Common Sense for Concurrency and Inconsistency Tolerance Using Direct Logictm

Total Page:16

File Type:pdf, Size:1020Kb

Common Sense for Concurrency and Inconsistency Tolerance Using Direct Logictm Published in ArXiv http://arxiv.org/abs/0812.4852 Common sense for concurrency and inconsistency tolerance using Direct LogicTM Carl Hewitt http://carlhewitt.info This paper is dedicated to John McCarthy. Abstract Transitivity of Argumentation ............................................. 8 Soundness, Faithfulness, and Adequacy .............................. 9 Direct Logic is a minimal fix to classical mathematical logic and statistical probability (fuzzy) inference that meets the requirements Housekeeping ...................................................................... 9 of large-scale Internet applications (including sense making for Self-refutation ...................................................................... 9 natural language) by addressing the following issues: Booleans ............................................................................ 10 inconsistency tolerance, contrapositive inference bug, and direct Two-way Deduction Theorem ........................................... 10 argumentation. Boolean equivalences ........................................................ 11 For example, in classical logic, (not WeekdayAt5PM) can be Splitting ............................................................................. 11 inferred from the premises (not TrafficJam) and Absorption ......................................................................... 12 WeekdayAt5PM infers TrafficJam. However, Direct Logic does Decidability of Inference in Boolean Direct Logic ............ 12 not sanction concluding (not WeekdayAt5PM) because this Inconsistency tolerance facilitates theory development ..... 12 might be an undesirable inference. The same issue affects Reification and Abstraction ............................................... 13 probabilistic (fuzzy) inference. Suppose (as above) the probability Roundtripping.................................................................... 14 of TrafficJam is 0 and the probability of TrafficJam given Diagonal Argument ........................................................... 15 WeekdayAt5PM is 1. Then the probability of WeekdayAt5PM Logical Fixed Point Theorem ............................................ 15 is 0. Varying the probability of TrafficJam doesn‘t change the Liar Paradox ...................................................................... 16 principle involved because the probability of WeekdayAt5PM Absolute Incompleteness Theorem .................................... 16 will always be less than or equal to the probability of TrafficJam. Absolute Inconsistency Theorem ...................................... 18 Also, in the Tarskian framework of classical mathematical Logical necessity of inconsistency .................................... 18 logic, expressing argumentation is indirect and awkward. For Don‘t believe every argument ........................................... 19 example a classical theory cannot directly represent its own Contributions of Direct Logic............................................ 20 inference relationship and consequently cannot directly represent Concurrency is the Norm ........................................................... 20 its rules of inference. Nondeterministic computation .......................................... 20 Gödel and Rosser proved that nontrivial mathematical theories Dijkstra argued against unbounded nondeterminism ......... 22 are incomplete using the assumption of consistency of Peano Arguments for incorporating unbounded nondeterminism 22 Arithmetic. This paper proves a generalization of the Bounded nondeterminism in CSP ...................................... 23 Gödel/Rosser incompleteness theorem: theories in Direct Logic Unbounded nondeterminism in ActorScript ...................... 23 are self-provably incomplete using inconsistency tolerant Bounded Nondeterminism of Direct Logic ....................... 24 reasoning. However, there is a further consequence: Since the Computation is not subsumed by logical deduction .......... 24 Gödelian paradoxical proposition is self-provable, theories in Arrival order indeterminacy .............................................. 25 Direct Logic are self-provably inconsistent! Computational Representation Theorem ........................... 26 This paper also proves that Logic Programming is not Scientific Community Metaphor ....................................... 26 computationally universal in that there are concurrent programs for The admission of logical powerlessness ..................................... 27 which there is no equivalent in Direct Logic. Consequently the Logic Programming paradigm is strictly less general than the Work to be done ......................................................................... 27 Procedural Embedding of Knowledge paradigm. Thus the paper Conclusion ................................................................................. 28 Acknowledgements .................................................................... 30 makes use of a concurrent programming language ActorScript™ Bibliography............................................................................... 30 (suitable for expressing massive concurrency in large software Appendix. Additional Principles of Direct Logic ...................... 39 systems) that is defined meta-circularly in terms of itself. Equality ............................................................................. 39 Nondeterministic λ-calculus .............................................. 39 Contents Set Theory ......................................................................... 