Modeling of Traffic on Fairways Optimizing the Allocation of Traffic

Total Page:16

File Type:pdf, Size:1020Kb

Modeling of Traffic on Fairways Optimizing the Allocation of Traffic MODELING OF TRAFFIC ON FAIRWAYS OPTIMIZING THE ALLOCATION OF TRAFFIC by Quirine de Kloet in partial fulfillment of the requirements for the degree of Master of Science in Applied Mathematics at the Delft University of Technology, to be defended publicly on 9th of December 2016. Student number: 4148517 Specialisation: Computational Science and Engineering Faculty: EEMCS An electronic version of this thesis is available at http://repository.tudelft.nl/. PREFACE As the last element of my masters in Applied Mathematics I have completed my graduation project at Rijk- swaterstaat. This is the executive agency of the Ministry of Infrastructure and the Environment; this agency works on keeping the Netherlands safe, habitable and accessible. In order to reach this goal Rijkswaterstaat manages and develops the main road network, the main fairway network and the main water system in the Netherlands.[1] While there has been a lot of research into traffic on roads, traffic on fairways has been largely neglected. Within the Netherlands there are 3431 kilometers of inland fairways while there are only 3058 kilometers of highway. This is not even taking into account the 3523 kilometers of maritime routes on the North Sea, Wadden Sea and IJselmeer.[1] When one six barge convoy is used (a ship pushing six barges) this saves 660 trucks traveling on the road. Optimizing the use of fairways can diminish the traffic jams on roads. In order to give the fairways their much deserved research I have dedicated my graduation project to investigating the traffic on fairways. After a broad investigation of fairways and fairway traffic the subject of my thesis was specified to modeling fairway traffic. I am glad to have been able to do my graduation project investigating such an interesting topic. I would like to thank my daily supervisor Krystyna Robaczewska for all the help and guidance she has given me during this project. I would also like to thank my academic supervisors Arnold Heemink and Jacob van der Woude for making it possible to complete my graduation project at Rijkswaterstaat. My gratitude goes to everyone at Rijkswaterstaat who helped me improve my knowledge about fairways, the traffic on fairways and who were always open to discus my project. Without these people it would not have been possible to determine a model that comes this close to the situation observed in reality. Quirine de Kloet, December 2, 2016 Academic Supervisors: Prof.dr.ir. A.W. Heemink Dr. J.W. van der Woude Company Supervisor: Drs. K. Robaczewska Thesis committee: Prof.dr.ir. A.W. Heemink TU Delft, EEMCS (DIAM) Dr. J.W. van der Woude TU Delft, EEMCS (DIAM) Dr. M. Snelder TU Delft, CEG (Transport & Planning) Drs. K. Robaczewska Ministerie I&M, Rijkswaterstaat (CIV) Ir. L. Kuiters Ministerie I&M, Rijkswaterstaat (WVL) iii ABSTRACT There has been a lot of research done into traffic on roads and multiple traffic models have been set up for this type of traffic. A subject that has been largely neglected is the traffic on fairways. The research goal set for my graduation project is to define a model that can simulate the traffic on fairways and use this model to optimize the allocation of this traffic. To achieve this the existing traffic models have been investigated. This way a model was found that could be extended to fairway traffic, the mesoscopic model. Within the mesoscopic model there is a possibility to incorporate a more detailed microscopic model for the objects (locks and bridges). Several microscopic models were defined for the locks and bridges. Optimization models were set up based on previous work done into lock modeling. However, optimization models cannot include all rules used in reality; this makes heuristic models more efficient. For bridges the optimization model can be defined starting from the lock optimization. This optimization model can determine what the best time to open a bridge is. In the case of bridges the situation decides which model is best to use. When no information is available, the best result comes from an optimization model. Some bridges have fixed opening times; simply using this schedule gives the same result in less time. The mesoscopic model was implemented on a practical case in Zeeland. Using this model it is possible to gain insight into several elements: • Give a value to the efficient use of objects when traffic is spread over the day and night equally. • Effect of different situations that can occur when maintenance reduces the capacity of the network. • Effect of stimulating skippers to travel at a time when there is less traffic, optimizing the allocation of traffic. v CONTENTS Preface iii Abstract v List of Figures xi List of Tables xiii I