Stories of the Tides
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
GASTROPOD CARE SOP# = Moll3 PURPOSE: to Describe Methods Of
GASTROPOD CARE SOP# = Moll3 PURPOSE: To describe methods of care for gastropods. POLICY: To provide optimum care for all animals. RESPONSIBILITY: Collector and user of the animals. If these are not the same person, the user takes over responsibility of the animals as soon as the animals have arrived on station. IDENTIFICATION: Common Name Scientific Name Identifying Characteristics Blue topsnail Calliostoma - Whorls are sculptured spirally with alternating ligatum light ridges and pinkish-brown furrows - Height reaches a little more than 2cm and is a bit greater than the width -There is no opening in the base of the shell near its center (umbilicus) Purple-ringed Calliostoma - Alternating whorls of orange and fluorescent topsnail annulatum purple make for spectacular colouration - The apex is sharply pointed - The foot is bright orange - They are often found amongst hydroids which are one of their food sources - These snails are up to 4cm across Leafy Ceratostoma - Spiral ridges on shell hornmouth foliatum - Three lengthwise frills - Frills vary, but are generally discontinuous and look unfinished - They reach a length of about 8cm Rough keyhole Diodora aspera - Likely to be found in the intertidal region limpet - Have a single apical aperture to allow water to exit - Reach a length of about 5 cm Limpet Lottia sp - This genus covers quite a few species of limpets, at least 4 of them are commonly found near BMSC - Different Lottia species vary greatly in appearance - See Eugene N. Kozloff’s book, “Seashore Life of the Northern Pacific Coast” for in depth descriptions of individual species Limpet Tectura sp. - This genus covers quite a few species of limpets, at least 6 of them are commonly found near BMSC - Different Tectura species vary greatly in appearance - See Eugene N. -
The Biology of Seashores - Image Bank Guide All Images and Text ©2006 Biomedia ASSOCIATES
The Biology of Seashores - Image Bank Guide All Images And Text ©2006 BioMEDIA ASSOCIATES Shore Types Low tide, sandy beach, clam diggers. Knowing the Low tide, rocky shore, sandstone shelves ,The time and extent of low tides is important for people amount of beach exposed at low tide depends both on who collect intertidal organisms for food. the level the tide will reach, and on the gradient of the beach. Low tide, Salt Point, CA, mixed sandstone and hard Low tide, granite boulders, The geology of intertidal rock boulders. A rocky beach at low tide. Rocks in the areas varies widely. Here, vertical faces of exposure background are about 15 ft. (4 meters) high. are mixed with gentle slopes, providing much variation in rocky intertidal habitat. Split frame, showing low tide and high tide from same view, Salt Point, California. Identical views Low tide, muddy bay, Bodega Bay, California. of a rocky intertidal area at a moderate low tide (left) Bays protected from winds, currents, and waves tend and moderate high tide (right). Tidal variation between to be shallow and muddy as sediments from rivers these two times was about 9 feet (2.7 m). accumulate in the basin. The receding tide leaves mudflats. High tide, Salt Point, mixed sandstone and hard rock boulders. Same beach as previous two slides, Low tide, muddy bay. In some bays, low tides expose note the absence of exposed algae on the rocks. vast areas of mudflats. The sea may recede several kilometers from the shoreline of high tide Tides Low tide, sandy beach. -
Restoration Monitoring Final
SCIENCE FOR SOLUTIONS NOAA COASTAL OCEAN PROGRAM Decision Analysis Series No. 23, Volume 1 SCIENCE-BASED RESTORATION MONITORING OF COASTAL HABITATS Volume One: A Framework for Monitoring Plans Under the Estuaries and Clean Waters Act of 2000 (Public Law 160-457) Gordon W. Thayer Amy D. Nickens Teresa A. McTigue Stephen J. Lozano Russell J. Bellmer Perry F. Gayaldo Felicity M. Burrows Pamela J. Polmateer David H. Merkey P. Thomas Pinit OCTOBER 2003 U.S. DEPARTMENT OF COMMERCE NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION NATIONAL OCEAN SERVICE NATIONAL CENTERS FOR COASTAL OCEAN SCIENCE CENTER FOR SPONSORED COASTAL OCEAN RESEARCH DECISION ANALYSIS SERIES The Decision Analysis Series has been established by NOAA’s Coastal Ocean Program (COP) to present documents that contain analytical treatments of major issues or topics for coastal resource decision makers. The issues, topics, and principal investigators have been selected through an extensive peer review process. To learn more about the COP or the Decision Analysis Series, please write: NOAA Coastal Ocean Program (N/SCI2) Center for Sponsored Coastal Ocean Research 1305 East West Highway, Room 8243 Silver Spring, MD 20910-3282 phone: 301-713-3338 fax: 301-713-4044 web: www.cop.noaa.gov Cover photo. A coastal wetland complex on the Lake Ontario shoreline. Photo courtesy of Doug Wilcox, United States Geological Survey. Science for Solutions NOAA COASTAL OCEAN PROGRAM Decision Analysis Series No. 23, Volume 1 SCIENCE-BASED RESTORATION MONITORING OF COASTAL HABITATS Volume One: A Framework for Monitoring Plans Under the Estuaries and Clean Waters Act of 2000 (Public Law 160-457) Gordon W. Thayer Teresa A. -
Siliqua Patula Class: Bivalvia; Heterodonta Order: Veneroida the Flat Razor Clam Family: Pharidae
Phylum: Mollusca Siliqua patula Class: Bivalvia; Heterodonta Order: Veneroida The flat razor clam Family: Pharidae Taxonomy: The familial designation of this (see Plate 397G, Coan and Valentich-Scott species has changed frequently over time. 2007). Previously in the Solenidae, current intertidal Body: (see Plate 29 Ricketts and Calvin guides include S. patula in the Pharidae (e.g., 1952; Fig 259 Kozloff 1993). Coan and Valentich-Scott 2007). The superfamily Solenacea includes infaunal soft Color: bottom dwelling bivalves and contains the two Interior: (see Fig 5, Pohlo 1963). families: Solenidae and Pharidae (= Exterior: Cultellidae, von Cosel 1993) (Remacha- Byssus: Trivino and Anadon 2006). In 1788, Dixon Gills: described S. patula from specimens collected Shell: The shell in S. patula is thin and with in Alaska (see Range) and Conrad described sharp (i.e., razor-like) edges and a thin profile the same species, under the name Solen (Fig. 4). Thin, long, fragile shell (Ricketts and nuttallii from specimens collected in the Calvin 1952), with gapes at both ends Columbia River in 1838 (Weymouth et al. (Haderlie and Abbott 1980). Shell smooth 1926). These names were later inside and out (Dixon 1789), elongate, rather synonymized, thus known synonyms for cylindrical and the length is about 2.5 times Siliqua patula include Solen nuttallii, the width. Solecurtus nuttallii. Occasionally, researchers Interior: Prominent internal vertical also indicate a subspecific epithet (e.g., rib extending from beak to margin (Haderlie Siliqua siliqua patula) or variations (e.g., and Abbott 1980). Siliqua patula var. nuttallii, based on rib Exterior: Both valves are similar and morphology, see Possible gape at both ends. -
OREGON ESTUARINE INVERTEBRATES an Illustrated Guide to the Common and Important Invertebrate Animals
OREGON ESTUARINE INVERTEBRATES An Illustrated Guide to the Common and Important Invertebrate Animals By Paul Rudy, Jr. Lynn Hay Rudy Oregon Institute of Marine Biology University of Oregon Charleston, Oregon 97420 Contract No. 79-111 Project Officer Jay F. Watson U.S. Fish and Wildlife Service 500 N.E. Multnomah Street Portland, Oregon 97232 Performed for National Coastal Ecosystems Team Office of Biological Services Fish and Wildlife Service U.S. Department of Interior Washington, D.C. 20240 Table of Contents Introduction CNIDARIA Hydrozoa Aequorea aequorea ................................................................ 6 Obelia longissima .................................................................. 8 Polyorchis penicillatus 10 Tubularia crocea ................................................................. 12 Anthozoa Anthopleura artemisia ................................. 14 Anthopleura elegantissima .................................................. 16 Haliplanella luciae .................................................................. 18 Nematostella vectensis ......................................................... 20 Metridium senile .................................................................... 22 NEMERTEA Amphiporus imparispinosus ................................................ 24 Carinoma mutabilis ................................................................ 26 Cerebratulus californiensis .................................................. 28 Lineus ruber ......................................................................... -
