Growth and Life Habits of the Triassic Cynodont Trirachodon, Inferred from Bone Histology

Total Page:16

File Type:pdf, Size:1020Kb

Growth and Life Habits of the Triassic Cynodont Trirachodon, Inferred from Bone Histology Growth and life habits of the Triassic cynodont Trirachodon, inferred from bone histology JENNIFER BOTHA and ANUSUYA CHINSAMY Botha, J. and Chinsamy, A. 2004. Growth and life habits of the Triassic cynodont Trirachodon, inferred from bone histol− ogy. Acta Palaeontologica Polonica 49 (4): 619–627. Growth pattern and lifestyle habits of the Triassic non−mammalian cynodont Trirachodon are deduced from bone histol− ogy and cross−sectional geometry. Several skeletal elements of Trirachodon were examined in order to document histological changes during ontogeny, as well as histovariability in the skeleton. The bone histology of all the elements consists of a moderately vascularized, periodically interrupted, fibro−lamellar bone tissue. This suggests that the overall growth of Trirachodon was probably rapid during the favourable season, but decreased or ceased during the unfavourable season. As the environment is thought to have been semi−arid with seasonal rainfall, it is possible that Trirachodon was sensitive to such environmental fluctuations. Some inter−elemental histovariability was noted where the number and prominence of growth rings varied. Limb bone cross−sectional geometry revealed a relatively thick bone wall and sup− ports earlier proposals that Trirachodon was fossorial. Key words: Cynodonts, Trirachodon, lifestyles, bone histology, growth patterns. Jennifer Botha [[email protected]], Natural History Collections Division, South African Museum, Iziko Museums of Cape Town, P.O. Box 61, 8000, South Africa (corresponding author); Anusuya Chinsamy [[email protected]], Zoology Department, University of Cape Town, Rondebosch, 7701, South Africa. Introduction few studies that have examined Trirachodon have focused on its morphology (Seeley 1895b; Crompton and Ellen− Trirachodon is a herbivorous non−mammalian cynodont berger 1957; Kemp 1982), which has led to a rather limited whose remains have been found in the Early to Middle Trias− understanding of its biology. sic Cynognathus Assemblage Zone, of the Beaufort Group, Given that bone histology is well recognized as providing Karoo Supergroup of South Africa (Rubidge 1995). The cra− pertinent information about the biology of extinct vertebrates nium of Trirachodon is similar to Diademodon, a contempo− (e.g., Amprino 1947; Ricqlès 1969, 1972, 1974, 1976, 1980; rary non−mammalian cynodont, and is characterized by a Chinsamy 1990, 1993a, 1995, 1997; Reid 1996; Horner et al. short, narrow snout; wide orbital region; slender zygomatic 2000; Ricqlès et al. 2001, 2003), we applied this methodol− arches and antero−dorsally placed eyes (Seeley 1895a; Kemp ogy to Trirachodon. Although the organic components of 1982). However, Trirachodon, with a maximum body length bone (which include osteocytes, vascular canals and colla− of 50 cm, is much smaller than the 2 m long Diademodon and genous fibres) are destroyed during fossilization, their struc− has fewer gomphodont (molariform) postcanine teeth, which tural organization usually remains intact, thereby allowing are broader transversely and anteroposteriorly shorter than the bone tissue microstructure of the fossil to be discerned those of Diademodon (Seeley 1895b; Crompton and Ellen− (Francillon−Vieillot et al. 1990). Comparing the bone micro− berger 1957; Kemp 1982). structure with that of living animals allows various aspects Trirachodon had a more mammal−like posture than the such as growth, individual age and the lifestyle habits of ex− earlier, more basal cynodont genera such as the Permian tinct animals to be interpreted (e.g., Enlow and Brown 1956, Procynosuchus.InTrirachodon though, the forelimb still 1957). Several early bone microstructure