Introduction 1 1 Introduction 3 1.1 Motivation of the project.....................................3 1.2 Research objective........................................4 1.3 Structure.............................................4 2 Previous work 5 2.1 Traffic models...........................................5 2.1.1 Microscopic models....................................5 2.1.2 Macroscopic models....................................5 2.1.3 Mesoscopic model for road traffic.............................5 2.1.4 Railway traffic.......................................6 2.2 Lock scheduling process.....................................6 2.2.1 Double optimization....................................6 2.3 SIVAK...............................................7 2.4 IVS90...............................................7 2.5 VCM Traffic-planner.......................................7 2.5.1 Lock scheduling method..................................7 2.5.2 Estimating traffic......................................7 2.5.3 Travel times........................................8 2.6 Usability in this project......................................8 2.6.1 Traffic models.......................................8 2.6.2 Lock scheduling process..................................8 2.6.3 VCM traffic-planner....................................8 2.6.4 Research objective.....................................9 II Model design 11 3 Modeling aspects 13 3.1 Fairway modeling......................................... 13 3.2 Ship information......................................... 14 3.3 Mesoscopic model........................................ 14 3.3.1 Extending the mesoscopic model to fairway traffic..................... 15 4 Object modeling 17 4.1 Different kinds of objects..................................... 17 4.1.1 Locks............................................ 17 4.1.2 Bridges........................................... 18 4.2 Lock model............................................ 18 4.2.1 Optimization model.................................... 19 4.2.2 Double optimization model................................ 20 4.2.3 Heuristic model - Rules.................................. 20 4.2.4 Placement heuristic.................................... 22 vii viii CONTENTS 4.2.5 Dangerous cargo...................................... 24 4.2.6 Comparison of the models................................. 25 4.2.7 Checks added for additional elements........................... 26 4.3 Bridge model........................................... 27 4.3.1 Optimization model.................................... 27 4.3.2 Schedule model...................................... 27 4.3.3 Comparison of the models................................. 28 5 Routing 29 5.1 Costs at nodes........................................... 29 5.2 Time dependent routing..................................... 30 5.3 Rerouting............................................. 30 5.4 Routing based on reliability.................................... 31 6 Simulation 33 6.1 Step 1: Pre-processing...................................... 33 6.2 Step 2: Simulation......................................... 34 6.2.1 Short edges........................................ 36 6.3 Step 3: Analysis.......................................... 38 6.4 Step 4: Changing routes or departure time............................ 38 6.5 What information to use and to save............................... 39 III Practical case 41 7 Practical case - Zeeland 43 7.1 Locks............................................... 44 7.1.1 Sub-chambers in locks................................... 45 7.2 Bridges.............................................. 45 7.3 Expected arrival time....................................... 46 IV Results 49 8 Basis simulation 51 8.1 Sub-chambers.......................................... 51 8.2 Bridges at locks.......................................... 52 8.3 Dangerous cargo......................................... 53 8.4 Increasing the amount of ships.................................. 53 8.4.1 Capacity usage....................................... 55 9 Maintenance at Kreekrak 57 9.1 Chamber closed completely................................... 57 9.2 Short maintenance........................................ 59 9.3 Different maintenance options.................................. 63 10 Optimizing the allocation of ships 65 10.1 Basis situation.......................................... 65 10.2 Increased amount of ships.................................... 66 10.3 Maintenance at Kreekrak..................................... 67 10.4 Increasing delays......................................... 67 11 Conclusion 69 11.1 Capacity usage of locks...................................... 69 11.2 Kreekrak............................................. 70 11.2.1 Chamber closed the whole day............................... 70 11.2.2 Short maintenance....................................
