The Geometry of Some Beaufort Group Sandstones and Its Relationship To

Total Page:16

File Type:pdf, Size:1020Kb

The Geometry of Some Beaufort Group Sandstones and Its Relationship To THE GEOMETRY OF SOME BEAUFORT GROUP SANDSTONES AND ITS RELATIONSHIPI TO URANIUM MINERALISATION.I I I by V.v. Le Q. SStuart-Williams lliams Thesisis submitted for the degree of Master of Scienceence Universityin the Faculty of ofCape Science,ence, Town Universityiversi of Cape Town. 19811 cuzw- • ~:~_....w. .w W«=M) ihe University of CapeGape Town has been given ·. tho right to reproduce this thesis in whole t or in p<lrtpart. Copyright isIs held by the auchd.au":hi:'-r. ' '" . ,,· . •I The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgement of the source. The thesis is to be used for private study or non- commercial research purposes only. Published by the University of Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author. University of Cape Town University of Cape Town FRONTISPIECEFRC>NTISPIECE - htensiveExtensive flat beddedbedded sandstone of the Teekloof rOl"Glat;onFormation wHhwith the ltJweveldNuweveld [scar\X*ntEscarpment in tnethe backgr-ound.b~ckground. AA gO%goz isis seen 5tat the right. ABSTRACT From field evidence gained whilst working on the Ptistetognathus/ Diictodon Assemblage Zone west of Beaufort West it is found that three discrete sandstone types called:- A) straight channel sandstones, B) low sinuosity channel sandstones and C)' transitional sandstones can be identified, in what has previously been considered as high sinuosity channel facies association sediments. Palaeocurrent analysis has demonstrated that the transitional sandstones were high sinuosity and were the larger fluvial systems; the straight channel and low sinuosity channel sandstones were generally much smaller and had as their names imply a much lower s i nuos i ty. The palaeo-variability of current vectors in these systems, in the study area, is such that a standard deviation of greater than ~ 40 0 is considered diagnostic of the transitional sandstones. Moreover in the study area only this type of sandstone is of importance in uranium exploration. From the palaeocurrent data and the reduction-oxidation states of the sandstone types it is proposed that the transitional sandstones represent semi-perennial fluvial systems flowing across i i an arid intracratonic basin, whilst the straight and low sinuosity channel sands are intrabasinal tributaries of the transitional sandstones. From this study of the sandstone geometry has evolved a new model of uranium mineralisation. It is proposed that the mineralisation is syngenetic and generated by reduction of uranyl carbonates on carbonaceous material. The carbonaceous material must however be lying closely below or within a weak REDOX front, since it is vital to transport complexes in an oxidising environment, and yet such an environment will not allow reduced uranium to be preserved for any length of time, as the carbonaceous material on which it reduced will eventually oxidize. Such a REDOX front, it is proposed, is created by the coalescence of two