Bioremediation Study Final Report
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Desulfuribacillus Alkaliarsenatis Gen. Nov. Sp. Nov., a Deep-Lineage
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by PubMed Central Extremophiles (2012) 16:597–605 DOI 10.1007/s00792-012-0459-7 ORIGINAL PAPER Desulfuribacillus alkaliarsenatis gen. nov. sp. nov., a deep-lineage, obligately anaerobic, dissimilatory sulfur and arsenate-reducing, haloalkaliphilic representative of the order Bacillales from soda lakes D. Y. Sorokin • T. P. Tourova • M. V. Sukhacheva • G. Muyzer Received: 10 February 2012 / Accepted: 3 May 2012 / Published online: 24 May 2012 Ó The Author(s) 2012. This article is published with open access at Springerlink.com Abstract An anaerobic enrichment culture inoculated possible within a pH range from 9 to 10.5 (optimum at pH with a sample of sediments from soda lakes of the Kulunda 10) and a salt concentration at pH 10 from 0.2 to 2 M total Steppe with elemental sulfur as electron acceptor and for- Na? (optimum at 0.6 M). According to the phylogenetic mate as electron donor at pH 10 and moderate salinity analysis, strain AHT28 represents a deep independent inoculated with sediments from soda lakes in Kulunda lineage within the order Bacillales with a maximum of Steppe (Altai, Russia) resulted in the domination of a 90 % 16S rRNA gene similarity to its closest cultured Gram-positive, spore-forming bacterium strain AHT28. representatives. On the basis of its distinct phenotype and The isolate is an obligate anaerobe capable of respiratory phylogeny, the novel haloalkaliphilic anaerobe is suggested growth using elemental sulfur, thiosulfate (incomplete as a new genus and species, Desulfuribacillus alkaliar- T T reduction) and arsenate as electron acceptor with H2, for- senatis (type strain AHT28 = DSM24608 = UNIQEM mate, pyruvate and lactate as electron donor. -
Arsinothricin, an Arsenic-Containing Non-Proteinogenic Amino Acid Analog of Glutamate, Is a Broad-Spectrum Antibiotic
ARTICLE https://doi.org/10.1038/s42003-019-0365-y OPEN Arsinothricin, an arsenic-containing non-proteinogenic amino acid analog of glutamate, is a broad-spectrum antibiotic Venkadesh Sarkarai Nadar1,7, Jian Chen1,7, Dharmendra S. Dheeman 1,6,7, Adriana Emilce Galván1,2, 1234567890():,; Kunie Yoshinaga-Sakurai1, Palani Kandavelu3, Banumathi Sankaran4, Masato Kuramata5, Satoru Ishikawa5, Barry P. Rosen1 & Masafumi Yoshinaga1 The emergence and spread of antimicrobial resistance highlights the urgent need for new antibiotics. Organoarsenicals have been used as antimicrobials since Paul Ehrlich’s salvarsan. Recently a soil bacterium was shown to produce the organoarsenical arsinothricin. We demonstrate that arsinothricin, a non-proteinogenic analog of glutamate that inhibits gluta- mine synthetase, is an effective broad-spectrum antibiotic against both Gram-positive and Gram-negative bacteria, suggesting that bacteria have evolved the ability to utilize the per- vasive environmental toxic metalloid arsenic to produce a potent antimicrobial. With every new antibiotic, resistance inevitably arises. The arsN1 gene, widely distributed in bacterial arsenic resistance (ars) operons, selectively confers resistance to arsinothricin by acetylation of the α-amino group. Crystal structures of ArsN1 N-acetyltransferase, with or without arsinothricin, shed light on the mechanism of its substrate selectivity. These findings have the potential for development of a new class of organoarsenical antimicrobials and ArsN1 inhibitors. 1 Department of Cellular Biology and Pharmacology, Florida International University, Herbert Wertheim College of Medicine, Miami, FL 33199, USA. 2 Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Tucumán T4001MVB, Argentina. 3 SER-CAT and Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA. -
