The Bounds of Logic Part 2
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Which Quantifiers Are Logical? a Combined Semantical and Inferential Criterion Solomon Feferman1
Which Quantifiers are Logical? A combined semantical and inferential criterion Solomon Feferman1 Abstract. The aim of logic is to characterize the forms of reasoning that lead invariably from true sentences to true sentences, independently of the subject matter; thus its concerns combine semantical and inferential notions in an essential way. Up to now most proposed characterizations of logicality of sentence generating operations have been given either in semantical or inferential terms. This paper offers a combined semantical and inferential criterion for logicality (improving one originally proposed by Jeffery Zucker) and shows that any quantifier that is to be counted as logical according to that criterion is definable in first order logic. The aim of logic is to characterize the forms of reasoning that lead invariably from true sentences to true sentences, independently of the subject matter. The sentences involved are analyzed according to their logical (as opposed to grammatical) structure, i.e. how they are compounded from their parts by means of certain operations on propositions and predicates, of which the familiar ones are the connectives and quantifiers of first order logic. To spell this out in general, one must explain how the truth of compounds under given operations is determined by the truth of the parts, and characterize those forms of rules of inference for the given operations that insure preservation of truth. The so-called problem of “logical constants” (Gomez-Torrente 2002) is to determine all such operations. -
The Nature of Logical Constants
Aporia vol. 27 no. 1—2017 The Nature of Logical Constants LAUREN RICHARDSON haracterizing the distinction between the “logical” and “non-logical” expressions of a language proves a challenging task, and one Cwith significant implications for the nature and scope of logic itself. It is often claimed that logical truths are statements that are “true by virtue of form,” and, likewise, that arguments are logically valid because of their respective “forms,” not because of their contents (Sider 2).1 Take, for example, a straightforward piece of reasoning: (P1) Maria is in Berlin or she is in Vienna. (P2) Maria is not in Berlin. (C) Maria is in Vienna. If this argument is valid—which, of course, in classical logic, it is—then it is typically held to be valid because of the structure of the argument and not because of certain material facts about the world. So it seems as if we should 1 Contrast the idea of truth preservation by virtue of form with the idea of an argument that is truth- preserving by virtue of the meaning of certain terms: (P1*):Nick is a bachelor. (C*): Nick is an unmarried man. We might think that the truth of (P1*) guarantees the truth of (C*), but it is not by virtue of the form of the argument; it is by virtue of the meaning of the expressions “bachelor” and “unmarried man.” Lauren Richardson is studying philosophy at the University of Chicago and will graduate in 2018. Her philosophical interests include philosophy of language, logic, metaethics, and feminism. After graduation, Lauren intends to pursue a graduate degree in philosophy. -
Chapter 10: Symbolic Trails and Formal Proofs of Validity, Part 2
Essential Logic Ronald C. Pine CHAPTER 10: SYMBOLIC TRAILS AND FORMAL PROOFS OF VALIDITY, PART 2 Introduction In the previous chapter there were many frustrating signs that something was wrong with our formal proof method that relied on only nine elementary rules of validity. Very simple, intuitive valid arguments could not be shown to be valid. For instance, the following intuitively valid arguments cannot be shown to be valid using only the nine rules. Somalia and Iran are both foreign policy risks. Therefore, Iran is a foreign policy risk. S I / I Either Obama or McCain was President of the United States in 2009.1 McCain was not President in 2010. So, Obama was President of the United States in 2010. (O v C) ~(O C) ~C / O If the computer networking system works, then Johnson and Kaneshiro will both be connected to the home office. Therefore, if the networking system works, Johnson will be connected to the home office. N (J K) / N J Either the Start II treaty is ratified or this landmark treaty will not be worth the paper it is written on. Therefore, if the Start II treaty is not ratified, this landmark treaty will not be worth the paper it is written on. R v ~W / ~R ~W 1 This or statement is obviously exclusive, so note the translation. 427 If the light is on, then the light switch must be on. So, if the light switch in not on, then the light is not on. L S / ~S ~L Thus, the nine elementary rules of validity covered in the previous chapter must be only part of a complete system for constructing formal proofs of validity. -
Understanding the Logical Constants and Dispositions