studies on isolated had a sprawling orientation (Kemp 1982). The hindlimb pos− skeletal remains of non−mammalian therapsids have been ture was semi−erect (Kemp 1982), which would have im− conducted (e.g., Enlow and Brown 1956, 1957). However, in proved the locomotor efficiency of the animal, possibly al− the late 1960s and 1970s Armand de Ricqlès undertook a lowing for more sustained activity (Carrier 1987; Pough et al. systematic assessment of the bone microstructure of a variety 1996). Other derived mammalian characteristics include a of non−mammalian therapsids including dinocephalians and bony secondary palate and precise postcanine tooth occlu− dicynodonts (Ricqlès 1972), and therocephalians, gorgonop− sion, both of which would have increased food−processing sians, and cynodonts (Ricqlès 1969). Although his analyses efficiency (Kemp 1982). Compared to other non−mammalian were mainly on isolated fragments of specimens identified cynodonts, Trirachodon fossils are relatively scarce and the only to generic level, they nevertheless provided an impor− Acta Palaeontol. Pol. 49 (4): 619–627, 2004 http://app.pan.pl/acta49/app49−619.pdf 620 ACTA PALAEONTOLOGICA POLONICA 49 (4), 2004 tant understanding of the range of bone tissue types present recovered from a bone bed in the Aliwal North district and among the non−mammalian therapsids. Until now, however, have all been diagnosed as representing Trirachodon kanne− Trirachodon has yet to be studied. meyeria. Several individuals of different sizes were identi− It has previously been suggested that Trirachodon was a fied, which probably represent different ontogenetic ages. fossorial animal, based on skeletal remains preserved inside The CGP1/79 radius and ulna belong to a single individual. burrow casts recovered from the Driekoppen Formation in The largest tibia in the study, SAM−PK−5881c, is designated South Africa (Groenewald et al. 2001) and the Omingonde as adult on the basis of the size and well−finished bone sur− Formation in Namibia (Smith and Swart 2002). As studies on faces. This tibia was not directly associated with any other the cross−sectional geometry of bone have shown that a di− limb bones. Measurements of the complete tibia SAM−PK− rect relationship exists between an animal’s lifestyle and the 5881c were used to estimate the total lengths of the incom− structural design of its bones (Wall 1983; Stein 1989; Fish plete tibiae. Based on ratios from tibia SAM−PK−5881c, the 1993; Bou et al. 1990), here we combine the histological ratio of diameter to length for the tibiae SAM−PK−5881b and analysis with an assessment of the cross−sectional geometry NMQR3282b was calculated. The estimated total length of of Trirachodon limb bones. the tibiae was then divided by the total length of tibia SAM− PK−5881c, and a percentage of adult size was thus obtained Institutional abbreviations.—NMQR, National Museum, (Table 2). Femur NMQR3282a is similar in size to tibia Bloemfontein; SAM−PK, South African Museum, Iziko Mu− NMQR3282b. Few percentage adult estimations could be seums of Cape Town; CGP, Council for Geoscience, Pretoria. calculated as few elements were complete and a fully articu− lated skeleton of Trirachodon was unavailable for study. As long bones undergo the least secondary remodeling in Materials and methods the midshaft region (Chinsamy 1990, 1991, 1995; Francil− lon−Vieillot et al. 1990; Horner et al. 1999), all the elements Trirachodon remains have been recovered from the Cyno− were thin sectioned in this region. The ribs were also sec− gnathus Assemblage Zone, of the Beaufort Group, Karoo tioned in the midshaft region. As a consequence of their frag− Supergroup of South Africa (Rubidge 1995), and are cur− mentary nature, only the proximal parts of the scapulae were rently housed in various institutions in South Africa. For our sectioned. Most of the limb bones were incomplete, but it analysis, eleven skeletal