39 Introduction .................................................................................. 2 Noncompactness ................................................................ 40 Inconsistency is the Norm in Large Software Systems ................. 3 Direct Logic is based on XML .......................................... 40 Consistency has been the bedrock of mathematics ....................... 4 Limitations of Classical Mathematical Logic ............................... 4 Inconsistency Tolerance ....................................................... 4 Contrapositive Inference Bug .............................................. 5 Direct Argumentation .......................................................... 5 Direct Logic .................................................................................. 6 In the argumentation lies the knowledge .............................. 7 Syntax of Direct Logic ......................................................... 7 March 21, 2010 Page 1 of 41 Introduction software systems. The Tarskian framework of “But if the general truths of Logic are of such a hierarchically stratified theories [Tarski and nature that when presented to the mind they at Vaught 1957] is unsuitable for Software once command assent, wherein consists the Engineering. difficulty of constructing the Science of Logic?” 3. Concurrency is the norm. Logic Programs based [Boole 1853 pg 3] on the inference rules of mathematical logic are not computationally universal because the Our lives are changing: soon we will always be online.1 message order arrival indeterminate computations Because of this change, common sense must adapt to of concurrent programs in open systems cannot be interacting effectively with large software systems just deduced using mathematical logic from sentences as we have previously adapted common sense to new about pre-existing conditions. The fact that technology. Logic should provide foundational computation is not reducible to logical inference principles for common sense reasoning about large has important practical consequences. For software systems. John McCarthy is the principal founding Logicist of example, reasoning used in Semantic Integration Artificial Intelligence although he might decline the cannot be implemented using logical inference title.2 Simply put the Logicist Programme is to express [Hewitt 2008a]. knowledge in logical propositions and to derive information solely by classical logic inferences. As these inconsistent concurrent systems become a Building on the work of many predecessors [Hewitt major part of the environment in which we live, it 2008d], the Logicists Bob Kowalski and Pat Hayes extended the Logicist Programme by attempting to becomes an issue of common sense how to use them encompass programming by using classical effectively. This paper suggests some principles and mathematical logic as a programming language. practices. This paper discusses three challenges to the Logicist The plan of this paper is as follows: Programme: 1. Solve the above problems with First Order 1. Inconsistency is the norm and consequently Logic by introducing a new system called classical logic infers too much, i.e., anything and Direct Logic3 for large software systems. everything. The experience (e.g. Microsoft, the 2. Demonstrate that no Logicist system is US government, IBM, etc.) is that inconsistencies computationally universal (not even Direct (e.g. that can be derived from implementations, Logic even though it is evidently more documentation, and use cases) in large software powerful than any logic system that has been systems are pervasive and despite enormous previously developed). I.e., there are expense have not been eliminated. concurrent programs for which there is no Standard mathematical logic has the problem equivalent Logic Program. that from inconsistent information, any conclusion 3. Discuss the implications of the above results
Recommended publications
  • Poznań Studies in the Philosophy of the Sciences and the Humanities), 21Pp
    Forthcoming in: Uncovering Facts and Values, ed. A. Kuzniar and J. Odrowąż-Sypniewska (Poznań Studies in the Philosophy of the Sciences and the Humanities), 21pp. Abstract Alfred Tarski seems to endorse a partial conception of truth, the T-schema, which he believes might be clarified by the application of empirical methods, specifically citing the experimental results of Arne Næss (1938a). The aim of this paper is to argue that Næss’ empirical work confirmed Tarski’s semantic conception of truth, among others. In the first part, I lay out the case for believing that Tarski’s T-schema, while not the formal and generalizable Convention-T, provides a partial account of truth that may be buttressed by an examination of the ordinary person’s views of truth. Then, I address a concern raised by Tarski’s contemporaries who saw Næss’ results as refuting Tarski’s semantic conception. Following that, I summarize Næss’ results. Finally, I will contend with a few objections that suggest a strict interpretation of Næss’ results might recommend an overturning of Tarski’s theory. Keywords: truth, Alfred Tarski, Arne Næss, Vienna Circle, experimental philosophy Joseph Ulatowski ORDINARY TRUTH IN TARSKI AND NÆSS 1. Introduction Many of Alfred Tarski's better known papers on truth (e.g. 1944; 1983b), logical consequence (1983c), semantic concepts in general (1983a), or definability (1948) identify two conditions that successful definitions of “truth,” “logical consequence,” or “definition” require: formal correctness and material (or intuitive) adequacy.1 The first condition Tarski calls “formal correctness” because a definition of truth (for a given formal language) is formally correct when it is constructed in a manner that allows us to avoid both circular definition and semantic paradoxes.