discrete sands. The upper sand isan oxidising active channel. The lower sand has been buried for some time and is weakly reducing due to anaerobic breakdown of its carbonaceous material by bacteria. Fluids in the two sands mix at the point of coalescence and uranium in transport in the upper sand is transported to and fixed at the REDOX front by carbonaceous material in the lower sand. Borehole data suggests that the correlation between coalescence of two discrete sandstones (the lower being a transitional sandstone) and mineralisation is very good. It is believed that the three sandstone types, whilst representing major fluvial systems and their tributaries, were undergoi ngwa ter Hi loss along their length such that distal portions of even the major (transitional) sandstones were likely ephemeral. Evidence for this is found in the arid climate, lack of in-channel vegetation, dominance of flat-bedded sandstones and clear evidence for bedload transport. iv CONTENTS Page 1 INTRODUCTION 1.1 GENERAL 1.2 AIMS 2 1.3 GEOGRAPHICAL SETTING AND LOCATION 2 1.4 GEOLOGICAL SETTING 4 1 .4. 1 The Karoo Supergroup - an Overview 4 1. 4.2 The Beaufort Group 9 1.5 METAMORPHIC AND TECTONIC SETTING 13 1.6 PREVIOUS WORKERS 14 1.7 SUMMARY OF CURRENT CONCEPTS 20 2 LITHOFACIES USED IN MAPPING 2. 1 INTRODUCTION 23 2.2 LITHOFACI ES A 24 2.3 LI THOFAC I ES Bl 27 2.'4 LI THOF AC I ES B2 28 2.5 LITHOFACIES B3 28 2.6 LITHOFACIES C 29 2.7 LI THOFACI ES D 32 3 SANDSTONE PETROLOGY 3. 1 GENERAL 33 3.2 MODAL ANALYSIS 34 3.3 THIN SECTION DESCRIPTIONS OF THE MAl N 37 C(Jv1PONENTS. 3.3. 1 Quartz. 37 3.3.2 Feldspar 38 3.3.3 Rock fragments 39 3.3.4 Ma tri x 40 3.3.5 Accessory Minerals 42 3.4 GRAIN SIZE ANALYSIS 42 3.5 CLASSIFICATION OF THE SANDSTONES 43 v Page 4 SECTION GEOLOGY 4.1 I NTRODUCTI ON 44 4.2 AIMS OF THE SECTION MEASURING 45 4.3 MARKOVIAN ANALYSIS 46 4.4 MUDSTONE + SILTSTONE: SANDSTONE RATIOS; 54 AN INDICATOR OF FLUVIAL AND INTERFLUVIAL ZONES? 4.5 SANDSTONE CONTINUITY 56 5 PALAEOCURRENT ANALYSIS 5. 1 INTRODUCTION 62 5.2 DATA GATHER I NG 63 . 5.3 DA TA TR EA TMENT 66 5.4 RESULTS 67 5.5 SANDSTONE SINUOSITY 69 5.6 AN ALTERNATIVE APPROACH TO SINUOSITY 75 5.7 WHAT IS THE MEAN PALAEOFLOW DIRECTION 82 OF SANDSTONE 10? 5.8 INTRABASINAL TRIBUTARIES? 83 6 PLAN GEOLOGY 6.l. I NTRODUCTI ON 85 6.2 STRAIGHT AND LOW SINUOSITY CHANNELS 85 6.3 TRANSITIONAL SANDSTONES .86 7 SANDSTONE GEOMETRY 7. 1 I NTRODUCTI ON 7.2 LOW SINUOSITY AND STRAIGHT CHANNEL SANDSTONES 7.3 TRANSITIONAL SANDSTONES 102 vi 8 URANIUM, - ITS SOURCE, MODE OF TRANSPORT AND CONCENTRATION Page 80 1 SOURCE OF THE URANIUM 114 8.2 TRANSPORT OF URANIUM IN THE SEDIMENTARY 116 ENV IRONM ENT 8 0,3 THE REDUCTION AND FIXATION OF URANIUM 119 8.4. PERMEABILITY AND WATER I~OVEMENT 121 9 URANIUM MINERALISATION-A NEW MODEL 9. 1 CURRENT MODELS OF URANIUM MINERALISATION 124 9.1 .1 Roll Front Deposits 124 9.1.2 URAVAN Type Deposits 126 9.1.3. Preservation Potential '128 9.2 A MODEL OF URANIUM MINERALISATION 129 AT MATJIESKLOOF 9.3 DISCUSSION OF THE MODEL 139 9.4 OTHER MODELS FOR URANIUM MINERALISATION 146 AT MATJIESKLOOF 10 INTERPRETATION OF THE DEPOSITIONAL ENVIRONMENT 10. 