Reducing Launch Operation Costs: New Technologies and Practices
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Vulcan Centaur
VULCAN CENTAUR The Vulcan Centaur rocket design leverages the flight-proven success of the Delta IV and Atlas V launch vehicles while introducing new technologies and innovative features to ensure a reliable and aordable space launch service. Vulcan Centaur will service a diverse range of markets including 225 ft commercial, civil, science, cargo and national security space customers. 1 The spacecraft is encapsulated in a 5.4-m- (17.7-ft-) diameter payload fairing (PLF), a sandwich composite structure made with a vented aluminum-honeycomb core and graphite-epoxy face sheets. The bisector (two-piece shell) PLF encapsulates the spacecraft. The payload attach fitting (PAF) is a similar sandwich composite structure creating the mating interface from spacecraft to second stage. The PLF separates using a debris-free horizontal and vertical separation system with 2 200 ft spring packs and frangible joint assembly. The payload fairing is available in the 15.5-m (51-ft) standard and 21.3-m (70-ft) 1 long configurations. The Centaur upper stage is 5.4 m (17.7 ft) in diameter and 3 11.7 m (38.5 ft) long with a 120,000-lb propellant capacity. Its propellant tanks are constructed of pressure-stabilized, corrosion-resistant stainless steel. Centaur is a liquid hydrogen/liquid oxygen-fueled vehicle, with two RL10C 4 engines. The Vulcan Centaur Heavy vehicle, flies the upgraded 2 Centaur using RL10CX engines with nozzle extensions. The 5 175 ft cryogenic tanks are insulated with spray-on foam insulation (SOFI) to manage boil o of cryogens during flight. An aft equipment shelf provides the structural mountings for vehicle electronics. -
Contingency Shuttle Crew Support (Cscs)/Rescue Flight Resource Book
CSCS/Rescue Flight Resource Book JSC-62900 CONTINGENCY SHUTTLE CREW SUPPORT (CSCS)/RESCUE FLIGHT RESOURCE BOOK OVERVIEW 1 Mission Operations CSCS 2 Directorate RESCUE 3 FLIGHT DA8/Flight Director Office Final July 12, 2005 National Aeronautics and Space Administration Lyndon B. Johnson Space Center Houston, Texas FINAL 07/12/05 2-i Verify this is the correct version before using. CSCS/Rescue Flight Resource Book JSC-62900 CONTINGENCY SHUTTLE CREW SUPPORT (CSCS)/RESCUE FLIGHT RESOURCE BOOK FINAL JULY 12, 2005 PREFACE This document, dated May 24, 2005, is the Basic version of the Contingency Shuttle Crew Support (CSCS)/Rescue Flight Resource Book. It is requested that any organization having comments, questions, or suggestions concerning this document should contact DA8/Book Manager, Flight Director Office, Building 4 North, Room 3039. This is a limited distribution and controlled document and is not to be reproduced without the written approval of the Chief, Flight Director Office, mail code DA8, Lyndon B. Johnson Space Center, Houston, TX 77058. FINAL 07/12/05 2-ii Verify this is the correct version before using. CSCS/Rescue Flight Resource Book JSC-62900 1.0 - OVERVIEW Section 1.0 is the overview of the entire Contingency Shuttle Crew Support (CSCS)/Rescue Flight Resource Book. FINAL 07/12/05 2-iii Verify this is the correct version before using. CSCS/Rescue Flight Resource Book JSC-62900 This page intentionally blank. FINAL 07/12/05 2-iv Verify this is the correct version before using. CSCS/Rescue Flight Resource Book JSC-62900 2.0 - CONTINGENCY SHUTTLE CREW SUPPORT (CSCS) 2.1 Procedures Overview.......................................................................................................2-1 2.1.1 ................................................................................ -
Centaur Dl-A Systems in a Nutshell
