Fluvial Landforms and the Post-Noachian Environment on Mars

Total Page:16

File Type:pdf, Size:1020Kb

Fluvial Landforms and the Post-Noachian Environment on Mars Fluvial Landforms and the Post-Noachian Environment on Mars Sharon Atirah Wilson Purdy Brooklyn, Wisconsin B. A., Middlebury College, 2001 M. S., University of Virginia, 2006 A Dissertation presented to the Graduate Faculty of the University of Virginia in Candidacy for the Degree of Doctor of Philosophy Department of Environmental Sciences University of Virginia November, 2017 ABSTRACT Several paradigm shifts have occurred over the past several decades as our understanding of the hydrologic and climatic history of Mars has evolved. It is generally accepted that the early climate on Mars was capable of sustaining an active hydrological cycle, and that (possibly episodic) precipitation and runoff formed the low-to-mid latitude belt of valley networks. Age analyses from crater counts suggests a sudden decline in fluvial activity around the Noachian-Hesperian boundary, presumably associated with the loss of the early denser atmosphere. The climate in the Hesperian and Amazonian was generally considered less favorable for precipitation (most likely snow) and runoff. This paradigm, however, is being challenged by a growing suite of post-Noachian fluvial landforms that support evidence for a late, widespread episode(s) of aqueous activity. Because modification by water and ice on a paleolandscape is one of the most unambiguous markers of past climate, this dissertation investigates fresh shallow valleys (FSVs), deltas, paleolakes, alluvial fans and aqueous-rich ejecta deposits in northern Arabia Terra and northwestern Noachis Terra that formed in the Hesperian and Amazonian. The objective of this dissertation is to provide insight into the environment and associated climate regime that permitted the formation of these post-Noachian fluvial landforms, which furthers our understanding of the potential late-stage habitability of Mars. ii TABLE OF CONTENTS ABSTRACT ....................................................................................................................... ii TABLE OF CONTENTS ................................................................................................ iii LIST OF FIGURES ......................................................................................................... vi LIST OF TABLES ........................................................................................................... ix ACKNOWLEDGMENTS ................................................................................................ x DEDICATION................................................................................................................ xiv CHAPTER 1. Introduction .............................................................................................. 1 1.1 References ............................................................................................................ 9 CHAPTER 2. Fresh Shallow Valleys in Northern Arabia Terra ............................... 15 Abstract ......................................................................................................................... 15 2.1 Introduction .......................................................................................................... 16 2.2 Background .......................................................................................................... 19 2.2.1 Morphology and Nature of FSVs ................................................................ 19 2.2.2 Occurrence and Global Distribution of FSVs ............................................. 21 2.2.3 The Northern Arabia Terra Landscape and Associated Landforms ........... 23 2.3 Data and Methods............................................................................................... 26 2.3.1 Geomorphic Mapping .................................................................................... 26 2.3.2 The Hydrological Routing Model .................................................................. 26 2.3.3 Crater Statistics and Relative Ages ............................................................... 28 2.4 Observations and Inferences .............................................................................. 29 2.4.1 Distribution and Nature of FSVs and Associated Deposits ........................ 29 2.4.2 Hydrological Model .................................................................................... 30 2.4.3 Heart Lake Valley System .......................................................................... 35 2.4.4 Northern Plains Valley System ................................................................... 44 2.4.5 Boomerang Lake Valley System ................................................................ 48 2.5 FSV Discharge Estimates ..................................................................................... 52 2.6 Estimate of FSV Age from Crater Statistics ........................................................ 55 2.7 Discussion ............................................................................................................ 62 2.7.1 Mechanisms for Fluvial Activity and Sources of Water ............................. 62 iii 2.7.2 Evidence for Paleolakes .............................................................................. 63 2.7.3 Discharge Estimates and Style of Erosion .................................................. 64 2.7.4 The Role of Groundwater ........................................................................... 66 2.8 Summary ............................................................................................................ 