Phenotypic and Microbial Influences on Dairy Heifer Fertility and Calf Gut Microbial Development
Phenotypic and microbial influences on dairy heifer fertility and calf gut microbial development Connor E. Owens Dissertation submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy In Animal Science, Dairy Rebecca R. Cockrum Kristy M. Daniels Alan Ealy Katharine F. Knowlton September 17, 2020 Blacksburg, VA Keywords: microbiome, fertility, inoculation Phenotypic and microbial influences on dairy heifer fertility and calf gut microbial development Connor E. Owens ABSTRACT (Academic) Pregnancy loss and calf death can cost dairy producers more than $230 million annually. While methods involving nutrition, climate, and health management to mitigate pregnancy loss and calf death have been developed, one potential influence that has not been well examined is the reproductive microbiome. I hypothesized that the microbiome of the reproductive tract would influence heifer fertility and calf gut microbial development. The objectives of this dissertation were: 1) to examine differences in phenotypes related to reproductive physiology in virgin Holstein heifers based on outcome of first insemination, 2) to characterize the uterine microbiome of virgin Holstein heifers before insemination and examine associations between uterine microbial composition and fertility related phenotypes, insemination outcome, and season of breeding, and 3) to characterize the various maternal and calf fecal microbiomes and predicted metagenomes during peri-partum and post-partum periods and examine the influence of the maternal microbiome on calf gut development during the pre-weaning phase. In the first experiment, virgin Holstein heifers (n = 52) were enrolled over 12 periods, on period per month. On -3 d before insemination, heifers were weighed and the uterus was flushed. -
Compile.Xlsx
Silva OTU GS1A % PS1B % Taxonomy_Silva_132 otu0001 0 0 2 0.05 Bacteria;Acidobacteria;Acidobacteria_un;Acidobacteria_un;Acidobacteria_un;Acidobacteria_un; otu0002 0 0 1 0.02 Bacteria;Acidobacteria;Acidobacteriia;Solibacterales;Solibacteraceae_(Subgroup_3);PAUC26f; otu0003 49 0.82 5 0.12 Bacteria;Acidobacteria;Aminicenantia;Aminicenantales;Aminicenantales_fa;Aminicenantales_ge; otu0004 1 0.02 7 0.17 Bacteria;Acidobacteria;AT-s3-28;AT-s3-28_or;AT-s3-28_fa;AT-s3-28_ge; otu0005 1 0.02 0 0 Bacteria;Acidobacteria;Blastocatellia_(Subgroup_4);Blastocatellales;Blastocatellaceae;Blastocatella; otu0006 0 0 2 0.05 Bacteria;Acidobacteria;Holophagae;Subgroup_7;Subgroup_7_fa;Subgroup_7_ge; otu0007 1 0.02 0 0 Bacteria;Acidobacteria;ODP1230B23.02;ODP1230B23.02_or;ODP1230B23.02_fa;ODP1230B23.02_ge; otu0008 1 0.02 15 0.36 Bacteria;Acidobacteria;Subgroup_17;Subgroup_17_or;Subgroup_17_fa;Subgroup_17_ge; otu0009 9 0.15 41 0.99 Bacteria;Acidobacteria;Subgroup_21;Subgroup_21_or;Subgroup_21_fa;Subgroup_21_ge; otu0010 5 0.08 50 1.21 Bacteria;Acidobacteria;Subgroup_22;Subgroup_22_or;Subgroup_22_fa;Subgroup_22_ge; otu0011 2 0.03 11 0.27 Bacteria;Acidobacteria;Subgroup_26;Subgroup_26_or;Subgroup_26_fa;Subgroup_26_ge; otu0012 0 0 1 0.02 Bacteria;Acidobacteria;Subgroup_5;Subgroup_5_or;Subgroup_5_fa;Subgroup_5_ge; otu0013 1 0.02 13 0.32 Bacteria;Acidobacteria;Subgroup_6;Subgroup_6_or;Subgroup_6_fa;Subgroup_6_ge; otu0014 0 0 1 0.02 Bacteria;Acidobacteria;Subgroup_6;Subgroup_6_un;Subgroup_6_un;Subgroup_6_un; otu0015 8 0.13 30 0.73 Bacteria;Acidobacteria;Subgroup_9;Subgroup_9_or;Subgroup_9_fa;Subgroup_9_ge; -