Recommended publications
  • The Ecology O F the Estuaries of Rhine, Meuse and Scheldt in The
    TOPICS IN MARINE BIOLOGY. ROS. J. D. (ED.). SCIENT. MAR . 53(2-3): 457-463 1989 The ecology of the estuaries of Rhine, Meuse and Scheldt in the Netherlands* CARLO HEIP Delta Institute for Hydrobiological Research. Yerseke. The Netherlands SUMMARY: Three rivers, the Rhine, the Meuse and the Scheldt enter the North Sea close to each other in the Netherlands, where they form the so-called delta region. This area has been under constant human influence since the Middle Ages, but especially after a catastrophic flood in 1953, when very important coastal engineering projects changed the estuarine character of the area drastically. Freshwater, brackish water and marine lakes were formed and in one of the sea arms, the Eastern Scheldt, a storm surge barrier was constructed. Only the Western Scheldt remained a true estuary. The consecutive changes in this area have been extensively monitored and an important research effort was devoted to evaluate their ecological consequences. A summary and synthesis of some of these results are presented. In particular, the stagnant marine lake Grevelingen and the consequences of the storm surge barrier in the Eastern Scheldt have received much attention. In lake Grevelingen the principal aim of the study was to develop a nitrogen model. After the lake was formed the residence time of the water increased from a few days to several years. Primary production increased and the sediments were redistributed but the primary consumers suchs as the blue mussel and cockles survived. A remarkable increase ofZostera marina beds and the snail Nassarius reticulatus was observed. The storm surge barrier in the Eastern Scheldt was just finished in 1987.
    [Show full text]
  • Bij De Rijksstructuurvisie Grevelingen En Volkerak-Zoommeer Deel 1, Sep
    Natuureffectenstudie bij de Rijksstructuurvisie Grevelingen en Volkerak-Zoommeer Deel I © https://beeldbank.rws.nl, Rijkswaterstaat, Ruimte voor de Rivier, Ruben Smit © https://beeldbank.rws.nl, Rijkswaterstaat, Ruimte voor de Rivier, Natuureffectenstudie bij de Rijksstructuurvisie Grevelingen en Volkerak-Zoommeer Deel I beschrijving effecten Inhoud 1 Inleiding 4 1.1 Aanleiding 1.2 Alternatieven voor de waterhuishouding: effecten in beeld via de m.e.r. 1.3 Achtergrond en visie bij de Natuureffectenstudie 1.4 Leeswijzer 2 Waarom systeemverandering 6 2.1 De huidige situatie in de deelsystemen Volkerak-Zoommeer en de Grevelingen 2.2 De problemen 2.3 De kwaliteit van het watersysteem is leidend bij de beoogde systeemverandering 2.4 Bronnen 3 Huidige situatie van de natuur in het Volkerak- Zoommeer en de Grevelingen 13 3.1 Volkerak en Zoommeer © https://beeldbank.rws.nl, Rijkswaterstaat 3.2 De Grevelingen 4 Alternatieven waterhuishouding De Grevelingen en Volkerak-Zoommeer 36 4.1 Zoet of zout, wel of geen getij, wel of geen aanvullende waterberging 4.2 Alternatieven waterhuishouding Volkerak-Zoommeer en De Grevelingen in Notitie reikwijdte en detailniveau 4.3 Eerste beoordeling alternatieven, varianten en opties 4.5 Alternatieven en opties onderzocht op gevolgen voor natuur, milieu en andere relevante thema’s 4.6 Alternatief A - referentie: geen getij, beperkte waterberging en zoet Volkerak-Zoommeer 4.7 Alternatief B: Volkerak-Zoommeer zout en getij 4.8 Alternatief C: getij op De Grevelingen via Noordzee 4.9 Alternatief D: Volkerak-Zoommeer
    [Show full text]
  • Onderschrijvingsdocument Krammer-Volkerak
    Bijlage bij de brief aan de minister van Infrastructuur en Milieu, 23 april 2014 Onderschrijving bekken Krammer-Volkerak van het Regionaal Bod Zuidwestelijke Delta In 2012 is in breed verband geconstateerd welke maatregelen bijdragen aan een substantiële verbetering van de waterkwaliteit van het Grevelingen/Volkerak- Zoommeer. De meest voor de hand liggende oplossingen zijn zout water en getij toelaten in het Volkerak-Zoommeer en het introduceren van beperkt getij in de Grevelingen. Afspraak is dat het Rijk met het oog op de langere termijn doelen (2035) een structuurvisie opstelt, waarin betekenisvolle en concrete besluiten zouden worden genomen. Zo ontstaat planologische helderheid voor partijen die in het gebied actief zijn. In nauwe samenhang hiermee stellen de provincies Zuid-Holland, Zeeland en Noord-Brabant gebiedsontwikkelingsplannen op die gericht zijn op een kortere termijn (2020-2025). De bestuurlijke intentie van de afspraak is dat, op basis van ‘gelijk oversteken’, een win-win situatie tot stand komt. Regionale partijen leveren vanuit de waardecreatie binnen de gebiedsontwikkeling een bijdrage aan oplossingen die de waterkwaliteit in het gebied verbeteren. Het Rijk realiseert daarmee tegen lagere investeringen zijn lange termijn doelstellingen. Bovendien ontstaat in de Zuidwestelijke Delta nieuwe economische dynamiek en niet in de laatste plaats draagvlak voor die lange termijn doelstellingen. Het op 23 april 2014 te voeren overleg met de minister van Infrastructuur en Milieu is een belangrijk moment om te bezien in hoeverre de in 2012 uitgesproken intenties over en weer gestand kunnen worden gedaan. 1. Cofinanciering Zoetwatervoorziening Zowel Rijk als regionale partners onderschrijven het principe dat waterveiligheid, economie en ecologie nauw met elkaar samenhangen.