70 2.9 Citation ............................................................................................................... 71 2.10 References .......................................................................................................... 71 2.11 JPL Press Release ............................................................................................... 82 2.12 AGU Earth & Space Science News: EOS Research Spotlight .......................... 85 CHAPTER 3. Geologic Mapping in Northwestern Noachis Terra ............................ 86 3.1 Introduction ........................................................................................................ 86 3.2 Background ........................................................................................................ 88 3.3 Mapping Methods and Data ............................................................................... 90 3.4 Age Determinations............................................................................................ 91 3.5 Stratigraphy ........................................................................................................ 94 3.5.1 Noachian Period .......................................................................................... 97 3.5.2 Hesperian Period ......................................................................................... 98 3.5.3 Amazonian Period ..................................................................................... 100 3.6 Conclusions and Future Work .......................................................................... 104 3.7 References ........................................................................................................ 105 CHAPTER 4. The Evolution of Uzboi Vallis.............................................................. 111 Abstract ....................................................................................................................... 111 4.1 Introduction ...................................................................................................... 112 4.2 Background and Geologic Setting.................................................................... 114 4.2.1 Uzboi Vallis .............................................................................................. 114 4.2.2 Nirgal Vallis .............................................................................................. 115 4.3 Data and Methods............................................................................................. 119 4.4 Observations and Inferences ............................................................................ 121 4.4.1 Topography of the Uzboi Vallis Floor ...................................................... 121 4.4.2 The Uzboi Floor Deposit .......................................................................... 125 4.4.3 Crater Martynov ........................................................................................ 136 4.5 Discussion ........................................................................................................ 137 iv 4.5.1 Nature and Origin of the Upper Unit of the Uzboi Floor Deposit ............ 138 4.5.2 Nature and Origin of the Lower Unit of the Uzboi Floor Deposit............ 141 4.5.3 The Timing of Fluvial Activity in Nirgal Vallis ....................................... 145 4.5.4 Implications for the mid- to Late Hesperian Climate ............................... 146 4.6 Summary .......................................................................................................... 148 4.7 References ........................................................................................................ 153 CHAPTER 5. Distal Aqueous-Rich Ejecta Deposits from Hale Crater .................. 164 Abstract ....................................................................................................................... 164 5.1 Introduction .....................................................................................................
Recommended publications
  • Planetary Geologic Mappers Annual Meeting
    Program Lunar and Planetary Institute 3600 Bay Area Boulevard Houston TX 77058-1113 Planetary Geologic Mappers Annual Meeting June 12–14, 2018 • Knoxville, Tennessee Institutional Support Lunar and Planetary Institute Universities Space Research Association Convener Devon Burr Earth and Planetary Sciences Department, University of Tennessee Knoxville Science Organizing Committee David Williams, Chair Arizona State University Devon Burr Earth and Planetary Sciences Department, University of Tennessee Knoxville Robert Jacobsen Earth and Planetary Sciences Department, University of Tennessee Knoxville Bradley Thomson Earth and Planetary Sciences Department, University of Tennessee Knoxville Abstracts for this meeting are available via the meeting website at https://www.hou.usra.edu/meetings/pgm2018/ Abstracts can be cited as Author A. B. and Author C. D. (2018) Title of abstract. In Planetary Geologic Mappers Annual Meeting, Abstract #XXXX. LPI Contribution No. 2066, Lunar and Planetary Institute, Houston. Guide to Sessions Tuesday, June 12, 2018 9:00 a.m. Strong Hall Meeting Room Introduction and Mercury and Venus Maps 1:00 p.m. Strong Hall Meeting Room Mars Maps 5:30 p.m. Strong Hall Poster Area Poster Session: 2018 Planetary Geologic Mappers Meeting Wednesday, June 13, 2018 8:30 a.m. Strong Hall Meeting Room GIS and Planetary Mapping Techniques and Lunar Maps 1:15 p.m. Strong Hall Meeting Room Asteroid, Dwarf Planet, and Outer Planet Satellite Maps Thursday, June 14, 2018 8:30 a.m. Strong Hall Optional Field Trip to Appalachian Mountains Program Tuesday, June 12, 2018 INTRODUCTION AND MERCURY AND VENUS MAPS 9:00 a.m. Strong Hall Meeting Room Chairs: David Williams Devon Burr 9:00 a.m.
