Fast Solution of Sparse Linear Systems with Adaptive Choice of Preconditioners Zakariae Jorti

Total Page:16

File Type:pdf, Size:1020Kb

Fast Solution of Sparse Linear Systems with Adaptive Choice of Preconditioners Zakariae Jorti Fast solution of sparse linear systems with adaptive choice of preconditioners Zakariae Jorti To cite this version: Zakariae Jorti. Fast solution of sparse linear systems with adaptive choice of preconditioners. Math- ematics [math]. Sorbonne Université / Université Pierre et Marie Curie - Paris VI, 2019. English. tel-02425679v1 HAL Id: tel-02425679 https://tel.archives-ouvertes.fr/tel-02425679v1 Submitted on 31 Dec 2019 (v1), last revised 15 Feb 2021 (v2) HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Sorbonne Université École doctorale de Sciences Mathématiques de Paris Centre Laboratoire Jacques-Louis Lions Résolution rapide de systèmes linéaires creux avec choix adaptatif de préconditionneurs Par Zakariae Jorti Thèse de doctorat de Mathématiques appliquées Dirigée par Laura Grigori Co-supervisée par Ani Anciaux-Sedrakian et Soleiman Yousef Présentée et soutenue publiquement le 03/10/2019 Devant un jury composé de: M. Tromeur-Dervout Damien, Professeur, Université de Lyon, Rapporteur M. Schenk Olaf, Professeur, Università della Svizzera italiana, Rapporteur M. Hecht Frédéric, Professeur, Sorbonne Université, Président du jury Mme. Emad Nahid, Professeur, Université Paris-Saclay, Examinateur M. Vasseur Xavier, Ingénieur de recherche, ISAE-SUPAERO, Examinateur Mme. Grigori Laura, Directrice de recherche, Inria Paris, Directrice de thèse Mme. Anciaux-Sedrakian Ani, Ingénieur de recherche, IFPEN, Co-encadrante de thèse M. Yousef Soleiman, Ingénieur de recherche, IFPEN, Co-Encadrant de thèse Doctoral School Sciences Mathématiques de Paris Centre University Department Laboratoire Jacques-Louis Lions Thesis defended by Zakariae Jorti In order to become Doctor from Sorbonne Université Academic Field Applied Mathematics Fast solution of sparse linear systems with adaptive choice of preconditioners Under the supervision of: Doctoral advisor: Dr. Laura Grigori – INRIA, EPI Alpines, LJLL IFPEN supervisor: Dr. Ani Anciaux-Sedrakian – IFPEN, Digital Sciences & Technologies Division IFPEN supervisor: Dr. Soleiman Yousef – IFPEN, Digital Sciences & Technologies Division Contents Introduction 1 General context and scope of application............................1 State-of-the-art 5 PDE Solving.............................................5 Linear solvers............................................6 Preconditioning the linear systems................................9 Approximate inversion....................................... 14 Error estimators........................................... 15 Background notions......................................... 16 1 Global and local approaches of adaptive preconditioning 21 1.1 Global adaptive preconditioning based on a posteriori error estimates........ 22 1.1.1 Adaptative choice of preconditioners from a posteriori error estimates in a simulation....................................... 23 1.1.2 General parameters................................. 24 1.1.3 Runtime platform.................................. 26 1.1.4 Computing framework............................... 27 1.1.5 Presentation of the study cases........................... 27 1.1.6 Numerical results and comments......................... 27 iv 1.1.7 Adaptive choice with restarted GMRES...................... 28 1.2 Local adaptive preconditioning based on a posteriori error estimates......... 33 1.2.1 Error estimates and conditioning.......................... 34 1.2.2 Partitioning and permuting the matrix...................... 38 1.2.3 Variable block Jacobi-type preconditioning.................... 44 1.2.4 Numerical tests.................................... 45 1.2.5 Conclusion...................................... 52 2 Adaptive solution of linear systems based on a posteriori error estimators 53 2.1 Introduction.......................................... 