Intestinal Microbiota of Whitefish (Coregonus Sp.) Species 2 Pairs and Their Hybrids in Natural and Controlled 3 Environment
bioRxiv preprint doi: https://doi.org/10.1101/312231; this version posted May 2, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Intestinal microbiota of whitefish (Coregonus sp.) species 2 pairs and their hybrids in natural and controlled 3 environment. 4 Authors: Maelle Sevellec1, Martin Laporte1, Alex Bernatchez1, Nicolas Derome1, and 5 Louis Bernatchez1. 6 1. Institut de Biologie Intégrative et des Systèmes (IBIS), Pavillon Charles-Eugène- 7 Marchand, 1030, Avenue de la Médecine, Université Laval, Québec (Québec) G1V 0A6, 8 Canada. 1 bioRxiv preprint doi: https://doi.org/10.1101/312231; this version posted May 2, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 9 Abstract 10 It is becoming increasingly clear that wild animals have never existed without symbiotic 11 interactions with microbiota. Therefore, investigating relationships between microbiota and their 12 host is essential towards a full understanding of how animal evolve and adapt to their 13 environment. The Lake Whitefish (Coregonus clupeaformis) is a well-documented model for the 14 study of ecological speciation, where the dwarf species (limnetic niche specialist) evolved 15 independently and repeatedly from the normal species (benthic niche specialist). In this study, we 16 compared the transient intestinal microbiota among five wild sympatric species pairs of whitefish 17 as well as captive representatives of dwarf and normal species and their reciprocal hybrids reared 18 in identical controlled conditions. -
Complex Array of Endobionts in Petalomonas Sphagnophila, a Large Heterotrophic Euglenid Protist from Sphagnum-Dominated Peatlands
The ISME Journal (2010) 4, 1108–1120 & 2010 International Society for Microbial Ecology All rights reserved 1751-7362/10 www.nature.com/ismej ORIGINAL ARTICLE Complex array of endobionts in Petalomonas sphagnophila, a large heterotrophic euglenid protist from Sphagnum-dominated peatlands Eunsoo Kim1, Jong Soo Park2, Alastair GB Simpson2, Shigeru Matsunaga3, Masakatsu Watanabe3, Akio Murakami4, Katrin Sommerfeld1, Naoko T Onodera1 and John M Archibald1 1Department of Biochemistry and Molecular Biology, Canadian Institute for Advanced Research, Program in Integrated Microbial Biodiversity, Dalhousie University, Halifax, NS, Canada; 2Department of Biology, Canadian Institute for Advanced Research, Program in Integrated Microbial Biodiversity, Dalhousie University, Halifax, NS, Canada; 3Department of Photoscience, Graduate University for Advanced Sciences, Hayama, Japan and 4Kobe University Research Center for Inland Seas, Awaji, Japan Petalomonas sphagnophila is a poorly studied plastid-lacking euglenid flagellate living in Sphagnum-dominated peatlands. Here we present a broad-ranging microscopic, molecular and microspectrophotometric analysis of uncultured P. sphagnophila collected from four field locations in Nova Scotia, Canada. Consistent with its morphological characteristics, 18S ribosomal DNA (rDNA) phylogenies indicate that P. sphagnophila is specifically related to Petalomonas cantuscygni, the only other Petalomonas species sequenced to date. One of the peculiar characteristics of P. sphagnophila is the presence of several green-pigmented particles B5 lmin diameter in its cytoplasm, which a previously published study suggested to be cyanobacterial endosymbionts. New data presented here, however, suggest that the green intracellular body may not be a cyanobacterium but rather an uncharacterized prokaryote yet to be identified by molecular sequencing. 16S rDNA library sequencing and fluorescence in situ hybridizations show that P. -