elements, including femora, tibiae, was possible to thin section the proximal regions of the femur scapulae, ribs, a radius and an ulna, were selected to consider (SAM−PK−5881a) and tibiae (SAM−PK−5881b, SAM−PK− both ontogenetic and inter−elemental histological variability 5881c) as well. The thin sectioning technique follows that of (Table 1). Chinsamy and Raath (1992). Terminology used is sensu The femur NMQR3282a and tibia NMQR3282b were Francillon−Vieillot et al. (1990), Reid (1996), and Starck and found together with two lower jaws of similar size in a block Chinsamy (2002). of matrix, which allowed these elements to be identified as Several studies have shown that vascularization in bone Trirachodon. As these elements were found with two lower tissue differs among taxa (Enlow and Brown 1957; Currey jaws, they may either both belong to one individual or they 1960; Chinsamy 1991, 1993b) and also among different ele− could be from two different individuals (Table 1). The vari− ments (Horner et al. 2000; Curry 1999; Ray et al. in press). ety of skeletal elements designated as SAM−PK−5881, were The vascularization of the bone tissue was assessed by mea− Table 1. The Trirachodon specimens examined in this study and their localities. The NMQR3282 elements were found in a matrix that included two similar sized lower jaws. The SAM−PK−5881 elements were recovered from a bone bed in the Aliwal North district and have all been diagnosed as a single species, Trirachodon kannemeyeria. They represent several individuals of various sizes and probably stages in ontogenetic age. The CGP1/79 elements belong to a single individual. District Specimen number Skeletal element Portion sectioned Kestell NMQR3282a femur midshaft NMQR 3282b tibia midshaft Aliwal North SAM−PK−5881a femur midshaft/proximal SAM−PK−5881b tibia midshaft/proximal SAM−PK−5881c tibia midshaft/proximal SAM−PK−5881d rib midshaft SAM−PK−5881e rib midshaft SAM−PK−5881f
Recommended publications
  • The Role of Fossils in Interpreting the Development of the Karoo Basin
    Palaeon!. afr., 33,41-54 (1997) THE ROLE OF FOSSILS IN INTERPRETING THE DEVELOPMENT OF THE KAROO BASIN by P. J. Hancox· & B. S. Rubidge2 IGeology Department, University of the Witwatersrand, Private Bag 3, Wits 2050, South Africa 2Bernard Price Institute for Palaeontological Research, University of the Witwatersrand, Private Bag 3, Wits 2050, South Africa ABSTRACT The Permo-Carboniferous to Jurassic aged rocks oft1:J.e main Karoo Basin ofSouth Africa are world renowned for the wealth of synapsid reptile and early dinosaur fossils, which have allowed a ten-fold biostratigraphic subdivision ofthe Karoo Supergroup to be erected. The role offossils in interpreting the development of the Karoo Basin is not, however, restricted to biostratigraphic studies. Recent integrated sedimentological and palaeontological studies have helped in more precisely defming a number of problematical formational contacts within the Karoo Supergroup, as well as enhancing palaeoenvironmental reconstructions, and basin development models. KEYWORDS: Karoo Basin, Biostratigraphy, Palaeoenvironment, Basin Development. INTRODUCTION Invertebrate remains are important as indicators of The main Karoo Basin of South Africa preserves a facies genesis, including water temperature and salinity, retro-arc foreland basin fill (Cole 1992) deposited in as age indicators, and for their biostratigraphic potential. front of the actively rising Cape Fold Belt (CFB) in Fossil fish are relatively rare in the Karoo Supergroup, southwestern Gondwana. It is the deepest and but where present are useful indicators of gross stratigraphically most complete of several depositories palaeoenvironments (e.g. Keyser 1966) and also have of Permo-Carboniferous to Jurassic age in southern biostratigraphic potential (Jubb 1973; Bender et al. Africa and reflects changing depositional environments 1991).
