YUV422 to YUV420 Color Space Conversion on FPGA

Total Page:16

File Type:pdf, Size:1020Kb

YUV422 to YUV420 Color Space Conversion on FPGA Research and Applications: Embedded System Volume 3 Issue 2 DOI: [To be assigned] YUV422 to YUV420 Color Space Conversion on FPGA Abhilash R. Namboodiri1, Sujata D. Badiger2*, Rajagopal Narayanasamy3 1,2Department of Electronics and Communication Engineering, RV College of Engineering, Bengaluru, Karnataka, India 3Senior Member of Technical Staff, Cypress Semiconductors, RV College of Engineering, Bengaluru, Karnataka, India *Corresponding Author E-Mail Id: [email protected] ABSTRACT YUV is a popular color encoding system similar to the popular RGB variant but is less data intensive. YUV stores only the difference among the chrominance values and absence of data bytes can be represented as a grayer image resulting in reduced data consumption. YUV422 (YCbCr) forms the standard video format used in various broadcasting technologies and standards. However, at high resolutions and higher frame rates it needs to be converted to YUV420 format which is similar but not as data intensive. This conversion is realized in Verilog and implemented on an FPGA which converts the video data for real-time applications. Keywords: Color Space Conversion, YCbCr, YUV Encoder, YUV420, MIPI, FPGA Color conversion INTRODUCTION describe of brightness and color samples in YUV is a color encoding system typically a hypothetical region that is A pixels wide, used as part of a color image pipeline.[17] and 2 pixels high. The ratios are described It is a raster graphics extension and stores by: a bitmap of the resulting image. YUV splits color into Y, U and V values; storing A: Horizontal reference for sampling; luminance (brightness) as Y values, and translates to width of the region. In chrominance (color) as U and V. It example: 4 encodes a color image or video taking B: Chrominance samples (Cr, Cb) human perception into account; thus, present first row of A pixels or chrominance components are marked with horizontal sampling a reduced bandwidth. This allows C: Number of changes of chrominance transmission errors and compression samples (Cr, Cb) between first and which can be masked more efficiently by second row of J pixels, which the human perception than using a translates to vertical sampling B must standard RGB based representation. [8,9] be either zero or equal to A (except in rare irregular cases like 4:4:1 and YUV is implemented via chroma 4:2:1). subsampling where images are encoded with lesser chroma, U representing YUV422 formats (UYVY and YUY2) take Chroma-blue (Cb) and V representing 16 bits per pixel and are packed Chroma-red (Cr), information for its sequentially, at high resolutions and frame corresponding luma (Y) information and is rates it becomes easier to process them at expressed as a ratio in three different parts YUV420 formats which take only 12 bits A:B:C (e.g. 4:2:2), [14]these values of data per pixel which allow them to be HBRP Publication Page 1-7 2020. All Rights Reserved Page 1 Research and Applications: Embedded System Volume 3 Issue 2 DOI: [To be assigned] easily processed and streamed in real for both encoder and decoder. YUV420 to time.[21-23] YUV422 conversion involves interpolation, commonly accepted and followed interpolation technique is the cubic convolution interpolation [6], developed by Robert Keys, which is seen to drastically outperform linear and nearest neighbor interpolations. Cubic convolution can also be performed easily by processor without any addition of numerical methods to approximate. Cubic convolution interpolation function is found to converge uniformly to the function being interpolated as the sampling increment tends to zero, or it approximates better when sample size taken is smaller.[19] Fig. 1: YUV422 A:4 B:2 C:2. YUV color space is widely used for image processing with multiple techniques to deal with widely available in literature. Y neither corresponds completely to luminance and U and V do not represent the actual color or chroma content, however, a rough correspondence between the YUV signals and visual attributes does exist. This modular feature makes YUV color space more convenient for image processing than various other color spaces, [15,18] suggesting the possibility that color enhancement algorithms could be developed using the YUV color space having equivalent performances with other popular uniform color spaces, like CIECAM02.