1 INTRODUCTION 149 10.2 REVIEW OF THE FLUVIAL ENVIRONMENT WITH 149 SPECIAL REFERENCE TO THE BEAUFORT GROUP 10.3 IS SANDSTONE 10 A TRANSITIONAL SAND? 151 10.4 TRANSITIONAL SYSTEMS 153 10.5 THE HYDROLOGY OF TRANSITIONAL SYSTEMS 157 10.6 CURRENT VECTOR ORIENTATION IN TRANSITIONAL 158 SYSTEMS 10.1 TRANSITIONAL SYSTEMS IN RELATION TO BEAUFORT 159 GROUP SANDSTONES 10.8 TRANSITIONAL SYSTEMS AND THE MUDSTONE + 160 SILTSTONE: SANDSTONE RATIO 10.9 TERMINAL FANS AND BEAUFORT GROUP SAND­ 161 STONES 10.10 SUMMARY 164 vii 11 APPENDIX 11 .1 PRCXlRAMMES FOR PALAEOCURRENT TREATMENT 166 USING THE HP - 33 E 11.2 THE CONTINUITY INDEX 172 12 AC KNOW LE DGEM ENTS 174 13 REFERENCES 175 LIST OF DIAGRAMS Di ag. The Location of the Study Area. 3 Diag. 2 The Measured Sections. In Backflap Diag. 3 The Location of Sections 4-26 In Backflap within the Study Area. Di ag. 4 A Tree. Diagram Showing Upward Facies 53 Transition Probabilities. Diag. 5 Illustrating how the Mudstone and 57 Siltstone: Sandstone Ratio may define Fluvial and Interf1uvia1 Zones. Di ag. 6 Illustrating the use of a Continuity 60 Index to help Define Fluvial and Interf1uvia1 Zones. Di ag. 7 Methods of Determining Sinuosity. 70 Di ag. 8 Straight Channels on the farm Pa1miet­ 74 fontein. Di ag. 9 Straight. Distribution Frequency and a 78 Rose Diagram of all Bedforms Measured on the Pa1mietfontein Sandstone. Di ag. 10 Low Sinuosity. Distribution Frequency 79 and a Rose Diagram of all Bedforms Measured on Sandstone 15. viii Di ag. 11 Transitional. Distribution Frequency 81 and a Rose Diagram of all Bedforms Measured on Sandstone 10. Diag. 12 Meanders on Sandstone 10. In Backf1ap Diag. 13 Sandstone 15 in Plan and Prof; le 96 (Dip corrected). Diag. 14 Carbonate Transport. 118 Di ag. 15 A Typical South to North Drill Section. 130 Diag. 16 A Second South to North Section. 132 Diag. 17 A Third South to North Section. 133 Di ag. 18 The Model for Syngenetic Mineralisation 134 at Matjieskl oof. Diag. 19 The proposed model in '3' Dimensions. 138 Diag. 20 The Relationship between Coalescence and 140 Mineralisation in Sandstones 10 and 1l. Di ag. 21 A Model of the Fluvial System Envisaged. 163 LIST OF TABLES Table 1 The Stratigraphy of the South-Western 5 Karoo. Tab1 e 2 Moda 1 Ana lys is of Beaufort Group Sandstones. 36 Table 3 Upward Transition Count Matrix. 48 Table 4 Upward Transition Probability Matrix (P ij). 48 Tab 1e 5 Independent Trials Probability Matrix (rij). 51 Tab le 6 Residual Transition Probabilities (d ij). 51 Table 7 Sandstone: Mud + Silt Ratio. 58 Table. 8 Sandstone Continuity. 58 Table 9 Sandstone Palaeocurrent Data. 68 ix LIST OF PLATES Page Plate I Photographs 1 - 4. 26 P1a te II Photographs 5 - 7. 3 1 P1a te III See Diagram 8. 74 Plate IV Photographs 9 - 12. 94 Plate V Photogra phs 13 - 16. 101 P1a te VI Photogra ph s 17 - 20. 105 P1 a te VII Photographs 21 - 24. 108 Plate VIII Photogra phs 25 and 26. 155 1 INTRODUCTION 1 .1 GENERAL . Over the last decade a large amount of information has been generated about Beaufort Group sediments due to the realisation that these sediments were likely targets for uranium mineralisation.