    [Show full text]
  • Osteohistology of Late Triassic Prozostrodontian Cynodonts from Brazil
    Osteohistology of Late Triassic prozostrodontian cynodonts from Brazil Jennifer Botha-Brink1,2, Marina Bento Soares3 and Agustín G. Martinelli3 1 Department of Karoo Palaeontology, National Museum, Bloemfontein, South Africa 2 Department of Zoology and Entomology, University of the Free State, Bloemfontein, South Africa 3 Departamento de Paleontologia e Estratigrafia, Instituto de Geociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil ABSTRACT The Prozostrodontia includes a group of Late Triassic-Early Cretaceous eucynodonts plus the clade Mammaliaformes, in which Mammalia is nested. Analysing their growth patterns is thus important for understanding the evolution of mammalian life histories. Obtaining material for osteohistological analysis is difficult due to the rare and delicate nature of most of the prozostrodontian taxa, much of which comprises mostly of crania or sometimes even only teeth. Here we present a rare opportunity to observe the osteohistology of several postcranial elements of the basal prozostrodontid Prozostrodon brasiliensis, the tritheledontid Irajatherium hernandezi, and the brasilodontids Brasilodon quadrangularis and Brasilitherium riograndensis from the Late Triassic of Brazil (Santa Maria Supersequence). Prozostrodon and Irajatherium reveal similar growth patterns of rapid early growth with annual interruptions later in ontogeny. These interruptions are associated with wide zones of slow growing bone tissue. Brasilodon and Brasilitherium exhibit a mixture of woven-fibered bone tissue and slower growing parallel-fibered and lamellar bone. The slower growing bone tissues are present even during early ontogeny. The relatively slower growth in Brasilodon and Brasilitherium may be related to their small body size compared to Prozostrodon and Irajatherium. These brasilodontids also exhibit osteohistological similarities with the Late Triassic/Early Jurassic mammaliaform Morganucodon and the Late Cretaceous multituberculate mammals Kryptobaatar and Nemegtbaatar.
    [Show full text]
  • Taphonomy As an Aid to African Palaeontology*
    Palaeont. afr., 24 (1981 ) PRESIDENTIAL ADDRESS: TAPHONOMY AS AN AID TO AFRICAN PALAEONTOLOGY* by C.K. Brain Transvaal Museum, P.O. Box 413, Pretoria 0001 SUMMARY Palaeontology has its roots in both the earth and life sciences. Its usefulness to geology comes from the light which the understanding of fossils may throw on the stratigraphic re­ lationships of sediments, or the presence of economic deposits such as coal or oil. In biology, the study of fossils has the same objectives as does the study of living animals or plants and such objectives are generally reached in a series of steps which may be set out as follows: STEP I. Discovering what forms of life are, or were, to be found in a particular place at a particular time. Each form is allocated a name and is fitted into a system of classification. These contributions are made by the taxonomist or the systematist. STEP 2. Gaining afuller understanding ofeach described taxon as a living entity. Here the input is from the anatomist, developmental biologist, genetIcIst, physi­ ologist or ethologist and the information gained is likely to modify earlier decisions taken on the systematic position of the forms involved. STEP 3. Understanding the position ofeach form in the living community or ecosystem. This step is usually taken by a population biologist or ecologist. Hopefully, any competent neo- or palaeobiologist (I use the latter term deliberately in this context in preference to "palaeontologist") should be able to contribute to more than one of the steps outlined above. Although the taxonomic and systematic steps have traditionally been taken in museums or related institutions, it is encouraging to see that some of the steps subsequent to these very basic classificatory ones are now also being taken by museum biol­ ogists.