Reorganising the Order Bacillales Through Phylogenomics
Systematic and Applied Microbiology 42 (2019) 178–189 Contents lists available at ScienceDirect Systematic and Applied Microbiology jou rnal homepage: http://www.elsevier.com/locate/syapm Reorganising the order Bacillales through phylogenomics a,∗ b c Pieter De Maayer , Habibu Aliyu , Don A. Cowan a School of Molecular & Cell Biology, Faculty of Science, University of the Witwatersrand, South Africa b Technical Biology, Institute of Process Engineering in Life Sciences, Karlsruhe Institute of Technology, Germany c Centre for Microbial Ecology and Genomics, University of Pretoria, South Africa a r t i c l e i n f o a b s t r a c t Article history: Bacterial classification at higher taxonomic ranks such as the order and family levels is currently reliant Received 7 August 2018 on phylogenetic analysis of 16S rRNA and the presence of shared phenotypic characteristics. However, Received in revised form these may not be reflective of the true genotypic and phenotypic relationships of taxa. This is evident in 21 September 2018 the order Bacillales, members of which are defined as aerobic, spore-forming and rod-shaped bacteria. Accepted 18 October 2018 However, some taxa are anaerobic, asporogenic and coccoid. 16S rRNA gene phylogeny is also unable to elucidate the taxonomic positions of several families incertae sedis within this order. Whole genome- Keywords: based phylogenetic approaches may provide a more accurate means to resolve higher taxonomic levels. A Bacillales Lactobacillales suite of phylogenomic approaches were applied to re-evaluate the taxonomy of 80 representative taxa of Bacillaceae eight families (and six family incertae sedis taxa) within the order Bacillales. -
Bacterial Taxa Based on Greengenes Database GS1A PS1B ABY1 OD1
A1: Bacterial taxa based on GreenGenes database GS1A PS1B ABY1_OD1 0.1682 0.024 Bacteria;ABY1_OD1;ABY1_OD1_unclassified 1 0 Bacteria;ABY1_OD1;FW129;FW129_unclassified 4 0 Bacteria;ABY1_OD1;FW129;KNA6-NB12;KNA6-NB12_unclassified 5 0 Bacteria;ABY1_OD1;FW129;KNA6-NB29;KNA6-NB29_unclassified 0 1 Acidobacteria 0.7907 4.509 Bacteria;Acidobacteria;Acidobacteria_unclassified 4 31 Bacteria;Acidobacteria;Acidobacteria-5;Acidobacteria-5_unclassified 0 1 Bacteria;Acidobacteria;BPC015;BPC015_unclassified 8 30 Bacteria;Acidobacteria;BPC102;BPC102_unclassified 9 43 Bacteria;Acidobacteria;Chloracidobacteria;Ellin6075;Ellin6075_unclassified 1 0 Bacteria;Acidobacteria;iii1-15;Acidobacteria-6;RB40;RB40_unclassified 0 5 Bacteria;Acidobacteria;iii1-15;iii1-15_unclassified 1 8 Bacteria;Acidobacteria;iii1-15;Riz6I;Unclassified 0 1 Bacteria;Acidobacteria;iii1-8;Unclassified 0 2 Bacteria;Acidobacteria;OS-K;OS-K_unclassified 18 17 Bacteria;Acidobacteria;RB25;RB25_unclassified 6 47 Bacteria;Acidobacteria;Solibacteres;Solibacteres_unclassified 0 1 Actinobacteria 2.1198 6.642 Bacteria;Actinobacteria;Acidimicrobidae;Acidimicrobidae_unclassified 10 70 Bacteria;Actinobacteria;Acidimicrobidae;CL500-29;ML316M-15;ML316M-15_unclassified 0 3 Bacteria;Actinobacteria;Acidimicrobidae;EB1017_group;Acidimicrobidae_bacterium_Ellin7143;Unclassified 6 1 Bacteria;Actinobacteria;Acidimicrobidae;koll13;JTB31;BD2-10;BD2-10_unclassified 1 5 Bacteria;Actinobacteria;Acidimicrobidae;koll13;JTB31;Unclassified 16 37 Bacteria;Actinobacteria;Acidimicrobidae;koll13;koll13_unclassified 81 25 Bacteria;Actinobacteria;Acidimicrobidae;Microthrixineae;Microthrixineae_unclassified -
