille Bonoguore 08/ A quantum spin on passing a law, Colin Hunter 09/ Creating clean ‘quantum light’, Tenille Bonoguore 12/ How to make magic, Colin Hunter and Tenille Bonoguore 14/ Innovation tour delivers – and discovers – inspiration across Canada, Tenille Bonoguore 15/ Teacher training goes to Iqaluit, Stephanie Keating 16/ The (surprisingly) complex science of trapping muskrats, Roger Melko 18/ Fundamental science success deep underground, Arthur B. McDonald 20/ Hearing the universe’s briefest notes, Stephanie Keating 22/ Our home and innovative land, Colin Hunter 24/ Ingenious Canada 26/ Fostering the untapped curiosity of youth, Percy
    [Show full text]