    [Show full text]
  • Half a Century of Morphological Change in the Haringvliet and Grevelingen Ebb-Tidal Deltas (SW Netherlands) - Impacts of Large-Scale Engineering 1964-2015
    Half a century of morphological change in the Haringvliet and Grevelingen ebb-tidal deltas (SW Netherlands) - Impacts of large-scale engineering 1964-2015 Ad J.F. van der Spek1,2; Edwin P.L. Elias3 1Deltares, P.O. Box 177, 2600 MH Delft, The Netherlands; [email protected] 2Faculty of Geosciences, Utrecht University, P.O. Box 80115, 3508 TC Utrecht 3Deltares USA, 8070 Georgia Ave, Silver Spring, MD 20910, U.S.A.; [email protected] Abstract The estuaries in the SW Netherlands, a series of distributaries of the rivers Rhine, Meuse and Scheldt known as the Dutch Delta, have been engineered to a large extent. The complete or partial damming of these estuaries in the nineteensixties had an enormous impact on their ebb-tidal deltas. The strong reduction of the cross-shore tidal flow triggered a series of morphological changes that includes erosion of the ebb delta front, the building of a coast-parallel, linear intertidal sand bar at the seaward edge of the delta platform and infilling of the tidal channels. The continuous extension of the port of Rotterdam in the northern part of the Haringvliet ebb-tidal delta increasingly sheltered the latter from the impact of waves from the northwest and north. This led to breaching and erosion of the shore-parallel bar. Moreover, large-scale sedimentation diminished the average depth in this area. The Grevelingen ebb-tidal delta has a more exposed position and has not reached this stage of bar breaching yet. The observed development of the ebb-tidal deltas caused by restriction or even blocking of the tidal flow in the associated estuary or tidal inlet is summarized in a conceptual model.
    [Show full text]
  • Intertek Moody Marine
    INTERTEK MOODY MARINE Date: August 2012 Ref: 82140 Dutch Oyster Association Oyster Fishery Public Comment Draft Report Authors: A Hough, A Brand, Z Jager Jaap de Rooij Dutch Oyster Association Postbus 124 4400 AC Yerseke Netherlands Tel: +32 50674822 [email protected] Intertek Moody Marine Merlin House Stanier Way Wyvern Business Park Derby United Kingdom DE21 6BF Dutch Oyster Association Oyster Fishery Report page 1 V3 Contents Contents ................................................................................................................................. 2 1. Executive Summary .......................................................................................................... 3 2. Authorship and Peer Reviewers .......................................................................................... 5 3. Description of the Fishery ................................................................................................. 6 4. Evaluation Procedure ...................................................................................................... 34 5 Traceability ................................................................................................................... 37 6 Evaluation Results .......................................................................................................... 37 References ............................................................................................................................ 41 Appendices ..........................................................................................................................
