Global Strategy for Dengue Prevention and Control 2012-2020

Total Page:16

File Type:pdf, Size:1020Kb

Global Strategy for Dengue Prevention and Control 2012-2020 TREATMENT, PREVENTION AND CONTROL 2O12–2O2O GLOBAL STRATEGY FOR DENGUE PREVENTION AND CONTROL Neglected Tropical Diseases (NTD) HIV/AIDS, Tuberculosis, Malaria and Neglected Tropical Diseases (HTM) Avenue Appia 20, 1211 Geneva 27, Switzerland Fax: +41 22 791 48 69 www.who.int/neglected_diseases/en 2O12–2O2O GLOBAL STRATEGY FOR DENGUE PREVENTION AND CONTROL WHO Library Cataloguing-in-Publication Data Global strategy for dengue prevention and control 2012-2020. 1.Dengue – prevention and control. 2.Dengue – epidemiology. 3.Endemic diseases – prevention and control. 4.Disease outbreaks – prevention and control. 5.Mosquito control. 6.Health planning. I.World Health Organization. ISBN 978 92 4 150403 4 (NLM classification: WC 528) © World Health Organization 2012 All rights reserved. Publications of the World Health Organization are available on the WHO web site (www.who.int) or can be purchased from WHO Press, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel.: +41 22 791 3264; fax: +41 22 791 4857; e-mail: [email protected]). Requests for permission to reproduce or translate WHO publications – whether for sale or for noncommercial distribution – should be addressed to WHO Press through the WHO web site (http://www.who.int/about/licensing/copyright_form/en/index.html). The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement. The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary products are distinguished by initial capital letters. All reasonable precautions have been taken by the World Health Organization to verify the information contained in this publication. However, the published material is being distributed without warranty of any kind, either expressed or implied. The responsibility for the interpretation and use of the material lies with the reader. In no event shall the World Health Organization be liable for damages arising from its use. Printed in France Design & layout: Patrick Tissot WHO/HTM/NTD iii CONTENTS FOREWORD ............................................................................................................................. iv EXECUTIVE SUMMARY ................................................................................................................ v 1. DENGUE: A GLOBAL THREAT – GLOBAL ANSWERS ..................................................................1 1.1 Burden of the disease ....................................................................................................1 1.2 Reversing the trend ........................................................................................................3 1.3 Opportunities for investment ...........................................................................................4 2. THE GLOBAL STRATEGY FOR DENGUE PREVENTION AND CONTROL .......................................6 2.1 Goal and objectives ......................................................................................................6 2.2 Overview of technical elements and enabling factors for implementation ..............................6 3. TECHNICAL ELEMENTS ..........................................................................................................8 3.1 Diagnosis and case management ....................................................................................8 3.2 Integrated surveillance and outbreak preparedness .........................................................10 3.2.1 Integrated surveillance ......................................................................................11 3.2.2 Outbreak preparedness ....................................................................................12 3.3 Sustainable vector control .............................................................................................14 3.4 Future vaccine implementation ......................................................................................16 3.5 Basic, operational and implementation research .............................................................18 4. ENABLING FACTORS FOR IMPLEMENTATION ........................................................................20 4.1 Advocacy and resource mobilization .............................................................................20 4.2 Partnership, coordination and collaboration ...................................................................20 4.3 Communication to achieve behavioural outcomes............................................................21 4.3.1 Communication in outbreak response .................................................................22 4.4 Capacity-building 4.4.1 Strengthening local management capabilities for informed decision-making ............23 4.5 Monitoring and evaluation ...........................................................................................23 REFERENCES ............................................................................................................................25 ANNEXES ............................................................................................................................28 ACKNOWLEDGEMENTS ...........................................................................................................34 iv FOREWORD In just the past decade, the significance of dengue as well beyond the health a threat to health and a burden on health services and sector. The Global economies has increased substantially. Compared