An Invitation to Monitor Georgia's Coastal Wetlands
An Invitation to Monitor Georgia’s Coastal Wetlands www.shellfish.uga.edu By Mary Sweeney-Reeves, Dr. Alan Power, & Ellie Covington First Printing 2003, Second Printing 2006, Copyright University of Georgia “This book was prepared by Mary Sweeney-Reeves, Dr. Alan Power, and Ellie Covington under an award from the Office of Ocean and Coastal Resource Management, National Oceanic and Atmospheric Administration. The statements, findings, conclusions, and recommendations are those of the authors and do not necessarily reflect the views of OCRM and NOAA.” 2 Acknowledgements Funding for the development of the Coastal Georgia Adopt-A-Wetland Program was provided by a NOAA Coastal Incentive Grant, awarded under the Georgia Department of Natural Resources Coastal Zone Management Program (UGA Grant # 27 31 RE 337130). The Coastal Georgia Adopt-A-Wetland Program owes much of its success to the support, experience, and contributions of the following individuals: Dr. Randal Walker, Marie Scoggins, Dodie Thompson, Edith Schmidt, John Crawford, Dr. Mare Timmons, Marcy Mitchell, Pete Schlein, Sue Finkle, Jenny Makosky, Natasha Wampler, Molly Russell, Rebecca Green, and Jeanette Henderson (University of Georgia Marine Extension Service); Courtney Power (Chatham County Savannah Metropolitan Planning Commission); Dr. Joe Richardson (Savannah State University); Dr. Chandra Franklin (Savannah State University); Dr. Dionne Hoskins (NOAA); Dr. Charles Belin (Armstrong Atlantic University); Dr. Merryl Alber (University of Georgia); (Dr. Mac Rawson (Georgia Sea Grant College Program); Harold Harbert, Kim Morris-Zarneke, and Michele Droszcz (Georgia Adopt-A-Stream); Dorset Hurley and Aimee Gaddis (Sapelo Island National Estuarine Research Reserve); Dr. Charra Sweeney-Reeves (All About Pets); Captain Judy Helmey (Miss Judy Charters); Jan Mackinnon and Jill Huntington (Georgia Department of Natural Resources). -
Evolutionary Consequences of Food Chain Length in Kelp Forest Communities (Biogeography/Coevolution/Herbivory/Phlorotannins/Predation) PETER D
Proc. Natl. Acad. Sci. USA Vol. 92, pp. 8145-8148, August 1995 Ecology Evolutionary consequences of food chain length in kelp forest communities (biogeography/coevolution/herbivory/phlorotannins/predation) PETER D. STEINBERG*, JAMES A. ESTEStt, AND FRANK C. WINTER§ *School of Biological Sciences, University of New South Wales, P.O. Box 1, Kensington, New South Wales, 2033, Australia; tNational Biological Service, A-316 Earth and Marine Sciences Building, University of California, Santa Cruz, CA 95064; and §University of Auckland, Leigh Marine Laboratory, P.O. Box 349, Warkworth, New Zealand Communicated by Robert T. Paine, University of Washington, Seattle, WA, May 12, 1995 ABSTRACT Kelp forests are strongly influenced by mac- consistently important structuring processes throughout the roinvertebrate grazing on fleshy macroalgae. In the North food web. Under these conditions, we would predict that Pacific Ocean, sea otter predation on macroinvertebrates top-level consumers are resource limited. Consequently, the substantially reduces the intensity of herbivory on macroal- next lower trophic level should be consumer limited, in turn gae. Temperate Australasia, in contrast, has no known pred- causing the level below that (if one exists) to again be resource ator of comparable influence. These ecological and biogeo- limited. Looking downward through the food web from this graphic patterns led us to predict that (i) the intensity of very generalized perspective, a pattern emerges of strongly herbivory should be greater in temperate Australasia than in interacting couplets of adjacent trophic levels. Given these the North Pacific Ocean; thus (ii) Australasian seaweeds have circumstances, the interactive coupling between plants and been under stronger selection to evolve chemical defenses and herbivores should be strong in even-numbered systems and (iii) Australasian herbivores have been more strongly selected weak in odd-numbered systems, a prediction recently substan- to tolerate these compounds. -
Intertidal Narrative