54 2.2 Model problem........................................ 55 2.3 A posteriori error estimates................................. 56 2.3.1 Basic a posteriori error estimates.......................... 57 2.3.2 Upper bound on the algebraic error........................ 58 2.4 Matrix decomposition and local error reduction..................... 59 2.4.1 Matrix decomposition: sum splitting....................... 60 2.4.2 Matrix decomposition: Block partitioning..................... 60 2.5 Adaptive preconditioner for PCG based on local error indicators........... 63 2.5.1 Partitioned preconditioners suited for error reduction............. 63 2.5.2 Condition number improvement.......................... 68 2.5.3 Context of use..................................... 68 2.6 Numerical results....................................... 69 2.6.1 Some strategies for initiating the adaptive procedure.............. 69 2.6.2 Poisson’s equation.................................. 71 2.6.3 Diffusion equation with inhomogeneous coefficient............... 75 2.7 Conclusions.......................................... 79 3 Approximate adaptive procedure based on a posteriori error estimates 81 3.1 Introduction.......................................... 82 3.2 Preliminaries.......................................... 83 3.3 A low rank approximation on AL .............................. 84 3.4 Some condition number bounds for the exact and the approximate adaptive precon- ditioners............................................ 87 v 3.5 Preconditioning cost..................................... 91 3.6 Possible choices for M2 .................................... 92 3.7 Numerical results....................................... 99 3.7.1 Test case n°1...................................... 100 3.7.2 Test case n°2...................................... 102 3.8 Conclusion........................................... 103 4 Adaptive a posteriori error estimates-based preconditioner for controlling a local alge- braic error norm 105 4.1 Introduction.......................................... 106 4.2 Preliminaries.......................................... 107 4.3 Local error reduction with PCG............................... 108 4.4 Controlling the local algebraic error in fixed-point iteration scheme.......... 111 4.5 Deriving a block partitioning and controlling the corresponding algebraic error norm113 4.6 Link with the adaptive preconditioner for PCG based on local error indicators... 117 4.7 Numerical results....................................... 122 4.8 Conclusion........................................... 127 5 Application to test cases stemming from industrial simulations with finite volume dis- cretization 129 5.1 Introduction.......................................... 130 5.2 Cell-centered finite volume discretization......................... 131 5.3 Matrix decomposition and local error reduction..................... 132 5.4 Adaptive linear solver.................................... 134 5.4.1 Schur complement procedure............................ 135 5.4.2 Error reduction properties of the adaptive procedure.............. 136 5.5 Numerical results....................................... 137 5.5.1 Steady problem: Heterogeneous media and uniform mesh refinement.... 137 5.5.2 Unsteady problem: Heterogeneous media and uniform mesh refinement.. 139 5.6 Conclusion........................................... 144 Conclusion 145 Bibliography 147 vi List of Figures 1 Example of Block-Jacobi preconditionner on 4 subdomains without overlap..... 12 2 Lower triangular matrix L .................................. 12 3 Upper triangular matrix U .................................. 12 1.1 Example of a simple 4 × 4 mesh.............................. 34 1.2 Structure of matrix A ..................................... 35 1.3 Distribution of algebraic EE over main domain during simulation (3DBlackOil test case)............................................... 36 1.4 Distribution of algebraic EE over main domain at the end of simulation t = t38 (SPE10Layer85 test case)................................... 