    [Show full text]
  • Remagnetizations in Late Permian and Early Triassic Rocks from Southern Africa and Their Implications for Pangeareconstructions
    412 Earth and Planetary Science Letters, 79 (1986) 412-418 Elsevier Science Publishers B.V., Amsterdam - Printed in The Netherlands 151 Remagnetizations in Late Permian and Early Triassic rocks from southern Africa and their implications for Pangea reconstructions Martha M. Ballard ‘, Rob Van der Voo * and I.W. HZlbich 2 ’ Department of Geological Sciences, University of Michigan, Am Arbor, MI 48109 (U.S.A.) ’ Department of Geology, University of Stellenbosch, Stellenbosclr (Republic of South Africa) Received March 31,1985; revised version received June 24, 1986 -A paleomagnetic study of late Paleozoic and early Mesozoic sedimentary rocks from southern Africa suggests wide-spread remagnetization of these rocks. Samples of the Mofdiahogolo Formation in Botswana and of the Lower Beaufort Group in South Africa were treated using thermal, alternating field and chemical demagnetization. The Mofdiahogolo redbeds show a univectoral decay of the remanence revealing a characteristic direction of D = 340°, I = - 58O, k = 64, a9s = 12O. The Lower Beaufort sandstones, using thermal and alternating field demagnetization, show a very similar direction of D = 337O, I = -63”, k = 91, ags = 6O. A fold test on the Beaufort rocks is negative indicating that this magnetization is secondary and acquired after the Permo-Triassic Cape Belt folding event. Previous studies have reported similar directions in the Upper Beaufort redbeds as well as in the Kenyan Maji ya Chumvi Formation of Early Triassic age. The poles of these studies have been used in testing the validity of the various Pangea reconstructions for the Late Permian and the Early Triassic. Our results suggest that these poles may also be based on remagnetized data and that their use to document the position of Gondwana in Pangea reconstructions should be treated with caution.
    [Show full text]
  • Triassic Pentadactyl Tracks from the Los Menucos Group
    Triassic pentadactyl tracks from the Los Menucos Group (Río Negro province, Patagonia Argentina): possible constraints on the autopodial posture of Gondwanan trackmakers Paolo Citton1,2, Ignacio Díaz-Martínez1,2, Silvina de Valais1,2 and Carlos Cónsole-Gonella1,3 1 Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina 2 Instituto de Investigación en Paleobiología y Geología (IIPG), Universidad Nacional de Río Negro, General Roca, Argentina 3 Instituto Superior de Correlación Geológica (INSUGEO), Universidad Nacional de Tucumán, Tucumán, Argentina ABSTRACT The Los Menucos locality in Patagonia, Argentina, bears a well-known ichnofauna mostly documented by small therapsid footprints. Within this ichnofauna, large pentadactyl footprints are also represented but to date were relatively underinvestigated. These footprints are here analyzed and discussed based on palaeobiological indications (i.e., trackmaker identification). High resolution digital photogrammetry method was performed to achieve a more objective representation of footprint three-dimensional morphologies. The footprints under study are compared with Pentasauropus from the Upper Triassic lower Elliot Formation (Stormberg Group) of the Karoo Basin (Lesotho, southern Africa). Some track features suggest a therapsid-grade synapsid as the potential trackmaker, to be sought among anomodont dicynodonts (probably Kannemeyeriiformes). While the interpretation of limb posture in the producer of Pentasauropus tracks from the Los Menucos locality
    [Show full text]
  • Petrographical and Geophysical Investigation of the Ecca Group
    Open Geosci. 2019; 11:313–326 Research Article Christopher Baiyegunhi*, Zusakhe Nxantsiya, Kinshasa Pharoe, Temitope L. Baiyegunhi, and Seyi Mepaiyeda Petrographical and geophysical investigation of the Ecca Group between Fort Beaufort and Grahamstown, in the Eastern Cape Province, South Africa https://doi.org/10.1515/geo-2019-0025 depth slices result, dolerite intrusions are pervasive in the Received Mar 20, 2018; accepted Mar 13, 2019 northern part of the study area, extending to a depth of about 6000 m below the ground surface. The appearance Abstract: The outcrop of the Ecca Group in the Eastern of dolerite intrusions at the targeted depth (3000 - 5000 m) Cape Province was investigated in order to reveal petro- for gas exploration could pose a serious threat to fracking graphic and geophysical characteristics of the formations of the Karoo for shale gas. that make up the group which are vital information when considering fracking of the Karoo for shale gas. The pet- Keywords: Density, dolerites, Ecca Group, gravity, mag- rographic study reveals that the rocks of the Ecca Group netic, porosity are both argillaceous and arenaceous rock with quartz, feldspar, micas and lithics as the framework minerals. The sandstones are graywackes, immature and poorly sorted, thus giving an indication that the source area is near. The 1 Introduction observed heavy minerals as well as the lithic grains signify This study focuses on road cut exposures of the Ecca Group that the minerals are of granitic, volcanic and metamor- along road R67 between Fort Beaufort and Grahamstown phic origin. The porosity result shows that of all the forma- (Figure 1).