NASA Technical Memorandum 88880 '5 t I Centaur Dl-A Systems in a Nutshell (NASA-TM-8888o) CElTAUR D1-A SYSTEBS IN A N87- 159 96 tiljTSBELL (NASA) 29 p CSCL 22D Andrew L. Gordan Lewis Research Center Cleveland, Ohio January 1987 . CENTAUR D1-A SYSTEMS IN A NUTSHELL Andrew L. Gordan National Aeronautics and Space Administration Lewis Research Center Cleveland, Ohio 44135 SUMMARY This report identifies the unique aspects of the Centaur D1-A systems and subsystems. Centaur performance is described in terms of optimality (pro- pellant usage), flexibility, and airborne computer requirements. Major I-. systems are described narratively with some numerical data given where it may 03 CJ be useful. v, I W INTRODUCT ION The Centaur D1-A launch vehicle continues to be a key element in the Nation's space program. The Atlas/Centaur and Titan/Centaur combinations have boosted into orbit a variety of spacecraft on scientific, lunar, and planetary exploration missions and Earth orbit missions. These versatile, reliable, and accurate space booster systems will contribute to many significant space pro- grams well into the shuttle era. Centaur D1-A is the latest version of the Nation's first high-energy cryogenic launch vehicle. Major improvements in avionics and payload struc- ture have enhanced mission flexibility and mission success reliability. The liquid hydrogen and liquid oxygen propellants and the pressurized stainless steel structure provide a top-performance vehicle. Centaur's primary thrust comes from two Pratt 8, Whitney constant- thrust, turbopump-fed, regeneratively cooled, liquid-fueled rocket engines. Each RL10A-3-3a engine can generate 16 500 lb of thrust, for a total thrust of 33 000 lb. -
L AUNCH SYSTEMS Databk7 Collected.Book Page 18 Monday, September 14, 2009 2:53 PM Databk7 Collected.Book Page 19 Monday, September 14, 2009 2:53 PM
databk7_collected.book Page 17 Monday, September 14, 2009 2:53 PM CHAPTER TWO L AUNCH SYSTEMS databk7_collected.book Page 18 Monday, September 14, 2009 2:53 PM databk7_collected.book Page 19 Monday, September 14, 2009 2:53 PM CHAPTER TWO L AUNCH SYSTEMS Introduction Launch systems provide access to space, necessary for the majority of NASA’s activities. During the decade from 1989–1998, NASA used two types of launch systems, one consisting of several families of expendable launch vehicles (ELV) and the second consisting of the world’s only partially reusable launch system—the Space Shuttle. A significant challenge NASA faced during the decade was the development of technologies needed to design and implement a new reusable launch system that would prove less expensive than the Shuttle. Although some attempts seemed promising, none succeeded. This chapter addresses most subjects relating to access to space and space transportation. It discusses and describes ELVs, the Space Shuttle in its launch vehicle function, and NASA’s attempts to develop new launch systems. Tables relating to each launch vehicle’s characteristics are included. The other functions of the Space Shuttle—as a scientific laboratory, staging area for repair missions, and a prime element of the Space Station program—are discussed in the next chapter, Human Spaceflight. This chapter also provides a brief review of launch systems in the past decade, an overview of policy relating to launch systems, a summary of the management of NASA’s launch systems programs, and tables of funding data. The Last Decade Reviewed (1979–1988) From 1979 through 1988, NASA used families of ELVs that had seen service during the previous decade. -
Atlas Launch System Mission Planner's Guide, Atlas V Addendum
ATLAS Atlas Launch System Mission Planner’s Guide, Atlas V Addendum FOREWORD This Atlas V Addendum supplements the current version of the Atlas Launch System Mission Plan- ner’s Guide (AMPG) and presents the initial vehicle capabilities for the newly available Atlas V launch system. Atlas V’s multiple vehicle configurations and performance levels can provide the optimum match for a range of customer requirements at the lowest cost. The performance data are presented in sufficient detail for preliminary assessment of the Atlas V vehicle family for your missions. This guide, in combination with the AMPG, includes essential technical and programmatic data for preliminary mission planning and spacecraft design. Interface data are in sufficient detail to assess a first-order compatibility. This guide contains current information on Lockheed Martin’s plans for Atlas V launch services. It is subject to change as Atlas V development progresses, and will be revised peri- odically. Potential users of Atlas V launch service are encouraged to contact the offices listed below to obtain the latest technical and program status information for the Atlas V development. For technical and business development inquiries, contact: COMMERCIAL BUSINESS U.S. GOVERNMENT INQUIRIES BUSINESS INQUIRIES Telephone: (691) 645-6400 Telephone: (303) 977-5250 Fax: (619) 645-6500 Fax: (303) 971-2472 Postal Address: Postal Address: International Launch Services, Inc. Commercial Launch Services, Inc. P.O. Box 124670 P.O. Box 179 San Diego, CA 92112-4670 Denver, CO 80201 Street Address: Street Address: International Launch Services, Inc. Commercial Launch Services, Inc. 101 West Broadway P.O. Box 179 Suite 2000 MS DC1400 San Diego, CA 92101 12999 Deer Creek Canyon Road Littleton, CO 80127-5146 A current version of this document can be found, in electronic form, on the Internet at: http://www.ilslaunch.com ii ATLAS LAUNCH SYSTEM MISSION PLANNER’S GUIDE ATLAS V ADDENDUM (AVMPG) REVISIONS Revision Date Rev No. -
Atlas V Cutaway Poster
ATLAS V Since 2002, Atlas V rockets have delivered vital national security, science and exploration, and commercial missions for customers across the globe including the U.S. Air Force, the National Reconnaissance Oice and NASA. 225 ft The spacecraft is encapsulated in either a 5-m (17.8-ft) or a 4-m (13.8-ft) diameter payload fairing (PLF). The 4-m-diameter PLF is a bisector (two-piece shell) fairing consisting of aluminum skin/stringer construction with vertical split-line longerons. The Atlas V 400 series oers three payload fairing options: the large (LPF, shown at left), the extended (EPF) and the extra extended (XPF). The 5-m PLF is a sandwich composite structure made with a vented aluminum-honeycomb core and graphite-epoxy face sheets. The bisector (two-piece shell) PLF encapsulates both the Centaur upper stage and the spacecraft, which separates using a debris-free pyrotechnic actuating 200 ft system. Payload clearance and vehicle structural stability are enhanced by the all-aluminum forward load reactor (FLR), which centers the PLF around the Centaur upper stage and shares payload shear loading. The Atlas V 500 series oers 1 three payload fairing options: the short (shown at left), medium 18 and long. 1 1 The Centaur upper stage is 3.1 m (10 ft) in diameter and 12.7 m (41.6 ft) long. Its propellant tanks are constructed of pressure-stabilized, corrosion-resistant stainless steel. Centaur is a liquid hydrogen/liquid oxygen-fueled vehicle. It uses a single RL10 engine producing 99.2 kN (22,300 lbf) of thrust. -
Launch Options for the Future: a Buyer's Guide (Part 7 Of
— Chapter 3 Enhanced Baseline CONTENTS , Page Improving the Shuttle . 27 Advanced Solid Rocket Motors (ASRMs) . 27 Liquid Rocket Boosters (LRBs) . 28 Lighter Tanks . 29 Improving Shuttle Ground Operations . 29 Improving Existing ELVs . 29 Delta . 30 Atlas-Centaur . ● ● . .* . 30 Titan . ● . ✎ ✎ . 30 Capability . ✎ . ✎ ✎ . ● ✎ ✎ . 30 Table 3-1. Theoretical Lift Capability of Enhanced U.S. Launch Systems. 31 Chapter 3 Enhanced Baseline The ENHANCED BASELINE option is the U.S. Government’s “Best Buy” if . it desires a space program with current or slightly greater levels of activity. By making in- cremental improvements to existing launch vehicles, production and launch facilities, the U.S. could increase its launch capacity to about 1.4 million pounds per year to LEO. The investment required would be low compared to building new vehicles; however, the ade- quacy of the resulting fleet resiliency and dependability is uncertain. This option would not provide the low launch costs (e.g. 10 percent of current costs) sought for SDI deploy- ment or an aggressive civilian space initiative, like a piloted mission to Mars, IMPROVING THE SHUTTLE The Shuttle, though a remarkable tech- . reducing the number of factory joints and nological achievement, never achieved its in- the number of parts, tended payload capacity and recent safety . designing the ASRMs so that the Space modifications have further degraded its per- Shuttle Main Engines no longer need to formance by approximately 4,800 pounds. be throttled during the region of maxi- Advanced Solid Rocket Motors (ASRMs) or mum dynamic pressure, Liquid Rocket Boosters (LRBs) have the potential to restore some of this perfor- ● replacing asbestos-bearing materials, mance; studies on both are underway. -
In February of 1962, John Glenn Was the First American to Reach Earth