37 1.5 Condition numbers of submatrices VS Error estimates means on subdomains for 2 different sizes of partitions at end of simulation t = t38 (SPE10Layer85 test case).. 37 1.6 Condition numbers of submatrices VS Error estimates means on subdomains for 2 different sizes of partitions at mid-simulation t = t42 (3DBlackOil test case)..... 38 1.7 Constructing and partitioning the graph of the matrix into two parts......... 39 1.8 Row and column permutations after a partitioning.................... 41 1.9 Constructing and partitioning the graph of the matrix into two parts by taking account of the error estimate values............................. 43 1.10 Shape of the Block-Jacobi preconditioning matrix after the merger of the first two subdomains.......................................... 45 2.1 Simple example of the decomposition (2.7) with a 2 × 2 mesh grid........... 56 viii List of Figures 2.2 Splittings of matrix A with local stiffness matrices (left) and the associated algebraic 2 × 2 block splitting (right)................................. 61 (1) 2.3 Galerkin solution uh .................................... 71 2.4 Initial distribution and a posteriori estimation of algebraic error for
Recommended publications
  • Athletics Classification Rules and Regulations 2
    IPC ATHLETICS International Paralympic Committee Athletics Classifi cation Rules and Regulations January 2016 O cial IPC Athletics Partner www.paralympic.org/athleticswww.ipc-athletics.org @IPCAthletics ParalympicSport.TV /IPCAthletics Recognition Page IPC Athletics.indd 1 11/12/2013 10:12:43 Purpose and Organisation of these Rules ................................................................................. 4 Purpose ............................................................................................................................... 4 Organisation ........................................................................................................................ 4 1 Article One - Scope and Application .................................................................................. 6 International Classification ................................................................................................... 6 Interpretation, Commencement and Amendment ................................................................. 6 2 Article Two – Classification Personnel .............................................................................. 8 Classification Personnel ....................................................................................................... 8 Classifier Competencies, Qualifications and Responsibilities ................................................ 9 3 Article Three - Classification Panels ................................................................................ 11 4 Article Four
    [Show full text]
  • Warm Springs Road and Green Valley Parkway Clark County, Nevada
    Request for Letter of Map Revision Green Valley Area Warm Springs Road and Green Valley Parkway Clark County, Nevada Prepared for: CLARK COUNTY REGIONAL FLOOD CONTROL DISTRICT 500 S. Grand Central Parkway Las Vegas, NV 89155 Prepared by: PBS&J 2270 Corporate Circle, Suite 100 Henderson, Nevada 89074 (702) 263-7275 April 2, 2004 TABLE OF CONTENTS Section Description Paqe 1.o Introduction.. .................................................... 1 2.0 Area Descriptions.. .............................................. 1 2.1 Area A Description.. ............................................ ..l 2.2 Area B Description............................................... 2 2.3 Area C Description............................................... 2 2.4 Area D Description............................................... 2 3.0 Hydrologic & Hydraulic Modeling......................... .3 3.1 Area A Analysis .................................................... 3 3.2 Area B Analysis .................................................... 3 3.3 Area C Analysis .................................................... 5 3.4 Area D Analysis ....................................................6 4.0 Conclusion......................................................... 7 5.0 References......................................................... 7 Request for LOMR - Green Valley Area 4/02/04 Warm Springs Road and Green Valley Pkwy -I- APPENDICES A. FEMA Forms (Area’s A - D) Separate Set for Each of Four Area’s FEMA ‘Overview and Concurrence Form’ - MT-2 Form 1 FEMA ‘Riverine Hydrology