[4,7] Fig. 2: YUV420 A:4 B:2 C:0. Raw video is usually encoded and YUV is the preferred format for compressed by a standard video encoder broadcasting and televisions all around the and later decoded at the time of playback, world [5]. Another advantage adopting for efficient storage and transmission. An YUV standards is compression, taking interframe method is described in [16] advantage of human perception to lower where first decoded YUV frame is resolution without adversely impacting transferred completely and then converted subjective quality. Chroma subsampling to RGB using a color space converter. This consists in several color pixels sharing the is followed by only Y component same chroma value leading to lowering of transmission in the second frame. Cb and spatial resolution of chroma channels Cr components are re-used from the vertically, horizontally or both. Chroma previous frame making it computationally subsampling is useful for both memory efficient. and throughput as it allows higher bitrate HBRP Publication Page 1-7 2020. All Rights Reserved Page 2 Research and Applications: Embedded System Volume 3 Issue 2 DOI: [To be assigned] SYSTEM ARCHITECTURE Fig. 3: System Block Diagram. Objective of the system is to build a low Controller (Cypress FX2LP) cost USB2 UVC Camera. Composition of 2. FPGA (Lattice Crosslink) the system includes: configuration flow via I2C Cypress FX2LP board, a peripheral transactions from USB Controller controller connected to Host (PC) and can relay data to and from host device To configure FPGA, Verilog code initially connected to a USB connector. written on host must first be sent to I2C EEPROM to store any USB2.0 controller before it is then configuration data. transferred to the FPGA.[11-13]] This Bridge board consisting of: transaction of the entire resulting o Lattice CrossLink: FPGA functioning Bitstream occurs via Control Endpoint in as MIPI parallel bridge connected to USB 2.0 to recursively transmit the entire FX2LP in 16-bit parallel data bitstream. Host Application automatically interfaced with FX2LP’s GPIO pins. detects recently enumerated USB Device o Image Sensor module to relay video and allows choice of the file to be data from the image sensor to MIPI transferred. It also updates status bridge (CrossLink) periodically after every block of 4096 o Miscellaneous components including bytes. This recursively occurs till it Voltage regulators, USB Serial/I2C reaches the last block and sends the debugger remaining of the bytes which may or may not be equal to 4096 bytes. The application EXPERIMENTAL DETAILS AND copies data from the file accessed by a file CONFIGURATION FLOW pointer onto a temporary buffer on the host Configuration of FPGA convertor logic which is then accessed by the control pipe involves the following: and loaded onto control packets finally 1. Bitstream transfer via Control decoded and stored in Endpoint 0 endpoint from Host to USB peripheral Buffer.[2,9,10,20] HBRP Publication Page 1-7 2020. All Rights Reserved Page 1 Research and Applications: Embedded System Volume 3 Issue 2 DOI: [To be assigned] Fig. 4: USB Control Transfer. Once the FPGA logic is sent to USB This is captured as end of config and Controller it is then transferred to FPGA switches the device to user state. Assertion according to its specific configuration of the internal DONE causes a Wake-up sequence. When the entire configuration state machine to run and CrossLink enters data in the form of a bitstream is received, User Mode immediately when the Wake- FPGA asserts an internal DONE status. up sequence has completed. Fig. 5: I2C Signal Trace. Our aim was conversion of the packed sensor is arranged in packed format with a YUV422 format to a planar YUV420 macro-pixel defined by two luma (Y) and format. This involves horizontal respective chroma (U & V) bytes. This is subsampling of Chroma values (Cb and converted to YUV420 planar format as in Cr), which is achieved by down sampling Figure 7 with all luma elements sent at chroma for every alternate packed set of once and then utilizing a frame buffer to two pixels. The UV samples are stored in a store respective chroma values separate UV subspace and eventually sent alternatively and append them in the end in after all the luma components are sent as a planar format with different Luma and referenced by Figure 6 and Figure 7. Chroma planes. Incoming packed format from the camera HBRP Publication Page 1-7 2020. All Rights Reserved Page 2 Research and Applications: Embedded System Volume 3 Issue 2 DOI: [To be assigned] Fig. 6: YUV422 Packed Format. Fig. 7: YUV420 Planar Format. RESULTS AND DISCUSSION format. This was set for a simulation Color Conversion occurred from packed design and will subsequently interface YUV422 format to a planar YUV420 with a Camera/UVC Sensor Interface. Fig. 8: Waveforms of YUV420 Color Bar Generation after Conversion. This was supplemented with YUV420 firmware and Verilog code written. Color Bar Generation to test out the design Fig. 9: YUV Color Bar Generated to Simulate Sensor Data. CONCLUSIONS demand for high resolution video services Advent of video encoding, high resolution in the areas of TV broadcasting, personal displays and faster network technologies, media has increased multifold. Interfacing HBRP Publication Page 1-7 2020. All Rights Reserved Page 1 Research and Applications: Embedded System Volume 3 Issue 2 DOI: [To be assigned] HDMI along with the popular USB convolution. IEEE Transactions on standard becomes an increasing need to Image Processing, 15(7), 1857-1870.