Recommended publications
  • A New Mid-Permian Burnetiamorph Therapsid from the Main Karoo Basin of South Africa and a Phylogenetic Review of Burnetiamorpha
    Editors' choice A new mid-Permian burnetiamorph therapsid from the Main Karoo Basin of South Africa and a phylogenetic review of Burnetiamorpha MICHAEL O. DAY, BRUCE S. RUBIDGE, and FERNANDO ABDALA Day, M.O., Rubidge, B.S., and Abdala, F. 2016. A new mid-Permian burnetiamorph therapsid from the Main Karoo Basin of South Africa and a phylogenetic review of Burnetiamorpha. Acta Palaeontologica Polonica 61 (4): 701–719. Discoveries of burnetiamorph therapsids in the last decade and a half have increased their known diversity but they remain a minor constituent of middle–late Permian tetrapod faunas. In the Main Karoo Basin of South Africa, from where the clade is traditionally best known, specimens have been reported from all of the Permian biozones except the Eodicynodon and Pristerognathus assemblage zones. Although the addition of new taxa has provided more evidence for burnetiamorph synapomorphies, phylogenetic hypotheses for the clade remain incongruent with their appearances in the stratigraphic column. Here we describe a new burnetiamorph specimen (BP/1/7098) from the Pristerognathus Assemblage Zone and review the phylogeny of the Burnetiamorpha through a comprehensive comparison of known material. Phylogenetic analysis suggests that BP/1/7098 is closely related to the Russian species Niuksenitia sukhonensis. Remarkably, the supposed mid-Permian burnetiids Bullacephalus and Pachydectes are not recovered as burnetiids and in most cases are not burnetiamorphs at all, instead representing an earlier-diverging clade of biarmosuchians that are characterised by their large size, dentigerous transverse process of the pterygoid and exclusion of the jugal from the lat- eral temporal fenestra. The evolution of pachyostosis therefore appears to have occurred independently in these genera.
    [Show full text]
  • The Role of Fossils in Interpreting the Development of the Karoo Basin
    Palaeon!. afr., 33,41-54 (1997) THE ROLE OF FOSSILS IN INTERPRETING THE DEVELOPMENT OF THE KAROO BASIN by P. J. Hancox· & B. S. Rubidge2 IGeology Department, University of the Witwatersrand, Private Bag 3, Wits 2050, South Africa 2Bernard Price Institute for Palaeontological Research, University of the Witwatersrand, Private Bag 3, Wits 2050, South Africa ABSTRACT The Permo-Carboniferous to Jurassic aged rocks oft1:J.e main Karoo Basin ofSouth Africa are world renowned for the wealth of synapsid reptile and early dinosaur fossils, which have allowed a ten-fold biostratigraphic subdivision ofthe Karoo Supergroup to be erected. The role offossils in interpreting the development of the Karoo Basin is not, however, restricted to biostratigraphic studies. Recent integrated sedimentological and palaeontological studies have helped in more precisely defming a number of problematical formational contacts within the Karoo Supergroup, as well as enhancing palaeoenvironmental reconstructions, and basin development models. KEYWORDS: Karoo Basin, Biostratigraphy, Palaeoenvironment, Basin Development. INTRODUCTION Invertebrate remains are important as indicators of The main Karoo Basin of South Africa preserves a facies genesis, including water temperature and salinity, retro-arc foreland basin fill (Cole 1992) deposited in as age indicators, and for their biostratigraphic potential. front of the actively rising Cape Fold Belt (CFB) in Fossil fish are relatively rare in the Karoo Supergroup, southwestern Gondwana. It is the deepest and but where present are useful indicators of gross stratigraphically most complete of several depositories palaeoenvironments (e.g. Keyser 1966) and also have of Permo-Carboniferous to Jurassic age in southern biostratigraphic potential (Jubb 1973; Bender et al. Africa and reflects changing depositional environments 1991).