    [Show full text]
  • Fresh and Salt Water in the Delta
    PROJECT MSZD01 Fresh and salt water in the Fresh and delta salt water in the Delta Jeroen Veraart The South-western Delta consists of the estuaries of the rivers Rhine, Alterra Meuse and Scheldt. Interactions between sea, rivers and land are characteristic for the whole area. ARJEN DE VRIES Acacia Water HE AREA IS IMPORTANT as strategic fresh- Volkerak-Zoom lake. The unlimited fresh water water reservoir for the rural area to the availability created opportunities for the develop- Teast, for river-discharge regulation (peak ment of agriculture and drinking water supply, discharges of the Rhine-Meuse are diverted from thereby boosting economic development. the port of Rotterdam), for recreation (aquatic and cultural), aquaculture (shellfish, lobster, It has recently been decided to manage the Har- etc.), nature (especially relict intertidal areas), ingvliet sluices in such a way that a small fresh-sa- and as gateway to the port of Antwerp (West- line gradient is established (‘Kier besluit’), in order erschelde). While the Deltawerken are still an to reduce the current water-quality problems. In international icon for Dutch water management, the Krammer-Volkerak Zoommeer lake (especially current land-use and water-management plans algal blooms) it is an objective to restore estuarine put emphasis on their environmental impacts dynamics (i.e. a saline gradient) in the year 2015 (water quality), as well as prospected climate (the decision making process is on-going). change. Currently water management strate- gies and land-use plans are reconsidered in order Re-introduction of a saline-freshwater gradient in to minimize flood risks, optimize freshwater the Krammer-Volkerak Zoommeer may reduce the availability, reduce salinisation, and improve occurrence of algae blooms, but it reduces fresh- water quality and biodiversity, as most recently water availability for agriculture, drinking-water described in the National Water Plan (2008).
    [Show full text]
  • Krammer, Volkerak, Hollands Diep, Dordtse Kil, Beneden Merwede, Waal
    Autosteigers Nederland Krammer, Volkerak, Hollands diep, Dordtse Kil, Beneden Merwede, Waal Locatie Adres Plaats Krammersluis Krammersluis Bruinisse Volkeraksluis Zuid Hellegatsweg 16 Willemstad Volkeraksluis Noord Sluispad Noord Willemstad Moerdijk haven 't Gors Moerdijk 's-Gravendeel vluChthaven Kilweg 's-Gravendeel Werkendam BiesbosChhaven Noord Werkendam Gorinchem Eind Gorinchem Haaften Waalbandijk Haaften Stad Tiel Veerweg Tiel Ijzendoorn Waalbandijk 15 Ijzendoorn Weurt Westkanaaldijk Nijmegen Nijmegen Waalkade Waalkade Nijmegen Lobith Europakade Tolkamer Schelde-Rijnkanaal Tholen Schelderijnweg Tholen Bergen op Zoom Vermuidenweg 3 Bergen op Zoom Kreekraksluis Schelderijnweg 7 Rilland Kreekraksluis Oost Oost. SChelderijnweg Rilland Kreekraksluis West West. sChelderijnweg Rilland Amsterdam Rijnkanaal-Noordzeekanaal Tiel Prins Bernhardsluis Verlengde Spoorstraat 2 Tiel Ravenswaaij Prinses Marijkesluisweg Rijswijk Wijk bij Duurstede Broekweg Wijk bij Duurst. Nieuwegein Sluispad Nieuwegein Houten Overeindseweg 34 Nieuwegein UtreCht Kanaleneiland Rooseveltlaan 1116 UtreCht Lage weide Kernkade 36 UtreCht Breukelen Kanaaldijk oost Breukelen NigteveCht Kanaaldijk oost 2 NigteveCht Diemen Overdiemerdijk 21 Diemen Amsterdam Buiten IJ Zuider IJdijk Amsterdam Amsterdam Surinamekade Surinamekade 33 Amsterdam Amsterdam Binnen IJhaven Veemkade Amsterdam Amsterdam Centrum Westerdoksdijk Amsterdam Amsterdam Houthaven Ponsteiger Amsterdam Amsterdam Haparandadam Haparandadam 45 Amsterdam Amsterdam MerCuriushaven Nieuwe Hemweg Amsterdam Amsterdam Coenhaven
    [Show full text]
  • Viaje Aep 2010
    VIAJE AEP_2010 PAÍSES BAJOS AMSTERDAM ROTTERDAM ZEELAND VENLO ALEMANIA DUISBURG INSEL HOMBROICH CASTLE DYCK Asociación Española de Paisajistas índice 1.- Datos de contacto 2.- Programa 3.