    [Show full text]
  • Chapter 4 Ild Observations in Valles Marineris and Chaotic Terrains
    46 CHAPTER 4 ILD OBSERVATIONS IN VALLES MARINERIS AND CHAOTIC TERRAINS ILDs have been found and analysed in locations in Valles Marineris and in the chaotic terrains that lie east of Valles Marineris, from 18°S/309°E to 5°N/343°E. Ganges and Capri/Eos Chasma are related to chaotic terrain and outflow channels as well (Sect. 2.4). Even within the Valles Marineris, ILDs are enclosed by chaotic terrain. ILDs are often found in the form of erosional remnants as mesas or buttes (Sect. 2.4.3, 2.5). Exposures in the Ganges and Capri Chasmata as well as in Aurorae, Arsinoes, Aureum, Aram, and Iani Chaos (Fig. 28) were analysed in this thesis. Figure 28: MOLA map of the research area. The research area is located in the eastern Valles Marineris and the Margaritifer Terra chaotic terrains. ILDs that are found and analysed are marked black and are situated between 18°S/309°E to 5°N/343°E. 4.1 Chaotic Terrains 47 4.1 CHAOTIC TERRAINS 4.1.1 Aram Chaos Aram Chaos (3°N/338.8°E) is a 280 km-wide circular structure that is located between the Ares Vallis outflow channel to the east and Aureum Chaos, and Iani Chaos (Fig. 28). The ILD material measures 120 by 140 km and is located near the crater centre (Fig. 29). Elevation ranges from -3700 m to -2900 m (Fig. 31C). Figure 29: Aram Chaos impact crater (centred 3°N/338.8°E) exhibiting ILD material superimposed on heavily disrupted chaotic terrain. To the east, there is a gorge that empties into Ares Vallis (Fig.
    [Show full text]
  • Martian Crater Morphology
    ANALYSIS OF THE DEPTH-DIAMETER RELATIONSHIP OF MARTIAN CRATERS A Capstone Experience Thesis Presented by Jared Howenstine Completion Date: May 2006 Approved By: Professor M. Darby Dyar, Astronomy Professor Christopher Condit, Geology Professor Judith Young, Astronomy Abstract Title: Analysis of the Depth-Diameter Relationship of Martian Craters Author: Jared Howenstine, Astronomy Approved By: Judith Young, Astronomy Approved By: M. Darby Dyar, Astronomy Approved By: Christopher Condit, Geology CE Type: Departmental Honors Project Using a gridded version of maritan topography with the computer program Gridview, this project studied the depth-diameter relationship of martian impact craters. The work encompasses 361 profiles of impacts with diameters larger than 15 kilometers and is a continuation of work that was started at the Lunar and Planetary Institute in Houston, Texas under the guidance of Dr. Walter S. Keifer. Using the most ‘pristine,’ or deepest craters in the data a depth-diameter relationship was determined: d = 0.610D 0.327 , where d is the depth of the crater and D is the diameter of the crater, both in kilometers. This relationship can then be used to estimate the theoretical depth of any impact radius, and therefore can be used to estimate the pristine shape of the crater. With a depth-diameter ratio for a particular crater, the measured depth can then be compared to this theoretical value and an estimate of the amount of material within the crater, or fill, can then be calculated. The data includes 140 named impact craters, 3 basins, and 218 other impacts. The named data encompasses all named impact structures of greater than 100 kilometers in diameter.
    [Show full text]
  • Program and Abstracts of 2017 Congress / Programme Et Résumés
    1 Sponsors | Commanditaires Gold Sponsors | Commanditaires d’or Silver Sponsors | Commanditaires d’argent Other Sponsors | Les autres Commanditaires 2 Contents Sponsors | Commanditaires .......................................................................................................................... 2 Welcome from the Premier of Ontario .......................................................................................................... 5 Bienvenue du premier ministre de l'Ontario .................................................................................................. 6 Welcome from the Mayor of Toronto ............................................................................................................ 7 Mot de bienvenue du maire de Toronto ........................................................................................................ 8 Welcome from the Minister of Fisheries, Oceans and the Canadian Coast Guard ...................................... 9 Mot de bienvenue de ministre des Pêches, des Océans et de la Garde côtière canadienne .................... 10 Welcome from the Minister of Environment and Climate Change .............................................................. 11 Mot de bienvenue du Ministre d’Environnement et Changement climatique Canada ................................ 12 Welcome from the President of the Canadian Meteorological and Oceanographic Society ...................... 13 Mot de bienvenue du président de la Société canadienne de météorologie et d’océanographie .............