Enabling Long Duration CisLunar Spaceflight via an Integrated Vehicle Fluid System Michael Holguin, United Launch Alliance (ULA) 9100 E. Mineral Avenue Centennial, CO 80112 Abstract The following paper is a summary of capabilities for the Integrated Vehicle Fluids (IVF) system that United Launch Alliance (ULA) is developing in order to reduce cost, reduce upper stage mass and reduce the # of independent upper stage systems. In addition, IVF increases the upper stage capability to enable long duration spaceflight in support of extended duration spaceflight. IVF is a single system that replaces three independent upper stage subsystems, the helium pressurization system, the reaction control system and the electrical power subsystem. IVF is critical to this long duration capability and is essential for the Advanced Cryogenic Upper Stage (ACES) that will replace Centaur and increase performance for the Vulcan booster. In addition, IVF can support multiple Atlas and Vulcan Centaur missions that would benefit from such capability. This capability is revolutionary and is a departure from the incremental evolution of the existing Evolved Expendable Launch Vehicle cryogenic upper stages. This paper will explore the basic concept of operations and results of development and proof of concept testing recently accomplished. The results presented will show that there is a high technical readiness and a valid risk reduction approach to using the otherwise unusable gases from the liquid oxygen and hydrogen tanks to fuel an internal combustion engine that powers the pressurization, attitude control and electrical needs of the upper stage. It will also explore the possibility of in-space refueling from lunar or other resources already in space. -
N AS a Facts
National Aeronautics and Space Administration NASA’s Launch Services Program he Launch Services Program (LSP) manufacturing, launch operations and rockets for launching Earth-orbit and Twas established at Kennedy Space countdown management, and providing interplanetary missions. Center for NASA’s acquisition and added quality and mission assurance in In September 2010, NASA’s Launch program management of expendable lieu of the requirement for the launch Services (NLS) contract was extended launch vehicle (ELV) missions. A skillful service provider to obtain a commercial by the agency for 10 years, through NASA/contractor team is in place to launch license. 2020, with the award of four indefinite meet the mission of the Launch Ser- Primary launch sites are Cape Canav- delivery/indefinite quantity contracts. The vices Program, which exists to provide eral Air Force Station (CCAFS) in Florida, expendable launch vehicles that NASA leadership, expertise and cost-effective and Vandenberg Air Force Base (VAFB) has available for its science, Earth-orbit services in the commercial arena to in California. and interplanetary missions are United satisfy agencywide space transporta- Other launch locations are NASA’s Launch Alliance’s (ULA) Atlas V and tion requirements and maximize the Wallops Flight Facility in Virginia, the Delta II, Space X’s Falcon 1 and 9, opportunity for mission success. Kwajalein Atoll in the South Pacific’s Orbital Sciences Corp.’s Pegasus and facts The principal objectives of the LSP Republic of the Marshall Islands, and Taurus XL, and Lockheed Martin Space are to provide safe, reliable, cost-effec- Kodiak Island in Alaska. Systems Co.’s Athena I and II. -
Upper Stages Using Liquid Propulsion and Metallized - Propellants
NASA NASA-TP-3191 19920007933 Technical Paper 3191 February 1992 Upper Stages Using Liquid Propulsion and Metallized - Propellants NASA NASA Technical Paper 3191 1992 Upper Stages Using Liquid Propulsion and Metallized Propellants Bryan A. Palaszewski Lewis Research Center Cleveland, Ohio NASA National Aeronauticsand Space Administration Office of Management Scientific and Technical InformationProgram Summary (Isp)may be required. Also, because of the limits of the capa- bilityof the IUS and potentiallylimitedavailabilityof the Titan Metallized propellants are liquid propellants with a metal IV/Centaur G-Prime for NASA missions, alternativesto these additive suspended in a gelled fuel. Typically, aluminum par- stages should be considered. ticles are the metal additive. These propellants increase the The largest available stage for the STS is the Inertial Upper density and/or the specific impulse of the propulsion system. Stage (IUS, ref. 1). It