with strategy promotes the situation 50 years ago, the worldwide incidence of coordinated action among dengue has risen 30-fold. More countries are reporting multisectoral partners, their first outbreaks. More outbreaks are explosive an integrated approach in ways that severely disrupt societies and drain to vector management, economies. Today, dengue ranks as the most important and sustained control mosquito-borne viral disease in the world. Everywhere, measures at all levels. the human and economic costs are staggering. Its guiding principle is to harmonize prevention, In a sense, this neglected tropical disease has taken the entomological and epidemiological surveillance, and world by surprise, with few coherent and coordinated case management with existing health systems, ensuring efforts, at national or international levels, undertaken that efforts are coherent, sustainable, cost-effective and to hold dengue at bay and reverse these alarming ecologically sound. trends. The Global strategy for dengue prevention and control, 2012–2020, aims to correct this situation. It This is a global strategy for a global threat. As we answers requests, by multiple WHO Member States, for have learned, dengue and its vectors travel well advice on how to move from a reactive response to an internationally. I challenge all partners to study the emergency situation to proactive risk assessment, early strategy, define their role, and engage with a fully warning systems, and preventive measures, guided by justified sense of urgency. As the strategy demonstrates, entomological as well as epidemiological surveillance. doing so will be highly rewarding. The overall message is upbeat and encouraging. Despite the complex clinical Above all, the Global strategy emphasizes the many manifestations of this disease, its management is relatively new opportunities, opened by country experiences and simple, inexpensive and highly effective in saving lives, recent research, also on vaccines, that can be seized to provided correct and timely interventions are instituted. reduce morbidity and mortality, rationalize the disease When these interventions are in place, mortality from response, and build capacities that increase resilience dengue can be reduced to zero. Let us make this our to future outbreaks. To this end, the document also overarching – and broadly shared – goal. serves as an investment case, spelling out the steps that can be taken to improve risk assessment and mapping, stockpiling and logistics, surveillance and diagnostic capacity, behavioural and social interventions, and risk communication. Dr Margaret Chan A complex disease like dengue demands a multi- Director-General pronged response that engages government ministries World Health Organization v EXECUTIVE SUMMARY Dengue is a major public-health concern throughout and training health personnel, along with appropriate tropical and sub-tropical regions of the world. It is the referral systems, at primary health-care levels. most rapidly spreading mosquito-borne viral disease, with a 30-fold increase in global incidence over the Dengue morbidity can be reduced by implementing past 50 years. The World Health Organization (WHO) improved outbreak prediction and detection through estimates that 50–100 million dengue infections occur coordinated epidemiological and entomological each year and that almost half the world’s population surveillance; promoting the principles of integrated lives in countries where dengue is endemic. While vector
Recommended publications
  • Data-Driven Identification of Potential Zika Virus Vectors Michelle V Evans1,2*, Tad a Dallas1,3, Barbara a Han4, Courtney C Murdock1,2,5,6,7,8, John M Drake1,2,8
    RESEARCH ARTICLE Data-driven identification of potential Zika virus vectors Michelle V Evans1,2*, Tad A Dallas1,3, Barbara A Han4, Courtney C Murdock1,2,5,6,7,8, John M Drake1,2,8 1Odum School of Ecology, University of Georgia, Athens, United States; 2Center for the Ecology of Infectious Diseases, University of Georgia, Athens, United States; 3Department of Environmental Science and Policy, University of California-Davis, Davis, United States; 4Cary Institute of Ecosystem Studies, Millbrook, United States; 5Department of Infectious Disease, University of Georgia, Athens, United States; 6Center for Tropical Emerging Global Diseases, University of Georgia, Athens, United States; 7Center for Vaccines and Immunology, University of Georgia, Athens, United States; 8River Basin Center, University of Georgia, Athens, United States Abstract Zika is an emerging virus whose rapid spread is of great public health concern. Knowledge about transmission remains incomplete, especially concerning potential transmission in geographic areas in which it has not yet been introduced. To identify unknown vectors of Zika, we developed a data-driven model linking vector species and the Zika virus via vector-virus trait combinations that confer a propensity toward associations in an ecological network connecting flaviviruses and their mosquito vectors. Our model predicts that thirty-five species may be able to transmit the virus, seven of which are found in the continental United States, including Culex quinquefasciatus and Cx. pipiens. We suggest that empirical studies prioritize these species to confirm predictions of vector competence, enabling the correct identification of populations at risk for transmission within the United States. *For correspondence: mvevans@ DOI: 10.7554/eLife.22053.001 uga.edu Competing interests: The authors declare that no competing interests exist.