    [Show full text]
  • Alfred Tarski His:Bio:Tar: Sec Alfred Tarski Was Born on January 14, 1901 in Warsaw, Poland (Then Part of the Russian Empire)
    bio.1 Alfred Tarski his:bio:tar: sec Alfred Tarski was born on January 14, 1901 in Warsaw, Poland (then part of the Russian Empire). Described as \Napoleonic," Tarski was boisterous, talkative, and intense. His energy was often reflected in his lectures|he once set fire to a wastebasket while disposing of a cigarette during a lecture, and was forbidden from lecturing in that building again. Tarski had a thirst for knowledge from a young age. Although later in life he would tell students that he stud- ied logic because it was the only class in which he got a B, his high school records show that he got A's across the board| even in logic. He studied at the Univer- sity of Warsaw from 1918 to 1924. Tarski Figure 1: Alfred Tarski first intended to study biology, but be- came interested in mathematics, philosophy, and logic, as the university was the center of the Warsaw School of Logic and Philosophy. Tarski earned his doctorate in 1924 under the supervision of Stanislaw Le´sniewski. Before emigrating to the United States in 1939, Tarski completed some of his most important work while working as a secondary school teacher in Warsaw. His work on logical consequence and logical truth were written during this time. In 1939, Tarski was visiting the United States for a lecture tour. During his visit, Germany invaded Poland, and because of his Jewish heritage, Tarski could not return. His wife and children remained in Poland until the end of the war, but were then able to emigrate to the United States as well.
    [Show full text]
  • Biology, Bioinformatics, Bioengineering, Biophysics, Biostatistics, Neuroscience, Medicine, Ophthalmology, and Dentistry
    Biology, Bioinformatics, Bioengineering, Biophysics, Biostatistics, Neuroscience, Medicine, Ophthalmology, and Dentistry This section contains links to textbooks, books, and articles in digital libraries of several publishers (Springer, Elsevier, Wiley, etc.). Most links will work without login on any campus (or remotely using the institution’s VPN) where the institution (company) subscribes to those digital libraries. For De Gruyter and the associated university presses (Chicago, Columbia, Harvard, Princeton, Yale, etc.) you may have to go through your institution’s library portal first. A red title indicates an excellent item, and a blue title indicates a very good (often introductory) item. A purple year of publication is a warning sign. Titles of Open Access (free access) items are colored green. The library is being converted to conform to the university virtual library model that I developed. This section of the library was updated on 06 September 2021. Professor Joseph Vaisman Computer Science and Engineering Department NYU Tandon School of Engineering This section (and the library as a whole) is a free resource published under Attribution-NonCommercial-NoDerivatives 4.0 International license: You can share – copy and redistribute the material in any medium or format under the following terms: Attribution, NonCommercial, and NoDerivatives. https://creativecommons.org/licenses/by-nc-nd/4.0/ Copyright 2021 Joseph Vaisman Table of Contents Food for Thought Biographies Biology Books Articles Web John Tyler Bonner Morphogenesis Evolution
    [Show full text]
  • Alfred Tarski and a Watershed Meeting in Logic: Cornell, 1957 Solomon Feferman1
    Alfred Tarski and a watershed meeting in logic: Cornell, 1957 Solomon Feferman1 For Jan Wolenski, on the occasion of his 60th birthday2 In the summer of 1957 at Cornell University the first of a cavalcade of large-scale meetings partially or completely devoted to logic took place--the five-week long Summer Institute for Symbolic Logic. That meeting turned out to be a watershed event in the development of logic: it was unique in bringing together for such an extended period researchers at every level in all parts of the subject, and the synergetic connections established there would thenceforth change the face of mathematical logic both qualitatively and quantitatively. Prior to the Cornell meeting there had been nothing remotely like it for logicians. Previously, with the growing importance in the twentieth century of their subject both in mathematics and philosophy, it had been natural for many of the broadly representative meetings of mathematicians and of philosophers to include lectures by logicians or even have special sections devoted to logic. Only with the establishment of the Association for Symbolic Logic in 1936 did logicians begin to meet regularly by themselves, but until the 1950s these occasions were usually relatively short in duration, never more than a day or two. Alfred Tarski was one of the principal organizers of the Cornell institute and of some of the major meetings to follow on its heels. Before the outbreak of World War II, outside of Poland Tarski had primarily been involved in several Unity of Science Congresses, including the first, in Paris in 1935, and the fifth, at Harvard in September, 1939.