- Descripción de los proyectos 1 Asociación Española de Paisajistas datos de contacto Juan José Galán Tel: (0034) 627 43 44 93 Antonio Fresneda Tel: (0034) 625 41 22 22 Hotel Casa 400 Eerste Ringdijkstraat 4 1097 BC Amsterdam Nederland Tel:+31 (0)20 665 11 71 Fax:+31 (0)20 663 03 79 Nh Duesseldorf City Kölner Strasse, 186-188. D-40227 Düsseldorf Alemania Tel. +49.211.78110 Fax: +49.211.7811800 redacción del documento Juan José Galán Coordinación Antonio Fresneda Recopilación de documentación y maquetación David Sanz Recopilación de documentación agradecimientos Niek Hazendonk arquitecto de paisaje Ministerio de Agricultura, Naturaleza y Calidad Alimentaria 0031 (0)616762878 , 0031 (0) 345531156 [email protected] West 8 urban design & landscape architecture Schiehaven 13M 3024 EC Rotterdam The Netherlands H+N+S Landschapsarchitecten Bosch Slabbers [email protected] 2 Asociación Española de Paisajistas programa 10 JULIO (mañana): AMSTERDAM - Vuelo Madrid-Amsterdam (10:20-12:55) - Desplazamiento y check-in en Hotel (12:55-14:30) Comida (14:30-15:30) - Desplazamiento y visita BOS PARK (15:00-18:00) - Desplazamiento y visita: BORNEO ISLAND y IJBURG (urbanización/arquitectura contemporánea) (18:30-20:00) (noche en Amsterdam) 11 JULIO: ZONA CENTRO PAÍSES BAJOS Desplazamiento en autobús (9:00-10:00) - ZANDERIJ CRAILOO - KATTENBROEK y VATHORST. (Ejemplos de nuevos desarrollos urbanos sostenibles vinculados al agua) (10:00-13:00) Desplazamiento en autobús (13:00 a 13:30) Comida en KASTEL GROENEVELD (13:30-14:30) Desplazamiento en autobús (14:30 a 15:00) -DE HOGE VELUWE NATIONAL PARK.
    [Show full text]
  • Information Sheet on Ramsar Wetlands (RIS) – 2009-2012 Version
    Information Sheet on Ramsar Wetlands (RIS) – 2009-2012 version 1. Name and address of the compiler of this form: FOR OFFICE USE ONLY. DD MM YY Ms. A. Pel-Roest Ministry of Economic Affairs Department of Nature and Biodiversity Prins Clauslaan 8 Designation date Site Reference Number P.O. Box 20401 2500 EK The Hague, the Netherlands Tel: +31 (0)70 378 6868 2. Date this sheet was completed/updated: September 2013 3. Country: the Netherlands 4. Name of the Ramsar site: Krammer-Volkerak 5. Designation of new Ramsar site or update of existing site: This RIS is for: a) Designation of a new Ramsar site; or b) Updated information on an existing Ramsar site 6. For RIS updates only, changes to the site since its designation or earlier update: a) Site boundary and area The Ramsar site boundary and site area are unchanged: or If the site boundary has changed: i) the boundary has been delineated more accurately ; or ii) the boundary has been extended ; or iii) the boundary has been restricted** and/or If the site area has changed: i) the area has been measured more accurately ; or ii) the area has been extended ; or iii) the area has been reduced** ** Important note: If the boundary and/or area of the designated site is being restricted/reduced, the Contracting Party should have followed the procedures established by the Conference of the Parties in the Annex to COP9 Resolution IX.6 and provided a report in line with paragraph 28 of that Annex, prior to the submission of an updated RIS.
    [Show full text]
  • 038 Uiterwaarden Ijssel
    1 Ontwerpbesluit Uiterwaarden IJssel De Minister van Landbouw, Natuur en Voedselkwaliteit Gelet op artikel 3, eerste lid, en artikel 4, vierde lid, van Richtlijn 92/43/EEG van de Raad van 21 mei 1992 inzake de instandhouding van de natuurlijke habitats en de wilde flora en fauna (PbEG L 206); Gelet op de Beschikking van de Commissie 2008/23/EG van 12 november 2007 op grond van Richtlijn 92/43/EEG van de Raad, van een eerste bijgewerkte lijst van gebieden van communautair belang voor de Atlantische biogeografische regio (PbEG L 12); Gelet op artikel 4, eerste en tweede lid, van Richtlijn 79/409/EEG van de Raad van 2 april 1979 inzake het behoud van de vogelstand (PbEG L 103); Gelet op de artikelen 10a en 15 van de Natuurbeschermingswet 1998; BESLUIT: Artikel 1 1. Als speciale beschermingszone in de zin van artikel 4, vierde lid, van Richtlijn 92/43/EEG van de Raad van 21 mei 1992 inzake de instandhouding van de natuurlijke habitats en de wilde flora en fauna (PbEG L 206) wordt aangewezen: het op de bij dit besluit behorende kaart aangegeven gebied, bekend onder de naam: Uiterwaarden IJssel. 2. De in het eerste lid bedoelde speciale beschermingszone is aangewezen voor de volgende natuurlijke habitattypen opgenomen in bijlage I van Richtlijn 92/43/EEG; prioritaire habitattypen zijn met een sterretje (*) aangeduid: H3150 Van nature eutrofe meren met vegetatie van het type Magnopotamion of Hydrocharition H3260 Submontane en laagland rivieren met vegetaties behorend tot het Ranunculion fluitantis en het Callitricho-Batrachion H3270 Rivieren met slikoevers met vegetaties behorend tot het Chenopodion rubri p.p.