    [Show full text]
  • Dengue in Florida (USA)
    Insects 2014, 5, 991-1000; doi:10.3390/insects5040991 OPEN ACCESS insects ISSN 2075-4450 www.mdpi.com/journal/insects/ Article Dengue in Florida (USA) Jorge R. Rey Florida Medical Entomology Laboratory, University of Florida-IFAS, 200 9th Street S.E., Vero Beach, FL 32962, USA; E-Mail: [email protected]; Tel.: +1-772-778-7200 (ext. 136); Fax +1-772-7787205 External Editor: C. Roxanne Connelly Received: 30 October 2014; in revised form: 4 December 2014 / Accepted: 9 December 2014 / Published: 16 December 2014 Abstract: Florida (USA), particularly the southern portion of the State, is in a precarious situation concerning arboviral diseases. The geographic location, climate, lifestyle, and the volume of travel and commerce are all conducive to arbovirus transmission. During the last decades, imported dengue cases have been regularly recorded in Florida, and the recent re-emergence of dengue as a major public health concern in the Americas has been accompanied by a steady increase in the number of imported cases. In 2009, there were 28 cases of locally transmitted dengue in Key West, and in 2010, 65 cases were reported. Local transmission was also reported in Martin County in 2013 (29 cases), and isolated locally transmitted cases were also reported from other counties in the last five years. Dengue control and prevention in the future will require close cooperation between mosquito control and public health agencies, citizens, community and government agencies, and medical professionals to reduce populations of the vectors and to condition citizens and visitors to take personal protection measures that minimize bites by infected mosquitoes.
    [Show full text]
  • The Emergence of Epidemic Dengue Fever and Dengue Hemorrhagic
    Editorial The emergence of A global pandemic of dengue fever (DF) and dengue hemorrhagic fever (DHF) began in Southeast Asia during World War II and in the years following that con- epidemic dengue flict (1). In the last 25 years of the 20th century the pandemic intensified, with increased geographic spread of both the viruses and the principal mosquito vec- fever and dengue tor, Aedes aegypti. This led to larger and more frequent epidemics and to the emergence of DHF as tropical countries and regions became hyperendemic with hemorrhagic fever the co-circulation of multiple virus serotypes. With the exception of sporadic epidemics in the Caribbean islands, in the Americas: dengue and yellow fever were effectively controlled in the Americas from 1946 a case of failed until the late 1970s as a result of the Ae. aegypti eradication program conducted by the Pan American Health Organization (PAHO) (1, 2). This was a vertically struc- public health policy tured, paramilitary program that focused on mosquito larval control using source reduction and use of insecticides, primarily dichlorodiphenyltrichloroethane (DDT). This highly successful program, however, was disbanded in the early 1970s because there was no longer a perceived need and there were competing 1 Duane Gubler priorities for resources; control of dengue and yellow fever was thereafter merged with malaria control. Another major policy change at that time was the use of ultra-low-volume space sprays for killing adult mosquitoes (adulticides) as the rec- ommended method to control Ae. aegypti and thus prevent and control DF and DHF. Both of these decisions were major policy failures because they were inef- fective in preventing the re-emergence of epidemic DF and the emergence of DHF in the Region.