    [Show full text]
  • Finish Top 20 Schools Scores 1 Arkansas Tech 296 306 602 +26 2
    Sonoma State Women's Fall Invitational Foxtail Golf Club Rohnert Park, CA Par 72-5982 Yards Dates: Oct 17 - Oct 18 finish top 20 schools scores 1 Arkansas Tech 296 306 602 +26 2 Art, Academy of 301 306 607 +31 3 CSU - Chico State 297 318 615 +39 4 Sonoma State 316 301 617 +41 5 Holy Names 305 326 631 +55 6 CSU - East Bay 318 319 637 +61 7 Western Washington 327 311 638 +62 8 Point Loma 319 327 646 +70 9 Dominican (CA) 331 331 662 +86 finish top 20 players school scores 1 Avery Struck Arkansas Tech 70 75 145 +1 2 Vicky Kuo Art, Academy of 73 74 147 +3 3 Courtney Newport Holy Names 75 73 148 +4 4 Bianca Armanini CSU - Chico State 72 77 149 +5 5 Shu-Lin Lin Art, Academy of 77 74 151 +7 6 Sterling Hawkins Art, Academy of 74 78 152 +8 T7 Anna Frandsen Arkansas Tech 75 78 153 +9 T7 Caroline Fredensborg Arkansas Tech 76 77 153 +9 T7 Stephanie Sewell Western Washington 80 73 153 +9 T7 Haley Whitbeck Sonoma State 81 72 153 +9 T11 Erin Martens Sonoma State 80 74 154 +10 T11 Abbey McGrew CSU - Chico State 74 80 154 +10 T11 Sabrina Virtusio Sonoma State 76 78 154 +10 T14 Roxanne Matta * Art, Academy of 82 74 156 +12 T14 Samantha Oliva Sonoma State 79 77 156 +12 T16 Madison Beckett Dominican (CA) 78 79 157 +13 T16 Michelle Picca Point Loma 78 79 157 +13 T16 Jessica Sachs Arkansas Tech 75 82 157 +13 T19 Jamie Lopez Holy Names 74 84 158 +14 T19 Emily Rotter CSU - Chico State 78 80 158 +14 T19 Madison Stephens CSU - Chico State 73 85 158 +14 T19 Taylor Wyss CSU - East Bay 80 78 158 +14 GOLFSTAT COLLEGIATE SCORING SYSTEM Mark Laesch - COPYRIGHT © 2016,
    [Show full text]
  • 2018 Multi-Class Athletes Competition Handbook
    LAQ Multi-Class Athletes Competition Handbook July 2018 LAQ Multi-Class Athletes - Competition Handbook Introduction In 2013, classified Multi-Class (athletes with disabilities) were endorsed to compete in limited events under their own classification at Little Athletics Queensland conducted competitions up to State-level, as determine by the Competition Committee. The following rules are to be read in conjunction the LAQ Competition Handbook. Where applicable, all LAQ and IAAF rules of competition shall apply unless specified in this document. The Association recognises that events as detailed in this handbook may not be offered at weekly Centre meets. However, wherever feasible and appropriate the conditions and rules detailed in this handbook should be adhered to. Centre Committees may offer additional modified events not detailed in this handbook provided the event / equipment specifications are not greater than those detailed in the LAQ Competition Handbook and the Implement Weights for Para athletics “Open & Underage” athletes with a Disability document. Rules and events pertaining to the Multi-Class athletes at LAQ competitions will be reviewed every two years. July 2018 LAQ Multi-Class Athletes - Competition Handbook 1. CLASSIFICATION 1.1. Classification is a way of grouping athletes of similar function or ability for the purpose of competition. 1.2. Athletes with a disability have to be formerly classified by a recognised organisation, prior to competing in LAQ Carnivals and the Winter, Regional and State Championships i. Intellectual Impairment (T/F 20) - through Sports Inclusion Australia (previously AUSRAPID) or Australian Paralympic Committee ii. Physical Impairment (T/F 31-38, 40-47, 51-57) - through Athletics Australia – Provisional PI is acceptable for Regional and Carnival competitions iii.