    [Show full text]
  • Special Catalogue Milestones of Lunar Mapping and Photography Four Centuries of Selenography on the Occasion of the 50Th Anniversary of Apollo 11 Moon Landing
    Special Catalogue Milestones of Lunar Mapping and Photography Four Centuries of Selenography On the occasion of the 50th anniversary of Apollo 11 moon landing Please note: A specific item in this catalogue may be sold or is on hold if the provided link to our online inventory (by clicking on the blue-highlighted author name) doesn't work! Milestones of Science Books phone +49 (0) 177 – 2 41 0006 www.milestone-books.de [email protected] Member of ILAB and VDA Catalogue 07-2019 Copyright © 2019 Milestones of Science Books. All rights reserved Page 2 of 71 Authors in Chronological Order Author Year No. Author Year No. BIRT, William 1869 7 SCHEINER, Christoph 1614 72 PROCTOR, Richard 1873 66 WILKINS, John 1640 87 NASMYTH, James 1874 58, 59, 60, 61 SCHYRLEUS DE RHEITA, Anton 1645 77 NEISON, Edmund 1876 62, 63 HEVELIUS, Johannes 1647 29 LOHRMANN, Wilhelm 1878 42, 43, 44 RICCIOLI, Giambattista 1651 67 SCHMIDT, Johann 1878 75 GALILEI, Galileo 1653 22 WEINEK, Ladislaus 1885 84 KIRCHER, Athanasius 1660 31 PRINZ, Wilhelm 1894 65 CHERUBIN D'ORLEANS, Capuchin 1671 8 ELGER, Thomas Gwyn 1895 15 EIMMART, Georg Christoph 1696 14 FAUTH, Philipp 1895 17 KEILL, John 1718 30 KRIEGER, Johann 1898 33 BIANCHINI, Francesco 1728 6 LOEWY, Maurice 1899 39, 40 DOPPELMAYR, Johann Gabriel 1730 11 FRANZ, Julius Heinrich 1901 21 MAUPERTUIS, Pierre Louis 1741 50 PICKERING, William 1904 64 WOLFF, Christian von 1747 88 FAUTH, Philipp 1907 18 CLAIRAUT, Alexis-Claude 1765 9 GOODACRE, Walter 1910 23 MAYER, Johann Tobias 1770 51 KRIEGER, Johann 1912 34 SAVOY, Gaspare 1770 71 LE MORVAN, Charles 1914 37 EULER, Leonhard 1772 16 WEGENER, Alfred 1921 83 MAYER, Johann Tobias 1775 52 GOODACRE, Walter 1931 24 SCHRÖTER, Johann Hieronymus 1791 76 FAUTH, Philipp 1932 19 GRUITHUISEN, Franz von Paula 1825 25 WILKINS, Hugh Percy 1937 86 LOHRMANN, Wilhelm Gotthelf 1824 41 USSR ACADEMY 1959 1 BEER, Wilhelm 1834 4 ARTHUR, David 1960 3 BEER, Wilhelm 1837 5 HACKMAN, Robert 1960 27 MÄDLER, Johann Heinrich 1837 49 KUIPER Gerard P.