    [Show full text]
  • Expert Meeting on Chikungunya Modelling
    MEETING REPORT Expert meeting on chikungunya modelling Stockholm, April 2008 www.ecdc.europa.eu ECDC MEETING REPORT Expert meeting on chikungunya modelling Stockholm, April 2008 Stockholm, March 2009 © European Centre for Disease Prevention and Control, 2009 Reproduction is authorised, provided the source is acknowledged, subject to the following reservations: Figures 9 and 10 reproduced with the kind permission of the Journal of Medical Entomology, Entomological Society of America, 10001 Derekwood Lane, Suite 100, Lanham, MD 20706-4876, USA. MEETING REPORT Expert meeting on chikungunya modelling Table of contents Content...........................................................................................................................................................iii Summary: Research needs and data access ...................................................................................................... 1 Introduction .................................................................................................................................................... 2 Background..................................................................................................................................................... 3 Meeting objectives ........................................................................................................................................ 3 Presentations .................................................................................................................................................
    [Show full text]
  • An Overview of Mosquito Vectors of Zika Virus
    Microbes and Infection xxx (2018) 1e15 Contents lists available at ScienceDirect Microbes and Infection journal homepage: www.elsevier.com/locate/micinf An overview of mosquito vectors of Zika virus Sebastien Boyer a, Elodie Calvez b, Thais Chouin-Carneiro c, Diawo Diallo d, * Anna-Bella Failloux e, a Institut Pasteur of Cambodia, Unit of Medical Entomology, Phnom Penh, Cambodia b Institut Pasteur of New Caledonia, URE Dengue and Other Arboviruses, Noumea, New Caledonia c Instituto Oswaldo Cruz e Fiocruz, Laboratorio de Transmissores de Hematozoarios, Rio de Janeiro, Brazil d Institut Pasteur of Dakar, Unit of Medical Entomology, Dakar, Senegal e Institut Pasteur, URE Arboviruses and Insect Vectors, Paris, France article info abstract Article history: The mosquito-borne arbovirus Zika virus (ZIKV, Flavivirus, Flaviviridae), has caused an outbreak Received 6 December 2017 impressive by its magnitude and rapid spread. First detected in Uganda in Africa in 1947, from where it Accepted 15 January 2018 spread to Asia in the 1960s, it emerged in 2007 on the Yap Island in Micronesia and hit most islands in Available online xxx the Pacific region in 2013. Subsequently, ZIKV was detected in the Caribbean, and Central and South America in 2015, and reached North America in 2016. Although ZIKV infections are in general asymp- Keywords: tomatic or causing mild self-limiting illness, severe symptoms have been described including neuro- Arbovirus logical disorders and microcephaly in newborns. To face such an alarming health situation, WHO has Mosquito vectors Aedes aegypti declared Zika as an emerging global health threat. This review summarizes the literature on the main fi Vector competence vectors of ZIKV (sylvatic and urban) across all the ve continents with special focus on vector compe- tence studies.