    [Show full text]
  • Women in the 2000, 2004 and 2008 Olympic and Paralympic Games an Analysis of Participation, Leadership and Media Opportunities
    September 2009 Women in the 2000, 2004 and 2008 Olympic and Paralympic Games An Analysis of Participation, Leadership and Media Opportunities A Women’s Sports Foundation Research Report Authorship and Acknowledgments TThis report was authored by Maureen Smith, Ph.D., California State University, Sacramento, and Alison M. Wrynn, Ph.D., California State University, Long Beach. The report was reviewed by Donna A. Lopiano, Ph.D.; Don Sabo, Ph.D.; Marjorie A. Snyder, Ph.D.; Linda Mastandrea; Terri Lakowski; Carly Adams, Ph.D., University of Lethbridge; Ellen Carlton, Ph.D., Sonoma State University; Kerrie Kauer, Ph.D., California State University, Long Beach; Cheryl Cooky, Ph.D., California State University, Fullerton; Matthew Llewellyn, Pennsylvania State University; and Jennifer Piatt, Ph.D., California State University, Sacramento. The initial data collection was assisted by graduate students at California State University, Sacramento: Brandon Babcock, Kristi Jouett, Fred Kelley, Louis Lopez, Lindsey McEuen, Rusty Price, K.V. Vigil and Kelli White as well as graduate students from California State University, Long Beach. All data that was obtained from the Internet was accurate as of April 2009. Every attempt was made to obtain the most accurate and up-to-date data for this report. Special thanks to Deana Monahan for her editorial and graphic design expertise. Published September 2009, by the Women’s Sports Foundation® Eisenhower Park, 1899 Hempstead Turnpike, Suite 400 East Meadow, NY 11554 [email protected] www.WomensSportsFoundation.org © 2009, Women’s Sports Foundation, All Rights Reserved This report may be downloaded from www.WomensSportsFoundation.org. This report may be reproduced and distributed only in its entirety.
    [Show full text]
  • NCAA Raleigh Regional Lonnie Poole Golf Course at NC State Raleigh, NC 2018 NCAA Raleigh Regional Dates: May 14 - May 16
    NCAA Raleigh Regional Lonnie Poole Golf Course at NC State Raleigh, NC 2018 NCAA Raleigh Regional Dates: May 14 - May 16 1 2 Team Scores 1 1 Texas 271 273 544 -24 3 2 North Carolina State 275 277 552 -16 10 T3 Duke 281 272 553 -15 2 T3 Georgia Tech 274 279 553 -15 T7 5 Liberty 280 277 557 -11 T4 6 Arizona State 276 283 559 -9 T7 7 Middle Tennessee St. 280 281 561 -7 6 8 Augusta 278 284 562 -6 T7 9 Missouri 280 283 563 -5 T4 10 Santa Clara 276 290 566 -2 11 11 California 284 285 569 +1 12 12 Campbell 289 281 570 +2 14 13 Davidson College 296 294 590 +22 13 14 Iona College 295 301 596 +28 GOLFSTAT COLLEGIATE SCORING SYSTEM Mark Laesch - COPYRIGHT © 2018, All Rights Reserved, Golfstat NCAA Raleigh Regional Lonnie Poole Golf Course at NC State Raleigh, NC 2018 NCAA Raleigh Regional Dates: May 14 - May 16 Pos. Team/Player (seed) Rd 1 Rd 2 Total 1 Texas 271 273 544 1 Doug Ghim (1) 64 66 130 T4 Scottie Scheffler (2) 69 65 134 T22 Spencer Soosman (3) 69 71 140 T22 Steven Chervony (4) 69 71 140 T63 Drew Jones (5) 75 74 149 2 North Carolina State 275 277 552 2 Benjamin Shipp (2) 67 64 131 T4 Stephen Franken (1) 65 69 134 T33 Easton Paxton (4) 71 71 142 T54 Justin Hood (3) 73 73 146 T57 Harrison Rhoades (5) 72 75 147 T3 Duke 281 272 553 T6 Jake Shuman (3) 71 64 135 T14 Chandler Eaton (2) 69 70 139 T22 Adrien Pendaries (5) 70 70 140 T30 Alex Smalley (1) 71 70 141 T30 Evan Katz (4) 73 68 141 T3 Georgia Tech 274 279 553 T9 Tyler Strafaci (1) 68 69 137 T14 Noah Norton (2) 70 69 139 T14 Andy Ogletree (5) 70 69 139 T22 Luke Schniederjans (3) 68 72 140 T33 Chris Petefish (4) 68 74 142 5 Liberty 280 277 557 T11 Gabe Lench (5) 69 69 138 T14 Mickey DeMorat (4) 70 69 139 T22 Alexandre Fuchs (3) 70 70 140 T42 Ervin Chang (1) 71 72 143 T42 Isaiah Logue (2) 74 69 143 6 Arizona State 276 283 559 T6 Chun An Yu (2) 65 70 135 T11 Koichiro Ishika (4) 71 67 138 T33 Mason Andersen (3) 69 73 142 T50 Blake Wagoner (5) 71 73 144 T54 Alex del Rey (1) 71 75 146 7 Middle Tennessee St.