    [Show full text]
  • Workshop on the Martiannorthern Plains: Sedimentological,Periglacial, and Paleoclimaticevolution
    NASA-CR-194831 19940015909 WORKSHOP ON THE MARTIANNORTHERN PLAINS: SEDIMENTOLOGICAL,PERIGLACIAL, AND PALEOCLIMATICEVOLUTION MSATT ..V",,2' :o_ MarsSurfaceandAtmosphereThroughTime Lunar and PlanetaryInstitute 3600 Bay AreaBoulevard Houston TX 77058-1113 ' _ LPI/TR--93-04Technical, Part 1 Report Number 93-04, Part 1 L • DISPLAY06/6/2 94N20382"£ ISSUE5 PAGE2088 CATEGORY91 RPT£:NASA-CR-194831NAS 1.26:194831LPI-TR-93-O4-PT-ICNT£:NASW-4574 93/00/00 29 PAGES UNCLASSIFIEDDOCUMENT UTTL:Workshopon the MartianNorthernPlains:Sedimentological,Periglacial, and PaleoclimaticEvolution TLSP:AbstractsOnly AUTH:A/KARGEL,JEFFREYS.; B/MOORE,JEFFREY; C/PARKER,TIMOTHY PAA: A/(GeologicalSurvey,Flagstaff,AZ.); B/(NationalAeronauticsand Space Administration.GoddardSpaceFlightCenter,Greenbelt,MD.); C/(Jet PropulsionLab.,CaliforniaInst.of Tech.,Pasadena.) PAT:A/ed.; B/ed.; C/ed. CORP:Lunarand PlanetaryInst.,Houston,TX. SAP: Avail:CASIHC A03/MFAOI CIO: UNITEDSTATES Workshopheld in Fairbanks,AK, 12-14Aug.1993;sponsored by MSATTStudyGroupandAlaskaUniv. MAJS:/*GLACIERS/_MARSSURFACE/*PLAINS/*PLANETARYGEOLOGY/*SEDIMENTS MINS:/ HYDROLOGICALCYCLE/ICE/MARS CRATERS/MORPHOLOGY/STRATIGRAPHY ANN: Papersthathavebeen acceptedforpresentationat the Workshopon the MartianNorthernPlains:Sedimentological,Periglacial,and Paleoclimatic Evolution,on 12-14Aug. 1993in Fairbanks,Alaskaare included.Topics coveredinclude:hydrologicalconsequencesof pondedwateron Mars; morpho!ogical and morphometric studies of impact cratersin the Northern Plainsof Mars; a wet-geology and cold-climateMarsmodel:punctuation
    [Show full text]
  • Thermokarst Features in Lyot Crater, Mars: Implications for Recent Surface Water Freeze-Thaw, Flow, and Cycling
    Late Mars Workshop 2018 (LPI Contrib. No. 2088) 5018.pdf THERMOKARST FEATURES IN LYOT CRATER, MARS: IMPLICATIONS FOR RECENT SURFACE WATER FREEZE-THAW, FLOW, AND CYCLING. N. Glines1,2 and V. Gulick1, 1The SETI Institute / NASA Ames (MS239-20, Moffett Field, CA 94035, [email protected], [email protected]), 2 UCSC. Introduction: We previously reported [7, 10] on ESP_055252_2310 were acquired in May, 2018. The the identification of potential thermokarst depressions terrain surrounding the beads is warped, similar to connected by channel systems on the floor of Lyot dissected mantle, while the bead floors are more Crater (Fig.1, mapped in Fig.2). At first glance, these smooth and flat, with less dissection. circular depressions on the floor of Lyot resemble curiously eroded terrain or secondary crater clusters. However, closer inspection reveals these depressions are flat-floored, circular-to-oblong features without raised rims or ejecta, connected by channels. We determined that these features are morphologically similar to terrestrial thermokarst basins and channels known as paleo-beaded streams. Here, we report a possible paleolake, associated landform assemblages, and the potential for hydrologic cycling. Figure 1: These flat-floored, round depressions connected by channels trend downslope (left to right) on the floor of Lyot Crater. HiRISE image ESP_052628_2310. Analog Beaded Streams. Beaded streams are Figure 2: Map of beaded channels (blue) N/NW of the central peak, gullies (red), potential inverted material and primarily found in circum-arctic tundra with ice deposit (pink), & lake level indicators (dashed green). saturated substrates. Beaded streams are thermokarst Craters are white circles.