Kroppenstedtia Eburnea Gen. Nov., Sp. Nov., A
International Journal of Systematic and Evolutionary Microbiology (2011), 61, 2304–2310 DOI 10.1099/ijs.0.026179-0 Kroppenstedtia eburnea gen. nov., sp. nov., a thermoactinomycete isolated by environmental screening, and emended description of the family Thermoactinomycetaceae Matsuo et al. 2006 emend. Yassin et al. 2009 Mathias von Jan,1 Nicole Riegger,2 Gabriele Po¨tter,1 Peter Schumann,1 Susanne Verbarg,1 Cathrin Spro¨er,1 Manfred Rohde,3 Bettina Lauer,2 David P. Labeda4 and Hans-Peter Klenk1 Correspondence 1DSMZ – German Collection of Microorganisms and Cell Cultures, 38124 Braunschweig, Germany Hans-Peter Klenk 2Microbiology, Vetter Pharma-Fertigung GmbH & Co. KG, 88212 Ravensburg, Germany [email protected] 3HZI – Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany 4National Center for Agricultural Utilization Research, USDA-ARS, Peoria, IL 61604, USA A Gram-positive, spore-forming, aerobic, filamentous bacterium, strain JFMB-ATET, was isolated in 2008 during environmental screening of a plastic surface in grade C in a contract manufacturing organization in southern Germany. The isolate grew at temperatures of 25–50 6C and at pH 5.0–8.5, forming ivory-coloured colonies with sparse white aerial mycelia. Chemotaxonomic and molecular characteristics of the isolate matched those described for members of the family Thermoactinomycetaceae, except that the cell-wall peptidoglycan contained LL-diaminopimelic acid, while all previously described members of this family display this diagnostic diamino acid in meso-conformation. The DNA G+C content of the novel strain was 54.6 mol%, the main polar lipids were diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylglycerol, and the major menaquinone was MK-7. The major fatty acids had saturated C14–C16 branched chains. -
Download Article
Volume 10, Issue 1, 2020, 4811 - 4820 ISSN 2069-5837 Biointerface Research in Applied Chemistry www.BiointerfaceResearch.com https://doi.org/10.33263/BRIAC101.811820 Original Research Article Open Access Journal Received: 30.09.2019 / Revised: 16.12.2019 / Accepted: 20.12.2019 / Published on-line: 28.12.2019 Thermoflavimicrobium dichotomicum as a novel thermoalkaliphile for production of environmental and industrial enzymes Osama M. Darwesh 1,2,* , Islam A. Elsehemy 3, Mohamed H. El-Sayed 4,5 , Abbas A. El-Ghamry 4 , Ahmad S. El-Hawary 4 1Agricultural Microbiology Dept., National Research Centre, Dokki, Cairo, Egypt 2School of Material Sciences and Engineering, Hebei University of Technology, 300130 Tianjin, China 3Department of Natural and Microbial Products Chemistry, National Research Centre, Dokki, Cairo, Egypt 4Botany and Microbiology Dept., Faculty of Science (Boys); Al-Azhar University, Nasr city, Cairo, Egypt 5Department of Biology, Faculty of Science and Arts, Northern Border University (Rafha), Kingdom of Saudi Arabia *corresponding author e-mail address: [email protected] | Scopus ID 56128096000 ABSTRACT Thermoalkaliphilic actinomycetes enzymes have many important applications in many industrial, biotechnological and environmental aspects. So, the current study aimed to obtain the thermoalkali-enzymes producing actinomycetes. A novel thermoalkaliphilic actinomycete strain was isolated from Egyptian Siwa oasis and identified according to its morphological, physiological and biochemical characters as Thermoflavimicrobium dichotomicum. And then confirmed by phylogenetic analysis and the partial sequence was deposited in GenBank under accession number of KR011193 and name of Thermoflavimicrobium dichotomicum HwSw11. It could produce amylase, cellulase, lipase, pectinase and proteinase enzymes. Also, this strain exhibited anti-bacterial activities against P. aeruginosa and E. -