    [Show full text]
  • 32-Langer Et Al
    Lucas, S.G. and Spielmann, J.A., eds., 2007, The Global Triassic. New Mexico Museum of Natural History and Science Bulletin 41. 201 THE CONTINENTAL TETRAPOD-BEARING TRIASSIC OF SOUTH BRAZIL MAX C. LANGER1, ANA M. RIBEIRO2, CESAR L. SCHULTZ3 AND JORGE FERIGOLO2 1 Depto. Biologia, FFCLRP-USP, Av. Bandeirantes 3900, Ribeirão Preto, Brazil; e-mail: [email protected]; 2 Museu de Ciências Naturais, FZB-RS, Av. Salvador França 1427, Porto Alegre, Brazil; e-mail: [email protected], [email protected]; 3 Inst. Geociâncias, UFRGS, Av. Bento Gonçalves 9500, Porto Alegre, Brazil; e-mail [email protected] Abstract—The Rosário do Sul Group is one of the better-known tetrapod-bearing continental deposits of Triassic age. It crops out in central Rio Grande do Sul, south Brazil, and has yielded a fauna of more than 40 valid species, including temnospondyl, procolophonoideans, dicynodonts, cynodonts, sphenodontian, rhynchosaurs, and archosaurs. Its fossil record is herein briefly assessed, along with the stratigraphy of its bearing sequences. This includes the Early (perhaps earliest) Triassic Sanga do Cabral Formation, which correlates to the Lystrosaurus/ “Impoverished” zones of the Karoo Basin, and a second major stratigraphic sequence of Mid-Late Triassic age that broadly corresponds to the Santa Maria and Caturrita formations. The lower, cynodont-dicynodont dominated fauna of that sequence is partially Chañarian (Ladinian) in age, and encompasses the Dinodontosaurus Assem- blage-Zone. The Late Triassic fauna includes the Hyperodapedon and Ictidosaur assemblage-zones. The former, dominated by rhynchosaurs, includes some of the oldest known dinosaurs, and can be given an Ischigualastian (Carnian) age.
    [Show full text]
  • Morfologia Pós-Craniana De Cinodontes Traversodontídeos Da Zona De Associação De Santacruzodon, Triássico Médio Do Rio Grande Do Sul, Bacia Do Paraná, Brasil
    UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE GEOCIÊNCIAS PROGRAMA DE PÓS-GRADUAÇÃO EM GEOCIÊNCIAS MORFOLOGIA PÓS-CRANIANA DE CINODONTES TRAVERSODONTÍDEOS DA ZONA DE ASSOCIAÇÃO DE SANTACRUZODON, TRIÁSSICO MÉDIO DO RIO GRANDE DO SUL, BACIA DO PARANÁ, BRASIL RICARDO SABOIA BERTONI ORIENTADOR – Profª. Dra. Ana Maria Ribeiro Porto Alegre – 2014 UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE GEOCIÊNCIAS PROGRAMA DE PÓS-GRADUAÇÃO EM GEOCIÊNCIAS MORFOLOGIA PÓS-CRANIANA DE CINODONTES TRAVERSODONTÍDEOS DA ZONA DE ASSOCIAÇÃO DE SANTACRUZODON, TRIÁSSICO MÉDIO DO RIO GRANDE DO SUL, BACIA DO PARANÁ, BRASIL RICARDO SABOIA BERTONI ORIENTADOR – Profª. Dra. Ana Maria Ribeiro BANCA EXAMINADORA Profª. Dra. Graciela Piñeiro - Departamento de Evolución de Cuencas, Facultad de Ciencias, Montevideo, Uruguai Profª. Dra. Marina Bento Soares – Instituto de Geociências, Universidade Federal do Rio Grande do Sul, Brasil Prof. Dr. Jorge Ferigolo – Museu de Ciências Naturais, Fundação Zoobotânica do Rio Grande do Sul, Brasil Dissertação de Mestrado apresentada como requisito parcial para a obtenção do Título de Mestre em Geociências. Porto Alegre – 2014 Ao casal mais lindo que já conheci Meus Amados Pais AGRADECIMENTOS Inicialmente gostaria de agradecer ao Programa de Pós-Graduação em Geociências da Universidade Federal do Rio Grande do Sul (PPGGEO-UFRGS) pela oportunidade paraa mim ofertada de realizar este Mestrado. À Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) pelo financiamento desta pesquisa por meio da bolsa de Mestrado. À Dra. Ana Maria Ribeiro, minha orientadora desde os tempos de Iniciação Científica no Museu de Ciências Naturais da Fundação Zoobotânica do Rio Grande do Sul (MCN-FZBRS) e neste Mestrado pela Universidade Federal do Rio Grande do Sul.