Warner Pacific College Boiler Bay Intertidal Trip - Dwight J. Kimberly This is a summary of things to look for on the field trip and a few suggestions to make the trip more enjoyable for you. Be careful where you step because the intertidal floor is the home of many animals. No animals will be collected without a permit. When close to the surf, watch the ocean at all times. Take your time climbing around the rocks. They are slick and a fall could break a bone or remove skin. Use the accompanying checklist to key the phyla that you have learned in the course The following discussion is based upon Ricketts and Calvin, Between the Pacific Tides. Three factors modify the intertidal marine fauna: 1) wave shock, 2) tidal exposure and 3) type of bottom. You will see an example of the protected rocky coast in which the shock of the waves is reduced by the influence of a long sloping shelf. Other possible modifications which produce the same result are offshore reefs, headlands, islands or large kelp beds. The bottom is typically rocky and affords a firm substrate for animal attachment to plants and animals. By turning over rocks you will uncover a myriad of animals, but at the same time expose them to the fatal effects of the sun. Therefore, replace the rocks as you found them to assure the survival of these animals. The zonation of the animal life as a result of the tides is apparent. Familiarize yourself with the zones and their characteristics. ZONE 1. -
Tezula Funebralis Shell Height Variance in the Intertidal Zones
Laci Uyesono Structural Comparison Adaptations of Marine Animals Tezula funebralis Shell height variance in the Intertidal zones Introduction The Pacific Coast of the United States is home to a great diversity of biota that populates both extremes, from the constantly battered rocks to the calm ocean floor. As a result of this diversity or because of this diversity there are distinct zones created by the physical, chemical, and biological constraints of the organisms. Tegula funebralis (T funebralis) commonly called the Black Turban shell is found in the low to high intertidal zones of rocky shores on or under rocks grazing on macroalgae. T funebralis can be purple to black in color with four whirls on top (usually worn down to a light color at the top), average 3cm in diameter, and can live up to 100 years (Sept 1999). T funebralis' density tends to be greater in the mid to high intertidal zone due to predation by octopus, Pisaster ochraceous, and crabs (Fawcett 1984). They also show a pattern of distribution where juveniles (those not of reproductive size —14mm) stay in the mid intertidal zone because it is midway between the physical stress of desiccation and the biological stress of predation (Fawcett 1984). Generally larger snails are able to withstand desiccation more then smaller snails, but larger Tegula have a greater advantage living lower in the intertidal even at the risk of predation. They are kept at moderate levels in this zone because Pisaster feeds on them and reduces their density, which then increases the food abundance for those who remain (Doering and Phillips 1983). -
Studies on the Ecological Distribution of the Genus Tegula at Bodega Bay, California
University of the Pacific Scholarly Commons University of the Pacific Theses and Dissertations Graduate School 1950 Studies on the ecological distribution of the genus Tegula at Bodega Bay, California Allen Emmert Breed University of the Pacific Follow this and additional works at: https://scholarlycommons.pacific.edu/uop_etds Part of the Marine Biology Commons, and the Zoology Commons Recommended Citation Breed, Allen Emmert. (1950). Studies on the ecological distribution of the genus Tegula at Bodega Bay, California. University of the Pacific, Thesis. https://scholarlycommons.pacific.edu/uop_etds/1115 This Thesis is brought to you for free and open access by the Graduate School at Scholarly Commons. It has been accepted for inclusion in University of the Pacific Theses and Dissertations by an authorized administrator of Scholarly Commons. For more information, please contact [email protected]. &rUD! ES ON THE l!VOLOGICAL DISTRIBUTION OF THE I' GENUS TEGULA AT BODEGA BAY , CALIFORNIA A Thesis Presented to t he Faculty of the Department of Zoology College of the Pacific I I I n Partial Fulfillment of the Requirements for the Degree Mas·ter of Arts by Al len Emmert Breed •II June 1950 l ) TABLE OF CO!'