    [Show full text]
  • Alfred Tarski, Friend and Daemon Benjamin Wells
    Alfred Tarski, Friend and Daemon Benjamin Wells Engaging Tarski When I had passed doctoral exams in 1963 and Alfred Tarski’s name stayed with me after I read sounded Bob Vaught and John Addison on their about the Banach-Tarski paradox in [3] during availability for supervising my research, both said high school. I then discovered logic (and Tarski’s that the department recognized me as Tarski’s definition of truth) in the last year of college but student. News to me, despite the second opinion. still considered myself to be a topologist, not from So I called him to learn more about my fate. He love but from intimate contact in four courses as acknowledged the claim, “Good,” and invited me an undergraduate. So before arriving at UC Berke- for the first serious nighttime talk. ley in fall 1962 for graduate work, I thought only Source of the Title vaguely about taking a course with him. But my inclinations were shifting: dutifully registering Throughout cooperation and separation, Alfred for fall classes in topological groups and algebraic and I were friends, cordial and personable, but geometry, I added metamathematics and Tarski’s not really personal. He also established another general algebraic systems. The next fall, Tarski of- role, that of daemon in the sense of [4]: a leonine fered set theory. These two courses were my only externalized conscience, at least. The scope of Tarski lectures, but there were numerous seminars. this conscience was foremost mathematical, with a hope for political, a goal of cultural, a reserva- Visitors to Berkeley constantly identified Tarski tion on philosophical and moral, and a hint of with whatever topic occupied him so fruitfully and spiritual.
    [Show full text]
  • Submission Data for 2020-2021 CORE Conference Ranking Process International Conference on Mathematical Foundations of Programming Semantics
    Submission Data for 2020-2021 CORE conference Ranking process International Conference on Mathematical Foundations of Programming Semantics Bartek Klin Conference Details Conference Title: International Conference on Mathematical Foundations of Programming Semantics Acronym : MFPS Requested Rank Rank: B Primarily CS Is this conference primarily a CS venue: True Location Not commonly held within a single country, set of countries, or region. DBLP Link DBLP url: https://dblp.org/db/conf/mfps/index.html FoR Codes For1: 4613 For2: SELECT For3: SELECT Recent Years Proceedings Publishing Style Proceedings Publishing: journal Link to most recent proceedings: https://www.sciencedirect.com/journal/electronic-notes-in-theoretical-computer-science/vol/347/suppl/C Further details: Proceedings published as volumes of Electronic Notes in Theoretical Computer Science, published by Elsevier. Most Recent Years Most Recent Year Year: 2019 URL: https://www.coalg.org/calco-mfps-2019/mfps/ Location: London, UK Papers submitted: 20 Papers published: 15 Acceptance rate: 75 Source for numbers: https://www.coalg.org/calco-mfps-2019/mfps/mfps-xxxv-list-of-accepted-papers/ General Chairs 1 No General Chairs Program Chairs Name: Barbara KÃűnig Affiliation: University of Duisburg-Essen, Germany Gender: F H Index: 27 GScholar url: https://scholar.google.com/citations?user=bcM7IuEAAAAJ DBLP url: Second Most Recent Year Year: 2018 URL: https://www.mathstat.dal.ca/mfps2018/ Location: Halifax, Canada Papers submitted: 24 Papers published: 16 Acceptance rate: 67 Source for
    [Show full text]
  • Part I Background
    Cambridge University Press 978-0-521-19746-5 - Transitions and Trees: An Introduction to Structural Operational Semantics Hans Huttel Excerpt More information PART I BACKGROUND © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-19746-5 - Transitions and Trees: An Introduction to Structural Operational Semantics Hans Huttel Excerpt More information 1 A question of semantics The goal of this chapter is to give the reader a glimpse of the applications and problem areas that have motivated and to this day continue to inspire research in the important area of computer science known as programming language semantics. 1.1 Semantics is the study of meaning Programming language semantics is the study of mathematical models of and methods for describing and reasoning about the behaviour of programs. The word semantics has Greek roots1 and was first used in linguistics. Here, one distinguishes among syntax, the study of the structure of lan- guages, semantics, the study of meaning, and pragmatics, the study of the use of language. In computer science we make a similar distinction between syntax and se- mantics. The languages that we are interested in are programming languages in a very general sense. The ‘meaning’ of a program is its behaviour, and for this reason programming language semantics is the part of programming language theory devoted to the study of program behaviour. Programming language semantics is concerned only with purely internal aspects of program behaviour, namely what happens within a running pro- gram. Program semantics does not claim to be able to address other aspects of program behaviour – e.g.