    [Show full text]
  • Four-Dimensional B-Spline Algorithm for Mars Crater Reconstruction
    FOUR-DIMENSIONAL B-SPLINE ALGORITHM FOR MARS CRATER RECONSTRUCTION Maged Marghany and Shattri Mansor Geospatial Information Science Research Centre, Faculty of Engineering University Putra Malaysia 43400 UPM, Serdang, Selangor Email :[email protected] KEY WORDS: Mars, Crater, High Resolution Stereo Camera (HRSC), Four-dimensional, B-spline. ABSTRACT: The main contribution of this work is to simulate 4-D of Mars carters. In doing so, 3-D data of High Resolution Stereo Camera (HRSC) was aquired and then 4-D spline algorithm implemented to sequences of HRSC data with different fram of times. The study shows that B-spline can determine the 4-D crater surface with deep ice covers which could indicate for the existence of water. In conclusion, integration between 4-D B-spline algorithm and High Resolution Stereo Camera can be excellent 4-D visualization tool. 1. INTRODUCTION A carter is most visual feature which exists in Mars surface. Crater can be created by two cosmic bodies crashed each other, for instance, a meteorite striking a planet. It can be also formed by volcanic occupation. The different sort of carter is subsidence crater, which is occurred from an underground due to nuclear explosion. A crater-like pattern shaped by erosion which is known as Machtesh. Furthermore, a relief crater triggered by a phreatic outburst or explosion is defined as a maar crater. Therefore, Mars is a terrestrial planet which contains of minerals. These minerals are containing silicon and oxygen, metals, and other elements which naturally form rock. The Mars surface is mostly created from tholeiitic basalt. With these regards, the Mars is required standard procedures to understand its complicated nature and characteristics formation.
    [Show full text]
  • Groundwater Seepage Landscapes from Distant and Local Sources in Experiments and on Mars
    Earth Surf. Dynam., 3, 389–408, 2015 www.earth-surf-dynam.net/3/389/2015/ doi:10.5194/esurf-3-389-2015 © Author(s) 2015. CC Attribution 3.0 License. Groundwater seepage landscapes from distant and local sources in experiments and on Mars W. A. Marra1, S. J. McLelland2, D. R. Parsons2, B. J. Murphy2, E. Hauber3, and M. G. Kleinhans1 1Faculty of Geosciences, Universiteit Utrecht, Heidelberglaan 2, 3584 CS, Utrecht, the Netherlands 2Department of Geography, Environment and Earth Sciences, University of Hull, Cottingham Road, Hull, HU6 7RX, UK 3Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Planetenforschung, Rutherfordstraße 2, 12489 Berlin, Germany Correspondence to: W. A. Marra ([email protected]) Received: 4 February 2015 – Published in Earth Surf. Dynam. Discuss.: 19 February 2015 Revised: 18 June 2015 – Accepted: 3 July 2015 – Published: 4 August 2015 Abstract. Valleys with theater-shaped heads can form due to the seepage of groundwater and as a result of knickpoint (waterfall) erosion generated by overland flow. This ambiguity in the mechanism of formation ham- pers the interpretation of such valleys on Mars, particularly since there is limited knowledge of material prop- erties. Moreover, the hydrological implications of a groundwater or surface water origin are important for our understanding of the evolution of surface features on Mars, and a quantification of valley morphologies at the landscape scale may provide diagnostic insights on the formative hydrological conditions. However, flow pat- terns and the resulting landscapes produced by different sources of groundwater are poorly understood. We aim to improve the understanding of the formation of entire valley landscapes through seepage processes from dif- ferent groundwater sources that will provide a framework of landscape metrics for the interpretation of such systems.
    [Show full text]
  • Thermal and Crustal Evolution of Mars Steven A
    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 107, NO. E7, 10.1029/2001JE001801, 2002 Thermal and crustal evolution of Mars Steven A. Hauck II1 and Roger J. Phillips McDonnell Center for the Space Sciences and Department of Earth and Planetary Sciences, Washington University, Saint Louis, Missouri, USA Received 11 October 2001; revised 4 February 2002; accepted 11 February 2002; published 16 July 2002. [1] We present a coupled thermal-magmatic model for the evolution of Mars’ mantle and crust that may be consistent with estimates of the average crustal thickness and crustal growth rate. By coupling a simple parameterized model of mantle convection to a batch- melting model for peridotite, we can investigate potential conditions and evolutionary paths of the crust and mantle in a coupled thermal-magmatic system. On the basis of recent geophysical and geochemical studies, we constrain our models to have average crustal thicknesses between 50 and 100 km that were mostly formed by 4 Ga. Our nominal model is an attempt to satisfy these constraints with a relatively simple set of conditions. Key elements of this model are the inclusion of the energetics of melting, a wet (weak) mantle rheology, self-consistent fractionation of heat-producing elements to the crust, and a near- chondritic abundance of those elements. The latent heat of melting mantle material is a small (percent level) contributor to the total planetary energy budget over 4.5 Gyr but is crucial for constraining the thermal and magmatic history of Mars. Our nominal model predicts an average crustal thickness of 62 km that was 73% emplaced by 4 Ga.