-."'TENrS PAGE I. IN'l'HODUC'l'ION ............................. ., • 1 The Pro bl ern ••••••••••••••••••••••••••••• 1 I mportanc e of the Study ••••••••••••••• 1 Stat ement of t he Problem •••••••••••••• 2 Acknowledgment • • • • • • • • • • • • • • • • • • • • • • • • • • 2 Description of t he Local Species •••••••• 3 II. AREA OF OBSroiVATION ••••••••••••••••••••••• 9 General Location •••••••••• • ••••••••••••• 9 Geological History •••••••••••.••••••••••• 9 III. Mh~HODS AND EQUIPMENT ................ ... 12 Field Equipment .......................... l B Prepar ation of the Radulae •••••••••••••• 13 IV • EJOLOG-IG.AL OBSERVAT-IONS • ......- •••••• •• •• ;-;-••••- - 17 Perch·Rock Area •••••••••••• ••• •••••••••• 17 Second Sled Ro ad Areo •••••••• • •••••••••• 20 East Side of Toma l es Point •••••••••••••• 25 West Side of Tomol es Point •••••••••••••• 29 v. -
See Life Trunk
See Life Trunk CABRILLO NATIONAL MONUMENT Objective The See Life Trunk is designed to help students experience the vast biodiversity of earth’s marine ecosystems from the comfort of their classroom. The activities, books, and DVDs in this trunk specifically target third and fourth grade students based on Next Generation Science Standards. The trunk will bring to life the meaning of biodiversity in the ocean, its role in the maintenance and function of healthy marine ecosystems, and what students can do to help protect this environment for generations to come. What’s Inside Books: In One Tidepool: Crabs, Snails and Salty Tails SEASHORE (One Small Square series) CORAL REEFS (One Small Square series) The Secrets of Kelp Forests The Secrets of the Tide Pools Shells of San Diego DVDs: Eyewitness Life Eyewitness Seashore Eyewitness Ocean Bill Nye the Science Guy: Ocean Life On the Edge of Land and Sea Activities, Resources & Worksheets: Marine Bio-Bingo Guess Who: Intertidal Patterns in Nature See Life & Habitats o Classroom set of Michael Ready photographs o 3D-printed biomodels Science Sampler Intro to Nature Journaling o Creature Features o Baseball Cards Who Am I? Beyond the Classroom Activities Intertidal Exploration 3D Cabrillo Bioblitz Beach clean-up How to Use this Trunk The See Life Trunk is designed to be used in a variety of ways. Most of the activities in the trunk can be adapted for any number of people for any amount of time, but some activities are better suited for entire-class participation (i.e. watching DVDs, Nature Journaling) while others are better suited for small groups (i.e. -
Range Expansion of a Non-Native, Invasive Macroalga Sargassum Horneri (Turner) C. Agardh, 1820 in the Eastern Pacific
BioInvasions Records (2015) Volume 4, Issue 4: 243–248 Open Access doi: http://dx.doi.org/10.3391/bir.2015.4.4.02 © 2015 The Author(s). Journal compilation © 2015 REABIC Rapid Communication Range expansion of a non-native, invasive macroalga Sargassum horneri (Turner) C. Agardh, 1820 in the eastern Pacific 1,2 2 2 1,2 2,3 Lindsay M. Marks *, Paulina Salinas-Ruiz , Daniel C. Reed , Sally J. Holbrook , Carolynn S. Culver , 2 4 2 5 6 John M. Engle , David J. Kushner , Jennifer E. Caselle , Jan Freiwald , Jonathan P. Williams , Jayson R. 7 8 9 Smith , Luis E. Aguilar-Rosas and Nikolas J. Kaplanis 1Department of Ecology, Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, California 93106-6150, USA 2Marine Science Institute, University of California Santa Barbara, Santa Barbara, California 93106-6150, USA 3California Sea Grant, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0232, USA 4Channel Islands National Park, 1901 Spinnaker Drive, Ventura, California 93001, USA 5Reef Check Foundation, 13723 Fiji Way, B-2, Marina del Rey, California 90292, USA 6Moore Laboratory of Zoology, Occidental College, Los Angeles, California 90041, USA 7Department of Biological Sciences, California State Polytechnic University, Pomona, California 91768, USA 8Instituto de Investigaciones Oceanológicas, Universidad Autónoma de Baja California, Carr. Transpeninsular Ensenada-Tijuana, 3917. Frac. Playitas, Ensenada, Baja California, México. C.P. 22860 9Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0202, USA *Corresponding author E-mail: [email protected] Received: 11 July 2015 / Accepted: 18 August 2015 / Published online: 19 October 2015 Handling editor: Charles Martin Abstract Sargassum horneri (Turner) C.