can deliver a 2268-kg (5000-Ibm)pay- Usingmetallized propellantsfor volume-and mass-constrained loadto geosynchronousEarth orbit (GEO).However, for plane- upper stages can deliver modest increases inperformance for tary missions, the IUS is limited to low-energy missions. The low Earth orbit to geosynchronous Earth orbit (LEO-GEO) t Galileo mission to Jupiter (ref. 2) was launched on an IUS. and other Earth-orbital transfer missions. However, using Using the Space Transportation System (STS)/IUS, its flight metallized propellants for planetary missionscan deliver great time will be 6.5 yr. With a high-performance cryogenic upper reductions in flight time with a single-stage, upper-stage stage, the flight time could havebeen reduced to 1.5 yr. There system, is not, however, any cryogenic upper stage available that is Tradeoff studies comparing metallized propellant stage compatible with the STS (refs. -
Titan Iv Requirements
OFFICE OF THE INSPECTOR GENERAL TITAN IV REQUIREMENTS Report No. 94-089 April 21, 1994 Department of Defense Additional Copies To obtain additional copies of this report, contact the Secondary Reports Distribution Unit, Audit Planning and Technical Support Directorate, at (703) 614-6303 (DSN 224-6303) or FAX (703) 614-8542. Suggestions for Future Audits To suggest ideas for or to request future audits, contact the Planning and Coordination Branch, Audit Planning and Technical Support Directorate, at (703) 614-1868 (DSN 224-1868) or FAX (703) 614-8542. Ideas and requests can also be mailed to: Inspector General, Department of Defense OAIG-AUD (ATTN: APTS Audit Suggestions) 400 Army Navy Drive (Room 801) Arlington, Virginia 22202-2884 DoD Hotline To report fraud, waste, or abuse, call the DoD Hotline at (800) 424-9098 (DSN 223-5080) or write to the DoD Hotline, The Pentagon, Washington, D.C. 20301-1900. The identity of writers and callers is fully protected. Acronyms FYDP Future Years Defense Program IV&V Independent Verification and Validation OSD Office of the Secretary of Defense RFP Request for Proposal SLAG Space Launch Advisory Group SPO System Program Office SRM Solid Rocket Motor SRMU Solid Rocket Motor Upgrade INSPECTOR GENERAL DEPARTMENT OF DEFENSE 400 ARMY NAVY DRIVE ARLINGTON, VIRGINIA 22202-2884 April 21, 1994 MEMORANDUM FOR ASSISTANT SECRETARY OF THE AIR FORCE (FINANCIAL MANAGEMENT AND COMPTROLLER) SUBJECT: Audit Report on Titan IV Requirements (Report No. 94-089) We are providing this audit report for your review and comments. It discusses requirements for the Titan IV expendable launch vehicle and for independent validation and verification of critical computer resources. -
Titan II Small Multisatellite Mission Approach
I I Titan II Small Multisatellite Mission Approach Aubrey J. Butts I David F. Giere Bruce M. French Martin Marietta Astronautics Group John J. Kusnierek I Space Systems Division, USAF At the present time, small satellite programs are faced with the dilemma that they are I sometimes so small that they cannot afford the expense of a dedicated Expendable Launch Vehicle (EL V) and. therefore, must attempt to find a way to get into orbit as a secondary payload. This paper discusses another alternative, the use of a Titan II as a dedicated launch vehicle for a group of small satellites. Launches could be scheduled on a periodic I basis as a function of predicted need. The Titan II has the capability of inserting total payload weight of 3,000 to 4,000 lbs. into high-inclination, low-earth orbits and smaller payloads to higher orbits. Orbit changes are possible depending on the altitudes and I payloads weights involved. Payload fairings are available for small and large payloads. Since the total payload could conceivably consist of satellites from several unrelated programs, some type of mission "broker" or central contracting agency would be needed to develop and implement a multisatellite mission. This paper offers an approach to I implementing a mission of this type that would allow small satellites to schedule a launch on the T -II multisatellite carrier at a predetermined launch date during each year. The costs would be shared between payloads on the basis of weight and volume. This gives those small satellite programs a launch option that would provide on-orbit operation at a I predetermined time.