Recommended publications
  • Color Models
    Color Models Jian Huang CS456 Main Color Spaces • CIE XYZ, xyY • RGB, CMYK • HSV (Munsell, HSL, IHS) • Lab, UVW, YUV, YCrCb, Luv, Differences in Color Spaces • What is the use? For display, editing, computation, compression, …? • Several key (very often conflicting) features may be sought after: – Additive (RGB) or subtractive (CMYK) – Separation of luminance and chromaticity – Equal distance between colors are equally perceivable CIE Standard • CIE: International Commission on Illumination (Comission Internationale de l’Eclairage). • Human perception based standard (1931), established with color matching experiment • Standard observer: a composite of a group of 15 to 20 people CIE Experiment CIE Experiment Result • Three pure light source: R = 700 nm, G = 546 nm, B = 436 nm. CIE Color Space • 3 hypothetical light sources, X, Y, and Z, which yield positive matching curves • Y: roughly corresponds to luminous efficiency characteristic of human eye CIE Color Space CIE xyY Space • Irregular 3D volume shape is difficult to understand • Chromaticity diagram (the same color of the varying intensity, Y, should all end up at the same point) Color Gamut • The range of color representation of a display device RGB (monitors) • The de facto standard The RGB Cube • RGB color space is perceptually non-linear • RGB space is a subset of the colors human can perceive • Con: what is ‘bloody red’ in RGB? CMY(K): printing • Cyan, Magenta, Yellow (Black) – CMY(K) • A subtractive color model dye color absorbs reflects cyan red blue and green magenta green blue and red yellow blue red and green black all none RGB and CMY • Converting between RGB and CMY RGB and CMY HSV • This color model is based on polar coordinates, not Cartesian coordinates.
    [Show full text]
  • An Improved SPSIM Index for Image Quality Assessment
    S S symmetry Article An Improved SPSIM Index for Image Quality Assessment Mariusz Frackiewicz * , Grzegorz Szolc and Henryk Palus Department of Data Science and Engineering, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland; [email protected] (G.S.); [email protected] (H.P.) * Correspondence: [email protected]; Tel.: +48-32-2371066 Abstract: Objective image quality assessment (IQA) measures are playing an increasingly important role in the evaluation of digital image quality. New IQA indices are expected to be strongly correlated with subjective observer evaluations expressed by Mean Opinion Score (MOS) or Difference Mean Opinion Score (DMOS). One such recently proposed index is the SuperPixel-based SIMilarity (SPSIM) index, which uses superpixel patches instead of a rectangular pixel grid. The authors of this paper have proposed three modifications to the SPSIM index. For this purpose, the color space used by SPSIM was changed and the way SPSIM determines similarity maps was modified using methods derived from an algorithm for computing the Mean Deviation Similarity Index (MDSI). The third modification was a combination of the first two. These three new quality indices were used in the assessment process. The experimental results obtained for many color images from five image databases demonstrated the advantages of the proposed SPSIM modifications. Keywords: image quality assessment; image databases; superpixels; color image; color space; image quality measures Citation: Frackiewicz, M.; Szolc, G.; Palus, H. An Improved SPSIM Index 1. Introduction for Image Quality Assessment. Quantitative domination of acquired color images over gray level images results in Symmetry 2021, 13, 518. https:// the development not only of color image processing methods but also of Image Quality doi.org/10.3390/sym13030518 Assessment (IQA) methods.
    [Show full text]
  • COLOR SPACE MODELS for VIDEO and CHROMA SUBSAMPLING
    COLOR SPACE MODELS for VIDEO and CHROMA SUBSAMPLING Color space A color model is an abstract mathematical model describing the way colors can be represented as tuples of numbers, typically as three or four values or color components (e.g. RGB and CMYK are color models). However, a color model with no associated mapping function to an absolute color space is a more or less arbitrary color system with little connection to the requirements of any given application. Adding a certain mapping function between the color model and a certain reference color space results in a definite "footprint" within the reference color space. This "footprint" is known as a gamut, and, in combination with the color model, defines a new color space. For example, Adobe RGB and sRGB are two different absolute color spaces, both based on the RGB model. In the most generic sense of the definition above, color spaces can be defined without the use of a color model. These spaces, such as Pantone, are in effect a given set of names or numbers which are defined by the existence of a corresponding set of physical color swatches. This article focuses on the mathematical model concept. Understanding the concept Most people have heard that a wide range of colors can be created by the primary colors red, blue, and yellow, if working with paints. Those colors then define a color space. We can specify the amount of red color as the X axis, the amount of blue as the Y axis, and the amount of yellow as the Z axis, giving us a three-dimensional space, wherein every possible color has a unique position.