    [Show full text]
  • Taphonomy As an Aid to African Palaeontology*
    Palaeont. afr., 24 (1981 ) PRESIDENTIAL ADDRESS: TAPHONOMY AS AN AID TO AFRICAN PALAEONTOLOGY* by C.K. Brain Transvaal Museum, P.O. Box 413, Pretoria 0001 SUMMARY Palaeontology has its roots in both the earth and life sciences. Its usefulness to geology comes from the light which the understanding of fossils may throw on the stratigraphic re­ lationships of sediments, or the presence of economic deposits such as coal or oil. In biology, the study of fossils has the same objectives as does the study of living animals or plants and such objectives are generally reached in a series of steps which may be set out as follows: STEP I. Discovering what forms of life are, or were, to be found in a particular place at a particular time. Each form is allocated a name and is fitted into a system of classification. These contributions are made by the taxonomist or the systematist. STEP 2. Gaining afuller understanding ofeach described taxon as a living entity. Here the input is from the anatomist, developmental biologist, genetIcIst, physi­ ologist or ethologist and the information gained is likely to modify earlier decisions taken on the systematic position of the forms involved. STEP 3. Understanding the position ofeach form in the living community or ecosystem. This step is usually taken by a population biologist or ecologist. Hopefully, any competent neo- or palaeobiologist (I use the latter term deliberately in this context in preference to "palaeontologist") should be able to contribute to more than one of the steps outlined above. Although the taxonomic and systematic steps have traditionally been taken in museums or related institutions, it is encouraging to see that some of the steps subsequent to these very basic classificatory ones are now also being taken by museum biol­ ogists.
    [Show full text]
  • Proceedings of the 18Th Biennial Conference of the Palaeontological Society of Southern Africa Johannesburg, 11–14 July 2014
    Proceedings of the 18th Biennial Conference of the Palaeontological Society of Southern Africa Johannesburg, 11–14 July 2014 Table of Contents Letter of Welcome· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 63 Programme · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 64 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 66 Hand, K.P., Bringing Two Worlds Together: How Earth’s Past and Present Help Us Search for Life on Other Planets · · · · · · · 66 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 67 Erwin, D.H., Major Evolutionary Transitions in Early Life: A Public Goods Approach · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 67 Lelliott, A.D., A Survey of Visitors’ Experiences of Human Origins at the Cradle of Humankind, South Africa· · · · · · · · · · · · · · 68 Looy, C., The End-Permian Biotic Crisis: Why Plants Matter · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 69 Reed, K., Hominin Evolution and Habitat: The Importance of Analytical Scale · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
    [Show full text]
  • Comparing Middle Permian and Early Triassic Environments: Mud Aggregates As a Proxy for Climate Change in the Karoo Basin, South Africa
    Colby College Digital Commons @ Colby Honors Theses Student Research 2011 Comparing Middle Permian and Early Triassic Environments: Mud Aggregates as a Proxy for Climate Change in the Karoo Basin, South Africa Bryce Pludow Colby College Follow this and additional works at: https://digitalcommons.colby.edu/honorstheses Part of the Geology Commons Colby College theses are protected by copyright. They may be viewed or downloaded from this site for the purposes of research and scholarship. Reproduction or distribution for commercial purposes is prohibited without written permission of the author. Recommended Citation Pludow, Bryce, "Comparing Middle Permian and Early Triassic Environments: Mud Aggregates as a Proxy for Climate Change in the Karoo Basin, South Africa" (2011). Honors Theses. Paper 622. https://digitalcommons.colby.edu/honorstheses/622 This Honors Thesis (Open Access) is brought to you for free and open access by the Student Research at Digital Commons @ Colby. It has been accepted for inclusion in Honors Theses by an authorized administrator of Digital Commons @ Colby. COMPARING MIDDLE PERMIAN AND EARLY TRIASSIC ENVIRONMENTS: MUD AGGREGATES AS A PROXY FOR CLIMATE CHANGE IN THE KAROO BASIN, SOUTH AFRICA B. Amelia Pludow „11 A Thesis Submitted to the Faculty of the Geology Department of Colby College in Fulfillment of the Requirements for Honors in Geology Waterville, Maine May, 2011 COMPARING MIDDLE PERMIAN AND EARLY TRIASSIC ENVIRONMENTS: MUD AGGREGATES AS A PROXY FOR CLIMATE CHANGE IN THE KAROO BASIN, SOUTH AFRICA Except where reference is made to the work of others, the work described in this thesis is my own or was done in collaboration with my advisory committee B.