Baltic International Yearbook of Cognition, Logic and Communication Volume 5 MEANING, UNDERSTANDING AND KNOWLEDGE Article 2 2009 Understanding the Logical Constants and Dispositions Corine Besson St Hugh's College, Oxford Follow this and additional works at: https://newprairiepress.org/biyclc This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License. Recommended Citation Besson, Corine (2009) "Understanding the Logical Constants and Dispositions," Baltic International Yearbook of Cognition, Logic and Communication: Vol. 5. https://doi.org/10.4148/biyclc.v5i0.279 This Proceeding of the Symposium for Cognition, Logic and Communication is brought to you for free and open access by the Conferences at New Prairie Press. It has been accepted for inclusion in Baltic International Yearbook of Cognition, Logic and Communication by an authorized administrator of New Prairie Press. For more information, please contact [email protected]. Understanding the Logical Constants and Dispositions 2 The Baltic International Yearbook of not explore here how that explanatory connection might be accounted Cognition, Logic and Communication for. But however it is accounted for, it seems that the following min- imal constraint should be met by any account of competence with an October 2010 Volume 5: Meaning, Understanding and Knowledge expression: pages 1-24 DOI: 10.4148/biyclc.v5i0.279 (CT) An account of speakers’ understanding of an expres- sion should be consistent with their correct performances CORINE BESSON with that expression. St Hugh’s College, Oxford This is a weak constraint, since the connection between competence and performance is much tighter. But this will suffice for the purposes UNDERSTANDING THE LOGICAL CONSTANTS AND of this paper. -
The Constituents of the Propositions of Logic Kevin C
10 The Constituents of the Propositions of Logic Kevin C. Klement 1 Introduction Many founders of modern logic—Frege and Russell among them—bemoan- ed the tendency, still found in most textbook treatments, to define the subject matter of logic as “the laws of thought” or “the principles of inference”. Such descriptions fail to capture logic’s objective nature; they make it too dependent on human psychology or linguistic practices. It is one thing to identify what logic is not about. It is another to say what it is about. I tell my students that logic studies relationships between the truth-values of propositions that hold in virtue of their form. But even this characterization leaves me uneasy. I don’t really know what a “form” is, and even worse perhaps, I don’t really know what these “propositions” are that have these forms. If propositions are considered merely as sentences or linguistic assertions, the definition does not seem like much of an improvement over the psychological definitions. Language is a human invention, but logic is more than that, or so it seems. It is perhaps forgiveable then that at certain times Russell would not have been prepared to give a very good answer to the question “What is Logic?”, such as when he attempted, but failed, to compose a paper with that title in October 1912. Given that Russell had recently completed Principia Mathematica, a work alleging to establish the reducibility of mathematics to logic, one might think this overly generous. What does the claim that mathematics reduces to logic come to if we cannot independently speci- Published in Acquaintance, Knowledge and Logic: New Essays on Bertrand Russell’s Problems of Philosophy, edited by Donovan Wishon and Bernard Linsky. -
A Absorption, 32 Addition, 33 Adequacy Theorem, 80 AEIO, 38 Agreement, 98 Algebra, 7 Argument, 4, 9 Artificial Intelligence
Index A Constructive dilemma, 32 Absorption, 32 Contingent, 28 Addition, 33 Contradiction, 28, 46 Adequacy theorem, 80 Convince, 11 AEIO, 38 Corallary, 8 Agreement, 98 Cryptography, 9 Algebra, 7 Culture of proving, 4 Argument, 4, 9 Artificial Intelligence, 118 Assertions, 4, 19, 26 D Atomic, 60, 95 Data Analyst, 3 Axioms, 15, 93 Data Scientist, 3 Davis, M., 119 Decision Support Systems, 3 B Deduction, 4 Biconditional, 29 Deduction rules, 30, 93 Bill Nye, 11 Deduction theorem, 79, 106 Biology, 3 De Morgan, 29, 39 Bound variables, 98 Derivation, 30 Direct method, 43 Disjunction, 26 C Disjunctive Normal Form (DNF), 83 Calculus, 9 Distribution, 39 Cardinality, 44 Domain, 36, 99 Categorical forms, 38 Double Negation, 29 Categorical syllogism, 36 Dysjunctive syllogism, 32 Combinatorics, 22 Commutativity, 39 Complete, 77 E Completeness, 104 Econometrics, 3 Completeness theorem, 81, 82 Emojies, 16 Conjunction, 26, 33 Engineering, 9 Conjunctive Normal Form (CNF), 83 Entry, 59 Connectives, 26, 62 Euclid, 5 Consequences, 69 Euclidean Division Theorem, 48 Consistency, 77, 104 Euclid’s Theorem, 9 Constants, 36, 94 Ex falso quodlibet, 34 © Springer Nature Switzerland AG 2021 131 L. P. Cruz, Theoremus, https://doi.org/10.1007/978-3-030-68375-7 132 Index Existential generalization, 41 Law of Indentity (LOI), 30 Existential instantiation, 41 Law of Non-Contradiction (LNC), 30 Exists, 23 Leibnitz principle, 103 Exportation, 29 Lemma, 7 Logical equivalence, 98 Logic, equivalence, 29 F Logic, higher order, 93 Fallacy, 12, 42 Logic, non-classical, 30 Fallacy, -
Structural Interactions and Absorption of Structural Rules in BI Sequent Calculus