    [Show full text]
  • A Total of 68 Cases Were Notified in Africa and South America in 1976
    Wkfy Epidem. Kec. - Relevéepidem. Iwbd.: 1977, 52, 309-316 No. 39 WORLD HEALTH ORGANIZATION ORGANISATION MONDIALE DE LA SANTÉ GENEVA GENÈYE WEEKLY EPIDEMIOLOGICAL RECORD RELEVE EPIDEMIOLOGIQUE HEBDOMADAIRE Epidemiological Surveillance o f Communicable Diseases Service de la Surveillance épidémiologique des Maladies transmissibles Telegraphic Address: EPIDNATIONS GENEVA Telex 27S21 Adresse télégraphique: EPIDNATIONS GENÈVE Télex 27821 Automatic Telex Reply Service Service automatique de réponse Telex 28150 Geneva with ZCZC and ENGL for a reply in P-nglkb Télex 28150 Genève suivi de ZCZC et FRAN pour une réponse en français 30 SEPTEMBER 1977 52nd YEAR — 52e ANNÉE 30 SEPTEMBRE 1977 YELLOW FEVER IN 1976 LA FIÈVRE JAUNE EN 1976 A total of 68 cases were notified in Africa and South America in Un nombre total de 68 cas a été notifié en Afrique et en Amérique 1976, 35 of which were fatal, as compared with 301 cases, including du Sud en 1976, dont 35 furent mortels, comparé à 301 cas, dont 135 135 deaths, in 1975 (Table 1, Fig. 1). décès, en 1975 (Tableau 1, Fig. 1). Fig. 1 Jungle Yellow Fever in South America and Yellow Fever in Africa, 1976 Fièvre jaune de brousse en Amérique du Sud et fièvre jaune en Afrique, 1976 Epidemiological notes contained in this number; Informations épidémiologiques contenues dans ce numéro: Cholera, Community Water Fluoridation, Influenza, Rabies Choléra, fièvre jaune, fluoration de l’eau des réseaux publics, Surveillance, Smallpox, Yellow Fever. grippe, surveillance de la rage, variole. List of Newly Infected Areas, p. 315. Liste des zones nouvellement infectées, p. 315. Wkl? Eptdetn, Ree. • No. 39 - 30 Sept.
    [Show full text]
  • Zika Virus in Southeastern Senegal: Survival of the Vectors and the Virus
    Diouf et al. BMC Infectious Diseases (2020) 20:371 https://doi.org/10.1186/s12879-020-05093-5 RESEARCH ARTICLE Open Access Zika virus in southeastern Senegal: survival of the vectors and the virus during the dry season Babacar Diouf*, Alioune Gaye, Cheikh Tidiane Diagne, Mawlouth Diallo and Diawo Diallo* Abstract Background: Zika virus (ZIKV, genus Flavivirus, family Flaviviridae) is transmitted mainly by Aedes mosquitoes. This virus has become an emerging concern of global public health with recent epidemics associated to neurological complications in the pacific and America. ZIKV is the most frequently amplified arbovirus in southeastern Senegal. However, this virus and its adult vectors are undetectable during the dry season. The aim of this study was to investigate how ZIKV and its vectors are maintained locally during the dry season. Methods: Soil, sand, and detritus contained in 1339 potential breeding sites (tree holes, rock holes, fruit husks, discarded containers, used tires) were collected in forest, savannah, barren and village land covers and flooded for eggs hatching. The emerging larvae were reared to adult, identified, and blood fed for F1 production. The F0 and F1 adults were identified and tested for ZIKV by Reverse Transcriptase-Real time Polymerase Chain Reaction. Results: A total of 1016 specimens, including 13 Aedes species, emerged in samples collected in the land covers and breeding sites investigated. Ae. aegypti was the dominant species representing 56.6% of this fauna with a high plasticity. Ae. furcifer and Ae. luteocephalus were found in forest tree holes, Ae. taylori in forest and village tree holes, Ae. vittatus in rock holes.
    [Show full text]
  • Medical Entomology in Brief
    Medical Entomology in Brief Dr. Alfatih Saifudinn Aljafari Assistant professor of Parasitology College of Medicine- Al Jouf University Aim and objectives • Aim: – To bring attention to medical entomology as important biomedical science • Objective: – By the end of this presentation, audience could be able to: • Understand the scope of Medical Entomology • Know medically important arthropods • Understand the basic of pathogen transmission dynamic • Medical Entomology in Brief- Dr. Aljafari (CME- January 2019) In this presentation • Introduction • Classification of arthropods • Examples of medical and public health important species • Insect Ethology • Dynamic of disease transmission • Other application of entomology Medical Entomology in Brief- Dr. Aljafari (CME- January 2019) Definition • Entomology: – The branch of zoology concerned with the study of insects. • Medical Entomology: – Branch of Biomedical sciences concerned with “ArthrobodsIn the past the term "insect" was more vague, and historically the definition of entomology included the study of terrestrial animals in other arthropod groups or other phyla, such, as arachnids, myriapods, earthworms, land snails, and slugs. This wider meaning may still be encountered in informal use. • At some 1.3 million described species, insects account for more than two-thirds of all known organisms, date back some 400 million years, and have many kinds of interactions with humans and other forms of life on earth Medical Entomology in Brief- Dr. Aljafari (CME- January 2019) Arthropods and Human • Transmission of infectious agents • Allergy • Injury • Inflammation • Agricultural damage • Termites • Honey • Silk Medical Entomology in Brief- Dr. Aljafari (CME- January 2019) Phylum Arthropods • Hard exoskeleton, segmented bodies, jointed appendages • Nearly one million species identified so far, mostly insects • The exoskeleton, or cuticle, is composed of chitin.