    [Show full text]
  • Estonian Academy of Sciences Yearbook 2018 XXIV
    Facta non solum verba ESTONIAN ACADEMY OF SCIENCES YEARBOOK FACTS AND FIGURES ANNALES ACADEMIAE SCIENTIARUM ESTONICAE XXIV (51) 2018 TALLINN 2019 This book was compiled by: Jaak Järv (editor-in-chief) Editorial team: Siiri Jakobson, Ebe Pilt, Marika Pärn, Tiina Rahkama, Ülle Raud, Ülle Sirk Translator: Kaija Viitpoom Layout: Erje Hakman Photos: Annika Haas p. 30, 31, 48, Reti Kokk p. 12, 41, 42, 45, 46, 47, 49, 52, 53, Janis Salins p. 33. The rest of the photos are from the archive of the Academy. Thanks to all authos for their contributions: Jaak Aaviksoo, Agnes Aljas, Madis Arukask, Villem Aruoja, Toomas Asser, Jüri Engelbrecht, Arvi Hamburg, Sirje Helme, Marin Jänes, Jelena Kallas, Marko Kass, Meelis Kitsing, Mati Koppel, Kerri Kotta, Urmas Kõljalg, Jakob Kübarsepp, Maris Laan, Marju Luts-Sootak, Märt Läänemets, Olga Mazina, Killu Mei, Andres Metspalu, Leo Mõtus, Peeter Müürsepp, Ülo Niine, Jüri Plado, Katre Pärn, Anu Reinart, Kaido Reivelt, Andrus Ristkok, Ave Soeorg, Tarmo Soomere, Külliki Steinberg, Evelin Tamm, Urmas Tartes, Jaana Tõnisson, Marja Unt, Tiit Vaasma, Rein Vaikmäe, Urmas Varblane, Eero Vasar Printed in Priting House Paar ISSN 1406-1503 (printed version) © EESTI TEADUSTE AKADEEMIA ISSN 2674-2446 (web version) CONTENTS FOREWORD ...........................................................................................................................................5 CHRONICLE 2018 ..................................................................................................................................7 MEMBERSHIP
    [Show full text]
  • From Semantics to Dialectometry
    Contents Preface ix Subjunctions as discourse markers? Stancetaking on the topic ‘insubordi- nate subordination’ Werner Abraham Two-layer networks, non-linear separation, and human learning R. Harald Baayen & Peter Hendrix John’s car repaired. Variation in the position of past participles in the ver- bal cluster in Duth Sjef Barbiers, Hans Bennis & Lote Dros-Hendriks Perception of word stress Leonor van der Bij, Dicky Gilbers & Wolfgang Kehrein Empirical evidence for discourse markers at the lexical level Jelke Bloem Verb phrase ellipsis and sloppy identity: a corpus-based investigation Johan Bos 7 7 Om-omission Gosse Bouma 8 Neural semantics Harm Brouwer, Mathew W. Crocker & Noortje J. Venhuizen 7 9 Liberating Dialectology J. K. Chambers 8 0 A new library for construction of automata Jan Daciuk 9 Generating English paraphrases from logic Dan Flickinger 99 Contents Use and possible improvement of UNESCO’s Atlas of the World’s Lan- guages in Danger Tjeerd de Graaf 09 Assessing smoothing parameters in dialectometry Jack Grieve 9 Finding dialect areas by means of bootstrap clustering Wilbert Heeringa 7 An acoustic analysis of English vowels produced by speakers of seven dif- ferent native-language bakgrounds Vincent J. van Heuven & Charlote S. Gooskens 7 Impersonal passives in German: some corpus evidence Erhard Hinrichs 9 7 In Hülle und Fülle – quantiication at a distance in German, Duth and English Jack Hoeksema 9 8 he interpretation of Duth direct speeh reports by Frisian-Duth bilin- guals Franziska Köder, J. W. van der Meer & Jennifer Spenader 7 9 Mining for parsing failures Daniël de Kok & Gertjan van Noord 8 0 Looking for meaning in names Stasinos Konstantopoulos 9 Second thoughts about the Chomskyan revolution Jan Koster 99 Good maps William A.