    [Show full text]
  • The Impact of Blade Technology on Paralympic Sprint Performance Between 1996 and 2016: Bilateral Amputees’ Competitive Advantage
    Adapted Physical Activity Quarterly, (Ahead of Print) https://doi.org/10.1123/apaq.2020-0064 © 2021 Human Kinetics, Inc. BRIEF RESEARCH NOTE The Impact of Blade Technology on Paralympic Sprint Performance Between 1996 and 2016: Bilateral Amputees’ Competitive Advantage Yetsa A. Tuakli-Wosornu Xiang Li Yale School of Public Health Yale School of Public Health and Cornell Law School Kimberly E. Ona Ayala Yinfei Wu Yale School of Medicine Yale School of Public Health Michael Amick and David B. Frumberg Yale School of Medicine It is known that high-performance sprinters with unilateral and bilateral prosthetic lower limbs run at different speeds using different spatiotemporal strategies. Historically, these athletes still competed together in the same races, but 2018 classification rule revisions saw the separation of these two groups. This study sought to compare Paralympic sprint performance between all-comer (i.e., trans- femoral and transtibial) unilateral and bilateral amputee sprinters using a large athlete sample. A retrospective analysis of race speed among Paralympic sprinters between 1996 and 2016 was conducted. In total, 584 published race results from 161 sprinters revealed that unilateral and bilateral lower-extremity amputee sprinters had significantly different race speeds in all three race finals (100 m, p value <.001; 200 m, <.001; 400 m, <.001). All-comer bilateral amputee runners ran faster than their unilateral counterparts; performance differences increased with race distance. These data support current classification criteria in amputee sprinting, which may create more equal competitive fields in the future. Keywords: classification, clinical/sport biomechanics Tuakli-Wosornu is with the Dept. of Chronic Disease Epidemiology, and Li and Wu, the Dept.
    [Show full text]
  • An Overview of the Running Performance of Athletes with Lower-Limb Amputation at the Paralympic Games 2004–2012
    Sports 2015, 3, 103-115; doi:10.3390/sports3020103 OPEN ACCESS sports ISSN 2075-4663 www.mdpi.com/journal/sports Article An Overview of the Running Performance of Athletes with Lower-Limb Amputation at the Paralympic Games 2004–2012 Hossein Hassani 1,2,*, Mansi Ghodsi 1, Mehran Shadi 1, Siamak Noroozi 3 and Bryce Dyer 3 1 The Statistical Research Centre, Business School, Bournemouth University, Bournemouth BH8 8EB, UK; E-Mails: [email protected] (M.G.); [email protected] (M.S.) 2 Institute for International Energy Studies (IIES), 65 Sayeh St., Vali-e-Asr Ave., Tehran 1967743 711, Iran 3 School of Design, Engineering and Computing, Bournemouth University, Poole House P124, Talbot Campus, Fern Barrow, Poole, Bournemouth BH12 5BB, UK; E-Mails: [email protected] (S.N.); [email protected] (B.D.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +44-1202-968708. Academic Editor: Eling Douwe de Bruin Received: 16 February 2015 / Accepted: 3 June 2015 / Published: 16 June 2015 Abstract: This paper analyses the performances of lower-limb amputees in the 100, 200 and 400 m running events from the 2004, 2008 and 2012 Paralympic Games. In this paper, four hypotheses are pursued. In the first, it investigates whether the running performance of lower-limb amputees over three consecutive Paralympic Games has changed. In the second, it asks whether a bi-lateral amputee has a competitive advantage over a uni-lateral amputee. In the third, the effect of blade classification has been considered and we attempt to see whether amputees in various classifications have different level of performance.