    [Show full text]
  • Ska Core and Phase 1 Development Area, Great Karoo, Northern Cape - Palaeontological Heritage
    1 SKA CORE AND PHASE 1 DEVELOPMENT AREA, GREAT KAROO, NORTHERN CAPE - PALAEONTOLOGICAL HERITAGE John E. Almond PhD (Cantab.) Natura Viva cc, PO Box 12410 Mill Street, Cape Town 8010, RSA [email protected] March 2016 EXECUTIVE SUMMARY The SKA core and Phase 1 study area in the Northern Cape is situated on the north-western margins of the Main Karoo Basin. The region is underlain by marine / lacustrine to terrestrial sediments of the Karoo Supergroup (Ecca and Lower Beaufort Groups) of Early to Middle Permian age. The fossil record of the Ecca Group here is dominated by a wide range of non-marine, subaqueously-generated trace fossils. A key trace fossil locality in the Tierberg Formation (Farm Brassefontein) occurs c. 65 km southwest of Brandvlei. Well-preserved mesosaurid reptiles and bony fish are recorded from the Whitehill Formation but are rare, while the Whitehill mudrocks are extensively intruded by dolerite in this region. Classic outcrops of storm-dominated shelf sediments of the Waterford Formation (previously Carnarvon Formation) are located in the Kareeberge of the Williston – Carnarvon area. These shelf successions contain a distinctive trace fossil assemblage as well as fairly common blocks of petrified driftwood. Middle Permian continental sediments of the Lower Beaufort Group (Abrahamskraal Formation) between Williston and Fraserburg have yielded a small number of vertebrate fossils of the Tapinocephalus Assemblage Zone including therapsids, pareiasaur John E. Almond (2016) Natura Viva cc 2 reptiles and bony fish. Important trace fossil assemblages, including tetrapod trackways, are associated with sandstone palaeosurfaces such as the well-known Gansfontein site near Fraserburg.
    [Show full text]
  • Remagnetizations in Late Permian and Early Triassic Rocks from Southern Africa and Their Implications for Pangeareconstructions
    412 Earth and Planetary Science Letters, 79 (1986) 412-418 Elsevier Science Publishers B.V., Amsterdam - Printed in The Netherlands 151 Remagnetizations in Late Permian and Early Triassic rocks from southern Africa and their implications for Pangea reconstructions Martha M. Ballard ‘, Rob Van der Voo * and I.W. HZlbich 2 ’ Department of Geological Sciences, University of Michigan, Am Arbor, MI 48109 (U.S.A.) ’ Department of Geology, University of Stellenbosch, Stellenbosclr (Republic of South Africa) Received March 31,1985; revised version received June 24, 1986 -A paleomagnetic study of late Paleozoic and early Mesozoic sedimentary rocks from southern Africa suggests wide-spread remagnetization of these rocks. Samples of the Mofdiahogolo Formation in Botswana and of the Lower Beaufort Group in South Africa were treated using thermal, alternating field and chemical demagnetization. The Mofdiahogolo redbeds show a univectoral decay of the remanence revealing a characteristic direction of D = 340°, I = - 58O, k = 64, a9s = 12O. The Lower Beaufort sandstones, using thermal and alternating field demagnetization, show a very similar direction of D = 337O, I = -63”, k = 91, ags = 6O. A fold test on the Beaufort rocks is negative indicating that this magnetization is secondary and acquired after the Permo-Triassic Cape Belt folding event. Previous studies have reported similar directions in the Upper Beaufort redbeds as well as in the Kenyan Maji ya Chumvi Formation of Early Triassic age. The poles of these studies have been used in testing the validity of the various Pangea reconstructions for the Late Permian and the Early Triassic. Our results suggest that these poles may also be based on remagnetized data and that their use to document the position of Gondwana in Pangea reconstructions should be treated with caution.