    [Show full text]
  • Mars Science Laboratory: Curiosity Rover Curiosity’S Mission: Was Mars Ever Habitable? Acquires Rock, Soil, and Air Samples for Onboard Analysis
    National Aeronautics and Space Administration Mars Science Laboratory: Curiosity Rover www.nasa.gov Curiosity’s Mission: Was Mars Ever Habitable? acquires rock, soil, and air samples for onboard analysis. Quick Facts Curiosity is about the size of a small car and about as Part of NASA’s Mars Science Laboratory mission, Launch — Nov. 26, 2011 from Cape Canaveral, tall as a basketball player. Its large size allows the rover Curiosity is the largest and most capable rover ever Florida, on an Atlas V-541 to carry an advanced kit of 10 science instruments. sent to Mars. Curiosity’s mission is to answer the Arrival — Aug. 6, 2012 (UTC) Among Curiosity’s tools are 17 cameras, a laser to question: did Mars ever have the right environmental Prime Mission — One Mars year, or about 687 Earth zap rocks, and a drill to collect rock samples. These all conditions to support small life forms called microbes? days (~98 weeks) help in the hunt for special rocks that formed in water Taking the next steps to understand Mars as a possible and/or have signs of organics. The rover also has Main Objectives place for life, Curiosity builds on an earlier “follow the three communications antennas. • Search for organics and determine if this area of Mars was water” strategy that guided Mars missions in NASA’s ever habitable for microbial life Mars Exploration Program. Besides looking for signs of • Characterize the chemical and mineral composition of Ultra-High-Frequency wet climate conditions and for rocks and minerals that ChemCam Antenna rocks and soil formed in water, Curiosity also seeks signs of carbon- Mastcam MMRTG • Study the role of water and changes in the Martian climate over time based molecules called organics.
    [Show full text]
  • March 21–25, 2016
    FORTY-SEVENTH LUNAR AND PLANETARY SCIENCE CONFERENCE PROGRAM OF TECHNICAL SESSIONS MARCH 21–25, 2016 The Woodlands Waterway Marriott Hotel and Convention Center The Woodlands, Texas INSTITUTIONAL SUPPORT Universities Space Research Association Lunar and Planetary Institute National Aeronautics and Space Administration CONFERENCE CO-CHAIRS Stephen Mackwell, Lunar and Planetary Institute Eileen Stansbery, NASA Johnson Space Center PROGRAM COMMITTEE CHAIRS David Draper, NASA Johnson Space Center Walter Kiefer, Lunar and Planetary Institute PROGRAM COMMITTEE P. Doug Archer, NASA Johnson Space Center Nicolas LeCorvec, Lunar and Planetary Institute Katherine Bermingham, University of Maryland Yo Matsubara, Smithsonian Institute Janice Bishop, SETI and NASA Ames Research Center Francis McCubbin, NASA Johnson Space Center Jeremy Boyce, University of California, Los Angeles Andrew Needham, Carnegie Institution of Washington Lisa Danielson, NASA Johnson Space Center Lan-Anh Nguyen, NASA Johnson Space Center Deepak Dhingra, University of Idaho Paul Niles, NASA Johnson Space Center Stephen Elardo, Carnegie Institution of Washington Dorothy Oehler, NASA Johnson Space Center Marc Fries, NASA Johnson Space Center D. Alex Patthoff, Jet Propulsion Laboratory Cyrena Goodrich, Lunar and Planetary Institute Elizabeth Rampe, Aerodyne Industries, Jacobs JETS at John Gruener, NASA Johnson Space Center NASA Johnson Space Center Justin Hagerty, U.S. Geological Survey Carol Raymond, Jet Propulsion Laboratory Lindsay Hays, Jet Propulsion Laboratory Paul Schenk,
    [Show full text]