    [Show full text]
  • Introduction to the Tetrapod Biozonation of the Karoo Supergroup
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/342446203 Introduction to the tetrapod biozonation of the Karoo Supergroup Article in South African Journal of Geology · June 2020 DOI: 10.25131/sajg.123.0009 CITATIONS READS 0 50 4 authors, including: Bruce S Rubidge Michael O. Day University of the Witwatersrand Natural History Museum, London 244 PUBLICATIONS 5,724 CITATIONS 45 PUBLICATIONS 385 CITATIONS SEE PROFILE SEE PROFILE Jennifer Botha National Museum Bloemfontein 82 PUBLICATIONS 2,162 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Permo-Triassic Mass Extinction View project Permo-Triassic palaeoecology of southern Africa View project All content following this page was uploaded by Michael O. Day on 24 August 2020. The user has requested enhancement of the downloaded file. R.M.H. SMITH, B.S. RUBIDGE, M.O. DAY AND J. BOTHA Introduction to the tetrapod biozonation of the Karoo Supergroup R.M.H. Smith Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, 2050 South Africa Karoo Palaeontology, Iziko South African Museum, P.O. Box 61, Cape Town, 8000, South Africa e-mail: [email protected] B.S. Rubidge Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg 2050, South Africa e-mail: [email protected] M.O. Day Department of Earth Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, United Kingdom Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg 2050, South Africa e-mail: [email protected] J. Botha National Museum, P.O. Box 266, Bloemfontein, 9300, South Africa Department of Zoology and Entomology, University of the Free State, 9300, South Africa e-mail: [email protected] © 2020 Geological Society of South Africa.
    [Show full text]
  • A Revised Classification of Cynodonts (Reptilia; Therapsida)
    71 Palaeont. afr., 14.71-85.1972 A REVISED CLASSIFICATION OF CYNODONTS (REPTILIA; THERAPSIDA) by * James A. Hopson and tJames W. Kitching INTRODUCTION We wish to thank the following colleagues for Cynodonts are very advanced mammal-like access to unpublished information which has been incorpo~ated ~nto th~s ~eptiles of the Pe:m<;>-Triassic which are of special paper: Dr. J. F. Bonaparte, Interest to evolutIOnIsts because they gave rise to FundacIOn MIgUel LIllo, Tucuman, Argentina; Dr. t~e Class Mammalia during Middle or Late Triassic A. W. Crompton, Museum of Comparative tIme. Cynodonts have been known from strata of Zoology, Har~' ard University; and Mr. J. W. A. van Early Triassic age in South Africa for over one Heerden, NatIOnal Museum, Bloemfontein. hundred years, and numerous specimens have been Several aspect~ .of this classification require collected and described. In recent years the record comment. In deCIdIng whether to consider a of cynodonts has been extended into earlier and generic or specific name to be valid, we have taken later time zones, not only in southern Africa but the ~osition that. the burden of proof is on the in East Africa, South America, Russia , China', and , descnber to conVInce us that the named taxon is most recently, in North America. Much of the distinct from earlier-named taxa. Where there is a material from outside of Africa has not yet been reasonably high probability that two named taxa fully described. are synonymous, we have usually synonymized . Ap'prox~m~tely 125 species of cynodonts them, even though the evidence for their identity is (Includmg IctIdosaurs and tritylodonts herein not conclusive.