Metabolic Roles of Uncultivated Bacterioplankton Lineages in the Northern Gulf of Mexico 2 “Dead Zone” 3 4 J
bioRxiv preprint doi: https://doi.org/10.1101/095471; this version posted June 12, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 1 Metabolic roles of uncultivated bacterioplankton lineages in the northern Gulf of Mexico 2 “Dead Zone” 3 4 J. Cameron Thrash1*, Kiley W. Seitz2, Brett J. Baker2*, Ben Temperton3, Lauren E. Gillies4, 5 Nancy N. Rabalais5,6, Bernard Henrissat7,8,9, and Olivia U. Mason4 6 7 8 1. Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA 9 2. Department of Marine Science, Marine Science Institute, University of Texas at Austin, Port 10 Aransas, TX, USA 11 3. School of Biosciences, University of Exeter, Exeter, UK 12 4. Department of Earth, Ocean, and Atmospheric Science, Florida State University, Tallahassee, 13 FL, USA 14 5. Department of Oceanography and Coastal Sciences, Louisiana State University, Baton Rouge, 15 LA, USA 16 6. Louisiana Universities Marine Consortium, Chauvin, LA USA 17 7. Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, 18 13288 Marseille, France 19 8. INRA, USC 1408 AFMB, F-13288 Marseille, France 20 9. Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia 21 22 *Correspondence: 23 JCT [email protected] 24 BJB [email protected] 25 26 27 28 Running title: Decoding microbes of the Dead Zone 29 30 31 Abstract word count: 250 32 Text word count: XXXX 33 34 Page 1 of 31 bioRxiv preprint doi: https://doi.org/10.1101/095471; this version posted June 12, 2017. -
Groundwater Chemistry and Microbiology in a Wet
GROUNDWATER CHEMISTRY AND MICROBIOLOGY IN A WET-TROPICS AGRICULTURAL CATCHMENT James Stanley B.Sc. (Earth Science). Submitted in fulfilment of the requirements for the degree of Master of Philosophy School of Earth, Environmental and Biological Sciences, Science and Engineering Faculty. Queensland University of Technology 2019 Page | 1 ABSTRACT The coastal wet-tropics region of north Queensland is characterised by extensive sugarcane plantations. Approximately 33% of the total nitrogen in waterways discharging into the Great Barrier Reef (GBR) has been attributed to the sugarcane industry. This is due to the widespread use of nitrogen-rich fertilisers combined with seasonal high rainfall events. Consequently, the health and water quality of the GBR is directly affected by the intensive agricultural activities that dominate the wet-tropics catchments. The sustainability of the sugarcane industry as well as the health of the GBR depends greatly on growers improving nitrogen management practices. Groundwater and surface water ecosystems influence the concentrations and transport of agricultural contaminants, such as excess nitrogen, through complex bio-chemical and geo- chemical processes. In recent years, a growing amount of research has focused on groundwater and soil chemistry in the wet-tropics of north Queensland, specifically in regard to mobile - nitrogen in the form of nitrate (NO3 ). However, the abundance, diversity and bio-chemical influence of microorganisms in our wet-tropics groundwater aquifers has received little attention. The objectives of this study were 1) to monitor seasonal changes in groundwater chemistry in aquifers underlying sugarcane plantations in a catchment in the wet tropics of north Queensland and 2) to identify what microbiological organisms inhabit the groundwater aquifer environment.