    [Show full text]
  • Triassic Pentadactyl Tracks from the Los Menucos Group
    Triassic pentadactyl tracks from the Los Menucos Group (Río Negro province, Patagonia Argentina): possible constraints on the autopodial posture of Gondwanan trackmakers Paolo Citton1,2, Ignacio Díaz-Martínez1,2, Silvina de Valais1,2 and Carlos Cónsole-Gonella1,3 1 Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina 2 Instituto de Investigación en Paleobiología y Geología (IIPG), Universidad Nacional de Río Negro, General Roca, Argentina 3 Instituto Superior de Correlación Geológica (INSUGEO), Universidad Nacional de Tucumán, Tucumán, Argentina ABSTRACT The Los Menucos locality in Patagonia, Argentina, bears a well-known ichnofauna mostly documented by small therapsid footprints. Within this ichnofauna, large pentadactyl footprints are also represented but to date were relatively underinvestigated. These footprints are here analyzed and discussed based on palaeobiological indications (i.e., trackmaker identification). High resolution digital photogrammetry method was performed to achieve a more objective representation of footprint three-dimensional morphologies. The footprints under study are compared with Pentasauropus from the Upper Triassic lower Elliot Formation (Stormberg Group) of the Karoo Basin (Lesotho, southern Africa). Some track features suggest a therapsid-grade synapsid as the potential trackmaker, to be sought among anomodont dicynodonts (probably Kannemeyeriiformes). While the interpretation of limb posture in the producer of Pentasauropus tracks from the Los Menucos locality
    [Show full text]
  • An Examination of Non-Mammalian Cynodont Cranial Endocasts
    .6 \\0 \. \ '3 ~ -=t-5 c. I BLOEMfONTeiN . OUIUOTEEK. LI£lRARY fÏËiliiiËÊKSEÏ'~lPi·AAriM~GëN-D'ËR University Free State 1111111111111111111111\111\111\111111111111111 IIIII ~II IIIII IIIII III 11\1 ,::~:EN O~lSTANDJGHED£ UIT DIE 34300004543215 universiteitVrY'stáat ~~:::[~:!'VERWYDER WORD NIE 'n"'= '.."mc*.,._....,_.,p j----------------------~ AN EXAMINATION OF NON-MAMMALIAN CYNODONT CRANIAL ENDOCASTS by DEWALD DU PLESSIS Submitted in fulfilment of the requirements for the degree MAGISTER SCiENTlAE in the Department of Zoology and Entomo.logy Faculty of Natural and Agricultural Sciences University of the Free State Bloemfontein Study leaders: Dr. J. Botha-Brink Mr. H.J.B. Butler September 2010 DECLARATION I, the undersigned, hereby declare that the work contained in this dissertation is my own original work and that I have not previously in its entirety or in part submitted it at any university for a degree. I further more cede copyright of the dissertation in favour of the University of the Free State. Signature: " Date: " . ii DEDICATION To the King of kings, the only living God, the Lord and my Saviour, Jesus Christ. All of the praise, all of the honour, all of the glorification belongs to You. I thank you for Your gifts, blessings and inspiration. Thank you for the three years during which I was blessed with the privilege to work with these animals. Everything that I am, is grace from Your hands. Without You I am nothing. iii ACKNOWLEDGEMENTS The present study was completed at the University of the Free State, Bloemfontein, in conjunction with the National Museum in Bloemfontein and the Nuclear Energy Corporation of South Africa (Neesa), with the support of a grant from the National Research Foundation.
    [Show full text]
  • Petrographical and Geophysical Investigation of the Ecca Group
    Open Geosci. 2019; 11:313–326 Research Article Christopher Baiyegunhi*, Zusakhe Nxantsiya, Kinshasa Pharoe, Temitope L. Baiyegunhi, and Seyi Mepaiyeda Petrographical and geophysical investigation of the Ecca Group between Fort Beaufort and Grahamstown, in the Eastern Cape Province, South Africa https://doi.org/10.1515/geo-2019-0025 depth slices result, dolerite intrusions are pervasive in the Received Mar 20, 2018; accepted Mar 13, 2019 northern part of the study area, extending to a depth of about 6000 m below the ground surface. The appearance Abstract: The outcrop of the Ecca Group in the Eastern of dolerite intrusions at the targeted depth (3000 - 5000 m) Cape Province was investigated in order to reveal petro- for gas exploration could pose a serious threat to fracking graphic and geophysical characteristics of the formations of the Karoo for shale gas. that make up the group which are vital information when considering fracking of the Karoo for shale gas. The pet- Keywords: Density, dolerites, Ecca Group, gravity, mag- rographic study reveals that the rocks of the Ecca Group netic, porosity are both argillaceous and arenaceous rock with quartz, feldspar, micas and lithics as the framework minerals. The sandstones are graywackes, immature and poorly sorted, thus giving an indication that the source area is near. The 1 Introduction observed heavy minerals as well as the lithic grains signify This study focuses on road cut exposures of the Ecca Group that the minerals are of granitic, volcanic and metamor- along road R67 between Fort Beaufort and Grahamstown phic origin. The porosity result shows that of all the forma- (Figure 1).