    [Show full text]
  • E Abstracts with Advt 12.02.2019
    International Conference ee ABSTRACTSABSTRACTS Goa, 13th - 16th February, 2019 Organizers Society for Vector Ecology (Indian Region) and ICMR - National Institute of Malaria Research, FU, Goa I N D E X S.No. Name of the Delegate Page No. S.No. Name of the Delegate Page No. 1 A. N. Anoopkumar 45 42 Narayani Prasad Kar 50 2 Agenor Mafra-Neto 40 43 Naren babu N 63 3 Ajeet Kumar Mohanty 72 44 Naveen Rai Tuli 10-11 4 Alex Eapen 17 45 Neil Lobo 23 5 Algimantas Paulauskas 33 46 Nidhish G 65 6 Aneesh Embalil Mathachan 46 47 Norbert Becker 12 7 Aneesh Embalil Mathachan 28 48 O.P. Singh 78 8 Anju Viswan K 64 49 P. K. Rajagopalan 2-9 9 Ankita Sindhania 62 50 P. K. Sumodan 30 10 Ashwani Kumar 25 51 Paulo F. P. Pimenta 27 11 Ayyadevera Rambabu 29 52 Poonam Singh 90 12 Bhavana Gupta 43 53 Pradeep Kumar Shrivastava 20 13 Charles Reuben Desouza 89 54 R. S. Sharma 22 14 Dan Kline 37 55 R.K. Dasgupta 21 15 Deepa Jha 61 56 Rajendra Thapar 76 16 Deeparani K. Prabhu 68 57 Rajnikant Dixit 74 17 Devanathan Sukumaran 82 58 Rajpal Singh Yadav 1 18 Devi Shankar Suman 16 59 Raju Parulkar 84 19 Farah Ishtiaq 36 60 Rakhi Dhawan 73 20 Gourav Dey 88 61 Ramesh C Dhiman 32 21 Gunjan Sharma 86 62 Ranjana Rani 42 22 Hanno Schmidt 18 63 Roop Kumari 19 23 Hemachandra Bhovi 75 64 S. R. Pandian 49 24 Hemanth Kumar 53 65 Sajal Bhattacharya 31 25 Jagbir Singh 34 66 Sam Siao Jing 77 26 Jitender Gawade 83 67 Sanchita Bhattacharaya 56 27 John E.
    [Show full text]
  • A Tribute to Dr. Maurice W. Provost
    412 Florida Entomologist 87(3) September 2004 BATTLING WEST NILE VIRUS AND OTHER MOSQUITO-BORNE DISEASES: A TRIBUTE TO DR. MAURICE W. PROVOST JOHN D. EDMAN Center for Vectorborne Diseases, Department of Entomology, University of California, Davis One Shields Ave., Davis, CA 95616-8584 This pioneer lecture honors the scientific ca- longer have the benefit of Dr. Provost’s keen in- reer of Dr. Maurice W. Provost. Dr. Provost’s dis- sight in planning our defense as we did when SLE tinguished career with the Florida State Board invaded. However, he left us clear directions of (later Division) of Health was devoted to freeing how we should respond to this newest vector Floridians from the scourge of mosquitoes and borne disease challenge. sand flies, and preventing mosquito-borne dis- Dr. Provost was unpretentious and so I will eases such as malaria and St. Louis encephalitis henceforth refer to him, simply as Maury. Despite (SLE). The unprecedented invasion of West Nile his distinguished appearance and sophisticated virus (WNV) into North America in 1999 and its tastes, Maury was at heart a naturalist who en- transcontinental spread from the Northeast over couraged informality. He donned a coat and tie for the past four years has added a new mosquito- the annual staff picture on the front steps of the borne disease to the Florida landscape. WNV is a FMEL (Fig. 1) and for the annual Christmas close relative of SLE virus and has a similar party (Fig. 2) but otherwise he dressed casually in maintenance and amplification cycle involving loose, brightly colored shirts.