    [Show full text]
  • HRD-87-66 Social Security
    l United States General Accounting O;L”Iice ) Report to Congressional Requesters iiA0mI - March 1987 SOCIAL SECURITY Staff Reductions and Sertice Quakilyy 132662 538+23> GAO/HRD-8766 unitedstate5 General Accountind Office Wa&in#on,D,C.Ulbae Iiuman Re5ource5 Dlvidon B-2264$4 March lo,1987 The Honorable Lawton Chiles, Chairman Subcommittee on Labor, Health and Human Services, and Eklucation Committee on Appropriations United States Senate The Honorable William H. Natcher, Chairman Subcommittee on Labor, Health and Human Services, and Education Committee on Appropriations House of Representatives This is the first of three required reports on Social Security Administration (SSA) staff reductions and the quality of service SSAprovides to the public. The other two reports will be forwarded to you later this year. This report (1) discusseschanges in traditional SSAservice level indicators, such as payment accuracy and claim processing time; (2) analyzes current and past SSA staffing levels; (3) presents the views of 9s~employees, managers, and clients on the quality of SBAservice; (4) analyzes workloads and processing times for 16 SSAfield offices that experienced significant staff reductions; and (6) examines ss~ staff reduction actions in implementing its fiscal year 1987 budget. As arranged with your offices, unless you publicly announce its contents earlier, we plan no further distribution of this report until 30 days from its issue date. At that time, we will send copies to other interested congressionalcommittees and members; the Secretary of Health and Human Services;the Director, Office of Management and Budget; the Commissioner, @IA;and other interested parties. We will also make copies available to others upon request.
    [Show full text]
  • 2019-20 Valspar Caddie Incentive Program FINAL.Xlsx
    2019-20 Valspar Caddie Incentive Program_FINAL 2019-20 Caddie Incentive Plan thru TOUR Championship Position Position Top Ten Color hat Total Rounds After After Finish additional Points CADDIE NAME TOURNAMENT PLAYER Played Round 2 Round 3 Position points Earned A- Antus, Chad A Military Tribute Peter Malnati 2 T25 wd 1 3 Sanderson Farms Peter Malnati 4 T43 T38 2 6 Safeway Open Peter Malnati 2 T123 c 1 3 Shriners Hospitals Peter Malnati 2 T117 c 1 3 Houston Open Peter Malnati 4 1 T3 2 10 Maykoba Peter Malnati 4 t63 t66 2 6 RSM Peter Malnati 2 T145 c 1 3 Sony Open in Hawaii Peter Malnati 4 T24 T16 2 8 AmEx Desert Classic Peter Malnati 3 T110 T107 1.5 4.5 Farmers Insurance Open Peter Malnati 2 T108 c 1 3 Waste Management Peter Malnati 2 T68 c 1 3 AT&T Pebble Beach Peter Malnati 4 T24 6 2 14 Genesis Peter Malnati 2 T97 c 1 3 Honda Classic Peter Malnati 2 T125 c 1 3 PLAYERS Peter Malnati 1 0.5 1.5 74 RBC Heritage Peter Malnati 4 T62 T63 2 6 Travelers Championship Peter Malnati 2 T152 1 3 Rocket Mortgage Peter Malnati 2 T71 1 3 3M Open Peter Malnati 2 T129 1 3 Barracuda Peter Malnati 4 T50 T60 2 6 Wyndham Peter Malnati 4 T17 T7 2 10 31 Aton, Derell A Military Tribute Mackenzie Hughes 2 T131 c 1 3 Safeway Open Mackenzie Hughes 2 T129 c 1 3 Shriners Hospitals Mackenzie Hughes 2 T106 c 1 3 Houston Open Mackenzie Hughes 4 T10 T29 2 8 17 2019-20 Valspar Caddie Incentive Program_FINAL B- Bailey, Lance Shriners Hospitals Isaiah Salinda 4 T60 T72 2 6 Houston Open Chad Campbell 4 T31 T15 T9 2 13 RSM Chad Campbell 2 T90 c 1 3 Sanderson Farms Chad Campbell
    [Show full text]
  • River States Conf Championship Lassing Pointe Golf Club Union, KY Championship Tees Dates: Apr 23 - Apr 24