    [Show full text]
  • Water Management in the Netherlands
    Water management in the Netherlands The Kreekraksluizen in Schelde-Rijnkanaal Water management in the Netherlands Water: friend and foe! 2 | Directorate General for Public Works and Water Management Water management in the Netherlands | 3 The Netherlands is in a unique position on a delta, with Our infrastructure and the 'rules of the game’ for nearly two-thirds of the land lying below mean sea level. distribution of water resources still meet our needs, but The sea crashes against the sea walls from the west, while climate change and changing water usage are posing new rivers bring water from the south and east, sometimes in challenges for water managers. For this reason research large quantities. Without protective measures they would findings, innovative strength and the capacity of water regularly break their banks. And yet, we live a carefree managers to work in partnership are more important than existence protected by our dykes, dunes and storm-surge ever. And interest in water management in the Netherlands barriers. We, the Dutch, have tamed the water to create land from abroad is on the increase. In our contacts at home and suitable for habitation. abroad, we need know-how about the creation and function of our freshwater systems. Knowledge about how roles are But water is also our friend. We do, of course, need allocated and the rules that have been set are particularly sufficient quantities of clean water every day, at the right valuable. moment and in the right place, for nature, shipping, agriculture, industry, drinking water supplies, power The Directorate General for Public Works and Water generation, recreation and fisheries.
    [Show full text]
  • Distribution and Ecology of the Decapoda Reptantia of the Estuarine Area of the Rivers Rhine, Meuse, and Scheldt*
    Netherlands Journal of Sea Research 5 (2): 197-226 (1971) DISTRIBUTION AND ECOLOGY OF THE DECAPODA REPTANTIA OF THE ESTUARINE AREA OF THE RIVERS RHINE, MEUSE, AND SCHELDT* by W. J. WOLFF and A. J. J. SANDEE (Delta Institute for Hydrobiological Research, Terseke, The Netherlands) CONTENTS I. Introduction 198 II. Short description of the Delta area and its hydrography 198 III. Methods 199 IV. Systematic part 200 Nephrops norvegicus 200 Homarus gammarus 201 Astacus astacus 202 Galathea squamifera 202 Pisidia longicornis 203 Porcellana platycheles 203 Diogenes pugilator 204 Pagurus bernhardus 205 Callinectes sapidus 207 Macropipus puber 207 Macropipus depurator 209 Macropipus holsatus 210 Carcinus maenas 212 Portumnus latipes 214 Cancer pagurus 216 Thia scutellata 217 Pilumnus hirtellus 218 Rhithropanopeus harrisii 219 Eriocheir sinensis 219 Pinnotheres pisum 220 Ebalia tumefacta 221 Hyas coarctatus 221 Hyas araneus 221 Macropodia rostrata 222 V. Discussion 223 VI. Summary 224 VII. References 224 * Communication nr. 90 of the Delta Institute for Hydrobiological Research, Yerseke, The Netherlands. 198 W. J. WOLFF & A. J. J. SANDEE I. INTRODUCTION The Delta Plan aims at the closure of several of the estuaries in the southwestern part of The Netherlands. These estuaries, at present con­ taining tidal salt and brackish water, will become stagnant freshwater lakes. The Delta Institute for Hydrobiological Research was founded to study the biological changes accompanying these large-scale engi­ neering projects (VAAS, 1961). The basis of such studies is formed by descriptions of the situation before any changes occurred. This paper represents such a description, and concerns the distribution and ecology of the Decapoda Reptantia in the Delta area.
    [Show full text]