    [Show full text]
  • Defining the Risk of Zika and Chikungunya Virus Transmission in Human Population Centers of the Eastern United States
    bioRxiv preprint doi: https://doi.org/10.1101/061382; this version posted July 24, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Defining the risk of Zika and chikungunya virus transmission in human population 2 centers of the eastern United States 3 4 Carrie A. Manore1.2*, Richard S. Ostfeld3, Folashade B. Agusto4, Holly Gaff5,6, Shannon L. 5 LaDeau3 6 1Center for Computational Science 7 Tulane University 8 6823 St. Charles Avenue 9 New Orleans, LA 70118 USA 10 11 2Department of Mathematics 12 Tulane University 13 6823 St. Charles Avenue 14 New Orleans, LA 70118 USA 15 16 3Cary Institute of Ecosystem Studies 17 Box AB, 2801 Sharon Turnpike 18 Millbrook, NY 12545 USA 19 20 4Department of Ecology and Evolutionary Biology 21 University of Kansas 22 3002 Haworth Hall 23 1200 Sunnyside Avenue 24 Lawrence, Kansas 66045 25 26 5Department of Biological Sciences 27 Old Dominion University 28 202J MGB 29 Norfolk, VA 23529 30 31 6Honorary Associate Professor 32 Mathematics, Statistics and Computer Science 33 University of KwaZulu-Natal 34 Private Bag X54001 35 Durban 4000, South Africa 36 37 *Corresponding author: [email protected] 38 39 Keywords: Zika, chikungunya, Aedes albopictus, mathematical model, outbreak risk, United 40 States 41 Classification: Ecology 1 bioRxiv preprint doi: https://doi.org/10.1101/061382; this version posted July 24, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • Reducing Health Risks Through Sound Management of Pesticides Project Report
    REDUCING HEALTH RISKS THROUGH SOUND MANAGEMENT OF PESTICIDES PROJECT REPORT WORLD HEALTH ORGANIZATION CONTROL OF NEGLECTED TROPICAL DISEASES (NTD) WHO PESTICIDE EVALUATION SCHEME (WHOPES) iv 1 REDUCING HEALTH RISKS THROUGH SOUND MANAGEMENT OF PESTICIDES PROJECT REPORT WORLD HEALTH ORGANIZATION CONTROL OF NEGLECTED TROPICAL DISEASES (NTD) WHO PESTICIDE EVALUATION SCHEME (WHOPES) 2 WHO Library Cataloguing-in-Publication Data : Reducing health risks through sound management of pesticides: project report. 1.Pest Control, Biological. 2.Pesticides - standards. 3.Harzardous substances. 4.Waste management. 5.Public health – legislation and jurisprudence. I.World Health Organization. ISBN 978 92 4 150610 6 (NLM classification: WA 240) © World Health Organization 2013 All rights reserved. Publications of the World Health Organization are available on the WHO web site (www.who.int) or can be purchased from WHO Press, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel.: +41 22 791 3264; fax: +41 22 791 4857; e-mail: [email protected]). Requests for permission to reproduce or translate WHO publications –whether for sale or for non-commercial distribution– should be addressed to WHO Press through the WHO web site (www.who.int/about/licensing/copyright_form/en/index.html). The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement.
    [Show full text]