    River States Conf Championship Lassing Pointe Golf Club Union, KY Championship Tees Dates: Apr 23 - Apr 24 1 Team Scores 1 Midway University 314 +30 2 West Virginia Tech 316 +32 3 Ohio Christian 317 +33 4 Indiana U. - East 319 +35 T5 Asbury University 320 +36 T5 Indiana U - Kokomo 320 +36 7 Brescia University 321 +37 8 Point Park 325 +41 9 Alice Lloyd College 330 +46 10 Cincinnati Christian 345 +61 11 Rio Grande, Univ. of 360 +76 12 Carlow 401 +117 GOLFSTAT COLLEGIATE SCORING SYSTEM Mark Laesch - COPYRIGHT © 2018, All Rights Reserved, Golfstat River States Conf Championship Lassing Pointe Golf Club Union, KY Championship Tees Dates: Apr 23 - Apr 24 Start Finish Player Team Scores - 1 Kieren Samarakoon West Virginia Tech 74 +3 - T2 Taylor Fletcher Indiana U - Kokomo 75 +4 - T2 Austin Mitchell Midway University 75 +4 - T2 Jarod Lemaster Rio Grande, Univ. of 75 +4 - T5 Matthew McCurry Asbury University 76 +5 - T5 Casey Moore Ohio Christian 76 +5 - 7 Cody French Midway University 77 +6 - T8 Logan Sheets Rio Grande, Univ. of 78 +7 - T8 Sam Seagrave Indiana U - Kokomo 78 +7 - T8 Callum Langford West Virginia Tech 78 +7 - T8 Austin Welch * Indiana U - Kokomo 78 +7 - T12 Trevor Brown Brescia University 79 +8 - T12 Austin Taylor Cincinnati Christian 79 +8 - T12 Tyler Pearson Indiana U. - East 79 +8 - T12 DJ Graham Ohio Christian 79 +8 - T12 Max Kaminsky Point Park 79 +8 - T12 Ben Campbell Asbury University 79 +8 - T12 Kole Schofield Indiana U. - East 79 +8 - T12 Daniel Steele Brescia University 79 +8 - T12 Gino DiPardo Point Park 79 +8 - T12 Michael Cooper Ohio Christian 79 +8 - T12 Tyler Brewer Alice Lloyd College 79 +8 - T23 Jared Albright Alice Lloyd College 80 +9 - T23 Chance England Brescia University 80 +9 - T23 Josh Koester Midway University 80 +9 - T23 Evan Williams Indiana U.
    [Show full text]
  • World Para Athletics Classification Rules and Regulations, March 2017 2
    World Para Athletics Classifi cation Rules and Regulations March 2017 O cial Partners of World Para Athletics www.worldparaathletics.org @ParaAthletics ParalympicSport.TV /ParaAthletics Organisation Part One: General Provisions.................................................................................................5 1 Scope and Application ...................................................................................................5 2 Roles and Responsibilities .............................................................................................7 Part Two: Classification Personnel ........................................................................................8 3 Classification Personnel ................................................................................................8 4 Classifier Competencies, Training and Certification ........................................................9 5 Classifier Code of Conduct .......................................................................................... 11 Part Three: Athlete Evaluation ........................................................................................... 12 6 General Provisions ...................................................................................................... 12 7 Eligible Impairment .................................................................................................... 12 8 Minimum Impairment Criteria ..................................................................................... 15 9 Sport
    [Show full text]