CORE Metadata, citation and similar papers at core.ac.uk Provided by Dagstuhl Research Online Publication Server Structural Interactions and Absorption of Structural Rules in BI Sequent Calculus Ryuta Arisaka National Institute of Informatics, Tokyo, Japan [email protected] Abstract Development of a contraction-free BI sequent calculus, be the contraction-freeness implicit or explicit, has not been successful in the literature. We address this problem by presenting such a sequent system. Our calculus involves no structural rules. It should be an insight into non- formula contraction absorption in other non-classical logics. Contraction absorption in sequent calculus is associated to simpler cut elimination and to efficient proof searches. 1998 ACM Subject Classification F.4.1 Mathematical Logic Keywords and phrases cut-elimination, contraction-free, sequent calculus, proof theory, BI, logic combination Digital Object Identifier 10.4230/LIPIcs.FSCD.2016.8 1 Introduction Propositional BI [22] is a combined logic formed from propositional intuitionistic logic IL and propositional multiplicative fragment of intuitionistic linear logic MILL. Recall that IL, and respectively MILL, have the following logical connectives: {>0, ⊥0, ∧2, ∨2, ⊃2} (Cf. any standard text on the mathematical logic for intuitionistic logic; [16] for instance), and 1 respectively, {10, ⊗2, −◦2} (Cf. [11] for linear logic). A rough intuition about BI is that a BI expression is any expression that is constructable from (P, {>0, ⊥0, ∧2, ∨2, ⊃2, 10, ⊗2, −◦2}). P denotes some set of propositional letters. Following the popular convention in BI, we use the symbol ∗ in place of ⊗, and −∗ in place of −◦. In place of 1, we use ∗>, emphasising some link of its to >, as to be shortly stated. -
What Does It Mean to Say That Logic Is Formal?
WHAT DOES IT MEAN TO SAY THAT LOGIC IS FORMAL? by John Gordon MacFarlane A.B., Philosophy, Harvard College, 1991 M.A., Philosophy, University of Pittsburgh, 1994 M.A., Classics, University of Pittsburgh, 1997 Submitted to the Graduate Faculty of Arts and Sciences in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Pittsburgh 2000 i Robert Brandom, Distinguished Service Professor of Philosophy (Director) Nuel Belnap, Alan Ross Anderson Distinguished Professor of Philosophy (Second Reader) Joseph Camp, Professor of Philosophy Danielle Macbeth, Associate Professor of Philosophy, Haverford College (Outside Reader) Kenneth Manders, Associate Professor of Philosophy Gerald Massey, Distinguished Service Professor of Philosophy ii WHAT DOES IT MEAN TO SAY THAT LOGIC IS FORMAL? John Gordon MacFarlane, PhD University of Pittsburgh, 2000 Much philosophy of logic is shaped, explicitly or implicitly, by the thought that logic is distinctively formal and abstracts from material content. The distinction between formal and material does not appear to coincide with the more familiar contrasts between a pri- ori and empirical, necessary and contingent, analytic and synthetic—indeed, it is often invoked to explain these. Nor, it turns out, can it be explained by appeal to schematic inference patterns, syntactic rules, or grammar. What does it mean, then, to say that logic is distinctively formal? Three things: logic is said to be formal (or “topic-neutral”) (1) in the sense that it provides constitutive norms for thought as such, (2) in the sense that it is indifferent to the particular identities of objects, and (3) in the sense that it abstracts entirely from the semantic content of thought. -
Transpositions Familiar to Artists, This Book Shows How Moves Can Be Made Between Established Positions and Completely New Ground
ORPHEUS New modes of epistemic relationships in artistic research ORPHEUS Research leads to new insights rupturing the existent fabric of knowledge. Situated in the still evolving field of artistic research, this book investigates a fundamental quality of this process. Building on the lessons of deconstruction, artistic research invents new modes of epistemic relationships that include aesthetic dimensions. Under the heading transposition, seventeen artists, musicians, and theorists explain how one thing may turn into another in a spatio- temporal play of identity and difference that has the power to expand into the unknown. By connecting materially concrete positions in a way Transpositions familiar to artists, this book shows how moves can be made between established positions and completely new ground. In doing so, research changes from a process that expands knowledge to one that creatively Aesthetico-Epistemic Operators reinvents it. in Artistic Research Michael Schwab is the founding editor-in-chief of the Journal for Artistic Research (JAR). He is senior researcher of MusicExperiment21 (Orpheus Institute, Ghent) and joint project leader of Transpositions: Artistic Data Exploration (University of Music and Performing Arts Graz; University of Applied Arts Vienna). Transpositions INSTITUTE Edited by Michael Schwab IN ISBN 9789462701410 S TIT U T 9 789462 701410 > E SERIES Transpositions cover final.indd 1 05/07/18 14:38 Transpositions: Aesthetico-Epistemic Operators in Artistic Research TRANSPOSITIONS: AESTHETICO- EPISTEMIC OPERATORS -