    [Show full text]
  • Introduction to the Tetrapod Biozonation of the Karoo Supergroup
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/342446203 Introduction to the tetrapod biozonation of the Karoo Supergroup Article in South African Journal of Geology · June 2020 DOI: 10.25131/sajg.123.0009 CITATIONS READS 0 50 4 authors, including: Bruce S Rubidge Michael O. Day University of the Witwatersrand Natural History Museum, London 244 PUBLICATIONS 5,724 CITATIONS 45 PUBLICATIONS 385 CITATIONS SEE PROFILE SEE PROFILE Jennifer Botha National Museum Bloemfontein 82 PUBLICATIONS 2,162 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Permo-Triassic Mass Extinction View project Permo-Triassic palaeoecology of southern Africa View project All content following this page was uploaded by Michael O. Day on 24 August 2020. The user has requested enhancement of the downloaded file. R.M.H. SMITH, B.S. RUBIDGE, M.O. DAY AND J. BOTHA Introduction to the tetrapod biozonation of the Karoo Supergroup R.M.H. Smith Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, 2050 South Africa Karoo Palaeontology, Iziko South African Museum, P.O. Box 61, Cape Town, 8000, South Africa e-mail: [email protected] B.S. Rubidge Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg 2050, South Africa e-mail: [email protected] M.O. Day Department of Earth Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, United Kingdom Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg 2050, South Africa e-mail: [email protected] J. Botha National Museum, P.O. Box 266, Bloemfontein, 9300, South Africa Department of Zoology and Entomology, University of the Free State, 9300, South Africa e-mail: [email protected] © 2020 Geological Society of South Africa.
    [Show full text]
  • Stable Isotopes
    Stable isotopes (δ18O and δ13C) give new perspective on the ecology and diet of Endothiodon bathystoma (Therapsida, Dicynodontia) from the late Permian of the South African Karoo Basin Kévin Rey, Michael Day, Romain Amiot, François Fourel, Julie Luyt, Christophe Lécuyer, Bruce Rubidge To cite this version: Kévin Rey, Michael Day, Romain Amiot, François Fourel, Julie Luyt, et al.. Stable isotopes (δ18O and δ13C) give new perspective on the ecology and diet of Endothiodon bathystoma (Therapsida, Di- cynodontia) from the late Permian of the South African Karoo Basin. Palaeogeography, Palaeoclima- tology, Palaeoecology, Elsevier, 2020, 556, pp.109882. 10.1016/j.palaeo.2020.109882. hal-02991771 HAL Id: hal-02991771 https://hal.archives-ouvertes.fr/hal-02991771 Submitted on 17 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Journal Pre-proof Stable isotopes (δ18O and δ13C) give new perspective on the ecology and diet of Endothiodon bathystoma (Therapsida, Dicynodontia) from the late Permian of the South African Karoo Basin Kévin Rey, Michael O. Day, Romain Amiot, François Fourel, Julie Luyt, Christophe Lécuyer, Bruce S. Rubidge PII: S0031-0182(20)30327-8 DOI: https://doi.org/10.1016/j.palaeo.2020.109882 Reference: PALAEO 109882 To appear in: Palaeogeography, Palaeoclimatology, Palaeoecology Received date: 9 April 2020 Revised date: 18 June 2020 Accepted date: 19 June 2020 Please cite this article as: K.
    [Show full text]