    [Show full text]
  • Chapter 10: Symbolic Trails and Formal Proofs of Validity, Part 2
    Essential Logic Ronald C. Pine CHAPTER 10: SYMBOLIC TRAILS AND FORMAL PROOFS OF VALIDITY, PART 2 Introduction In the previous chapter there were many frustrating signs that something was wrong with our formal proof method that relied on only nine elementary rules of validity. Very simple, intuitive valid arguments could not be shown to be valid. For instance, the following intuitively valid arguments cannot be shown to be valid using only the nine rules. Somalia and Iran are both foreign policy risks. Therefore, Iran is a foreign policy risk. S I / I Either Obama or McCain was President of the United States in 2009.1 McCain was not President in 2010. So, Obama was President of the United States in 2010. (O v C) ~(O C) ~C / O If the computer networking system works, then Johnson and Kaneshiro will both be connected to the home office. Therefore, if the networking system works, Johnson will be connected to the home office. N (J K) / N J Either the Start II treaty is ratified or this landmark treaty will not be worth the paper it is written on. Therefore, if the Start II treaty is not ratified, this landmark treaty will not be worth the paper it is written on. R v ~W / ~R ~W 1 This or statement is obviously exclusive, so note the translation. 427 If the light is on, then the light switch must be on. So, if the light switch in not on, then the light is not on. L S / ~S ~L Thus, the nine elementary rules of validity covered in the previous chapter must be only part of a complete system for constructing formal proofs of validity.
    [Show full text]
  • The Development of Mathematical Logic from Russell to Tarski: 1900–1935
    The Development of Mathematical Logic from Russell to Tarski: 1900–1935 Paolo Mancosu Richard Zach Calixto Badesa The Development of Mathematical Logic from Russell to Tarski: 1900–1935 Paolo Mancosu (University of California, Berkeley) Richard Zach (University of Calgary) Calixto Badesa (Universitat de Barcelona) Final Draft—May 2004 To appear in: Leila Haaparanta, ed., The Development of Modern Logic. New York and Oxford: Oxford University Press, 2004 Contents Contents i Introduction 1 1 Itinerary I: Metatheoretical Properties of Axiomatic Systems 3 1.1 Introduction . 3 1.2 Peano’s school on the logical structure of theories . 4 1.3 Hilbert on axiomatization . 8 1.4 Completeness and categoricity in the work of Veblen and Huntington . 10 1.5 Truth in a structure . 12 2 Itinerary II: Bertrand Russell’s Mathematical Logic 15 2.1 From the Paris congress to the Principles of Mathematics 1900–1903 . 15 2.2 Russell and Poincar´e on predicativity . 19 2.3 On Denoting . 21 2.4 Russell’s ramified type theory . 22 2.5 The logic of Principia ......................... 25 2.6 Further developments . 26 3 Itinerary III: Zermelo’s Axiomatization of Set Theory and Re- lated Foundational Issues 29 3.1 The debate on the axiom of choice . 29 3.2 Zermelo’s axiomatization of set theory . 32 3.3 The discussion on the notion of “definit” . 35 3.4 Metatheoretical studies of Zermelo’s axiomatization . 38 4 Itinerary IV: The Theory of Relatives and Lowenheim’s¨ Theorem 41 4.1 Theory of relatives and model theory . 41 4.2 The logic of relatives .
    [Show full text]
  • The Bounds of Logic Part 2
    To Ik a Logical Term 37 Chapter 3 To Be a Logical Ternl logic; at the same time, the principles developed by Tarski in the 1930s are still the principles underlying logic in the early 1990s. My interest in Tarski is, Ileedless to say, not historical. I am interested in the modern conception of logic as it evolved out of Tarski's early work in semantics. The Task of Logic and the Origins of Semantics In "The Concept of Truth in Formalized Languages" (1933). "On the Concept of Logical Consequence" (1936a), and "The Establishment of Scientific Semantics" (1936b), Tarski describes the semantic project as comprising two tasks: Since the discovery ofgeneralized quantifiers by A. Mostowski (1957), the I. Definition of the gelleral concept of truth for formalized languages question "What is a logical term?" has taken on a significance it did not 2. Dclinition of the logical concepts of truth, consequence, consistency. have before. Are Mostowski's quantifiers Hlogical" quantifiers'! Do they etc. , differ in any significant way from the standard existential and universal The main purpose of (I) is to secure meta logic against semantic para­ I quantifiers? What logical operators, if any, has he left out? What. ill doxes. Tarski worried lest the ullcritical usc of semantic concepts prior to I all, are the first- and second-level predicates and rcla tions that can be his work concealed an inconsistency: a hidden fallacy would undermine construed as logical? the cntire venturc. Be therefore sought precise, materially, as well as One way in which I do not want to ask the question is, "What, ill Ihe formally, correct definitions of "truth" and related notions to serve as a I nature ofthings, makes a property or a relation logical'!" On this road lie hedge against paradox.
    [Show full text]