MGF1121 Course Outline
MGF1121 Course Outline Introduction to Logic............................................................................................................. (3) (P) Description: This course is a study of both the formal and informal nature of human thought. It includes an examination of informal fallacies, sentential symbolic logic and deductive proofs, categorical propositions, syllogistic arguments and sorites. General Education Learning Outcome: The primary General Education Learning Outcome (GELO) for this course is Quantitative Reasoning, which is to understand and apply mathematical concepts and reasoning, and analyze and interpret various types of data. The GELO will be assessed through targeted questions on either the comprehensive final or an outside assignment. Prerequisite: MFG1100, MAT1033, or MAT1034 with a grade of “C” or better, OR the equivalent. Rationale: In order to function effectively and productively in an increasingly complex democratic society, students must be able to think for themselves to make the best possible decisions in the many and varied situations that will confront them. Knowledge of the basic concepts of logical reasoning, as offered in this course, will give students a firm foundation on which to base their decision-making processes. Students wishing to major in computer science, philosophy, mathematics, engineering and most natural sciences are required to have a working knowledge of symbolic logic and its applications. Impact Assessment: Introduction to Logic provides students with critical insight -
HISTORY of LOGICAL CONSEQUENCE 1. Introduction
HISTORY OF LOGICAL CONSEQUENCE CONRAD ASMUS AND GREG RESTALL 1. Introduction Consequence is a, if not the, core subject matter of logic. Aristotle's study of the syllogism instigated the task of categorising arguments into the logically good and the logically bad; the task remains an essential element of the study of logic. In a logically good argument, the conclusion follows validly from the premises; thus, the study of consequence and the study of validity are the same. In what follows, we will engage with a variety of approaches to consequence. The following neutral framework will enhance the discussion of this wide range of approaches. Consequences are conclusions of valid arguments. Arguments have two parts: a conclusion and a collection of premises. The conclusion and the premises are all entities of the same sort. We will call the conclusion and premises of an argument the argument's components and will refer to anything that can be an argument component as a proposition. The class of propositions is defined func- tionally (they are the entities which play the functional role of argument compo- nents); thus, the label should be interpreted as metaphysically neutral. Given the platonistic baggage often associated with the label \proposition", this may seem a strange choice but the label is already used for the argument components of many of the approaches below (discussions of Aristotlean and Medieval logic are two ex- amples). A consequence relation is a relation between collections of premises and conclusions; a collection of premises is related to a conclusion if and only if the latter is a consequence of the former. -
Propositional Logic
Propositional Logic Fall 2014 Propositional Logic Fall 2014 1 / 30 Introduction Learning Outcomes for this Presentation Learning Outcomes . In this session we will Define the elements of propositional logic: statements and operations, including implication, and its converse, inverse, and negation. Translate English expressions into logical statements. Use both truth tables and derivations to demonstrate equivalence of logical statements. Define common tautologies, contradictions, and equivalences. Recognize and employ modus ponens and modus tollens and other forms of valid argumentation. Propositional Logic Fall 2014 2 / 30 A formal system for expressing truth and falsity. Provides a method of reasoning from given truths (called axioms) to new truths (called propositions or theorems). Logic is the skeleton that supports mathematical truth-making, i.e., proof-reading and proof-writing. Logic is the glue that holds computers and programs together. Introduction Learning Outcomes for this Presentation It's difficult, and possibly counterproductive, to provide a concise description of logic. What is logic? Why is it important? How will we use it in this class? Propositional Logic Fall 2014 3 / 30 Provides a method of reasoning from given truths (called axioms) to new truths (called propositions or theorems). Logic is the skeleton that supports mathematical truth-making, i.e., proof-reading and proof-writing. Logic is the glue that holds computers and programs together. Introduction Learning Outcomes for this Presentation It's difficult, and possibly counterproductive, to provide a concise description of logic. What is logic? A formal system for expressing truth and falsity. Why is it important? How will we use it in this class? Propositional Logic Fall 2014 3 / 30 Logic is the skeleton that supports mathematical truth-making, i.e., proof-reading and proof-writing.