    [Show full text]
  • Addo Elephant National Park – Geology
    Addo Elephant National Park – Geology Introduction Before we start, one must remember that we live on a dynamic planet, which is permanently changing and evolving. The earth has a radius of about 6 300km and is covered by a 40km thick crust. The surface crust is continuously being driven by convection currents in the underlying mantle. This causes the crustal plates (continents and oceans) to move relative to each other, a process called “continental drift”. Crustal plates can drift (float) from the warmer tropics to the colder pole regions, all the time changing the way in which a landscape evolves. The combination of earth processes and climatic conditions has a significant impact on the final landscape appearance. The oldest rocks – Peninsula formation quartzitic sandstone The easiest way to describe the geological evolution of the Park is to start with the oldest rocks and work our way towards the present. Our story begins when Africa was joined to a number of other continents to form a super continent called “Pangea”. We (South Africa) were stuck in the middle of this land mass and our landscape was, therefore, very different to what one sees today. The oldest rocks encountered in the Park occur as small islands in Algoa Bay. The Bird Island complex comprises Black Rock, Stag, Seal and Bird Islands and occurs about 10 km south of the Woody Cape cliffs. These rocky islands are made up of quartzitic sandstone of the Peninsula Formation, which forms part of the Table Mountain Group, which in turn forms part of the Cape Supergroup.
    [Show full text]
  • HISTORIA NATURAL Tercera Serie Volumen 2 (2) 2012/5-30
    ISSN (impreso) 0326-1778 / ISSN (on-line) 1853-6581 HISTORIA NATURAL Tercera Serie Volumen 2 (2) 2012/5-30 DISCOVERIES IN THE LATE TRIASSIC OF BRAZIL IMPROVE KNOWLEDGE ON THE ORIGIN OF MAMMALS Descubrimientos en el Triásico tardío de Brasil perfeccionan nuestro conocimiento sobre el origen de los mamíferos José F. Bonaparte1, 2, Marina B. Soares3, and Agustín G. Martinelli4 1Museo Municipal de Ciencias Naturales “Carlos Ameghino”, Calle 26 512 (6600), Mercedes, Buenos Aires, Argentina. 2Departamento de Ciencias Naturales y Antropología, Fundación de Historia Natural Félix de Azara, Universidad Maimónides, Hidalgo 775 piso 7 (C1405BDB), Ciudad Autónoma de Buenos Aires, República Argentina. [email protected] 3Departamento de Paleontologia e Estratigrafia, Instituto de Geociências, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, Caixa Postal (15.001, 91501-970), Porto Alegre, RS, Brasil. 4Centro de Pesquisas Paleontológicas L. I. Price, Complexo Cultural e Científico Petrópolis (CCCP/UFTM), BR-262, Km 784, Bairro Peirópolis, 755, Uberaba, Minas Gerais, Brazil. 5 Bonaparte J. F., Soares M. B. and Martinelli A. G. Abstract. A new specimen of Brasilitherium riograndensis, which includes complete skull, lower jaws, dentition and some postcranial bones, is described, along with a redescription of the skull, lower jaws and dentition of Minicynodon maieri, both derived eucynodonts from the Late Triassic of Southern Brazil. The anatomical comparison confirms the close relationships of both genera with the Morganucodonta and suggest that the Tritheledontidae is the sister group of the Brasilodontidae. Some comments after the anatomical information from the brasilodontids are developed on the following subjects: the sister group of mammals, the interpterygoid vacuity, and on Adelobasileus, Hadrocodium and Microconodon.
    [Show full text]