    [Show full text]
  • Camera Raw Workflows
    RAW WORKFLOWS: FROM CAMERA TO POST Copyright 2007, Jason Rodriguez, Silicon Imaging, Inc. Introduction What is a RAW file format, and what cameras shoot to these formats? How does working with RAW file-format cameras change the way I shoot? What changes are happening inside the camera I need to be aware of, and what happens when I go into post? What are the available post paths? Is there just one, or are there many ways to reach my end goals? What post tools support RAW file format workflows? How do RAW codecs like CineForm RAW enable me to work faster and with more efficiency? What is a RAW file? In simplest terms is the native digital data off the sensor's A/D converter with no further destructive DSP processing applied Derived from a photometrically linear data source, or can be reconstructed to produce data that directly correspond to the light that was captured by the sensor at the time of exposure (i.e., LOG->Lin reverse LUT) Photometrically Linear 1:1 Photons Digital Values Doubling of light means doubling of digitally encoded value What is a RAW file? In film-analogy would be termed a “digital negative” because it is a latent representation of the light that was captured by the sensor (up to the limit of the full-well capacity of the sensor) “RAW” cameras include Thomson Viper, Arri D-20, Dalsa Evolution 4K, Silicon Imaging SI-2K, Red One, Vision Research Phantom, noXHD, Reel-Stream “Quasi-RAW” cameras include the Panavision Genesis In-Camera Processing Most non-RAW cameras on the market record to 8-bit YUV formats
    [Show full text]
  • Creating 4K/UHD Content Poster
    Creating 4K/UHD Content Colorimetry Image Format / SMPTE Standards Figure A2. Using a Table B1: SMPTE Standards The television color specification is based on standards defined by the CIE (Commission 100% color bar signal Square Division separates the image into quad links for distribution. to show conversion Internationale de L’Éclairage) in 1931. The CIE specified an idealized set of primary XYZ SMPTE Standards of RGB levels from UHDTV 1: 3840x2160 (4x1920x1080) tristimulus values. This set is a group of all-positive values converted from R’G’B’ where 700 mv (100%) to ST 125 SDTV Component Video Signal Coding for 4:4:4 and 4:2:2 for 13.5 MHz and 18 MHz Systems 0mv (0%) for each ST 240 Television – 1125-Line High-Definition Production Systems – Signal Parameters Y is proportional to the luminance of the additive mix. This specification is used as the color component with a color bar split ST 259 Television – SDTV Digital Signal/Data – Serial Digital Interface basis for color within 4K/UHDTV1 that supports both ITU-R BT.709 and BT2020. 2020 field BT.2020 and ST 272 Television – Formatting AES/EBU Audio and Auxiliary Data into Digital Video Ancillary Data Space BT.709 test signal. ST 274 Television – 1920 x 1080 Image Sample Structure, Digital Representation and Digital Timing Reference Sequences for The WFM8300 was Table A1: Illuminant (Ill.) Value Multiple Picture Rates 709 configured for Source X / Y BT.709 colorimetry ST 296 1280 x 720 Progressive Image 4:2:2 and 4:4:4 Sample Structure – Analog & Digital Representation & Analog Interface as shown in the video ST 299-0/1/2 24-Bit Digital Audio Format for SMPTE Bit-Serial Interfaces at 1.5 Gb/s and 3 Gb/s – Document Suite Illuminant A: Tungsten Filament Lamp, 2854°K x = 0.4476 y = 0.4075 session display.
    [Show full text]
  • Yasser Syed & Chris Seeger Comcast/NBCU
    Usage of Video Signaling Code Points for Automating UHD and HD Production-to-Distribution Workflows Yasser Syed & Chris Seeger Comcast/NBCU Comcast TPX 1 VIPER Architecture Simpler Times - Delivering to TVs 720 1920 601 HD 486 1080 1080i 709 • SD - HD Conversions • Resolution, Standard Dynamic Range and 601/709 Color Spaces • 4:3 - 16:9 Conversions • 4:2:0 - 8-bit YUV video Comcast TPX 2 VIPER Architecture What is UHD / 4K, HFR, HDR, WCG? HIGH WIDE HIGHER HIGHER DYNAMIC RESOLUTION COLOR FRAME RATE RANGE 4K 60p GAMUT Brighter and More Colorful Darker Pixels Pixels MORE FASTER BETTER PIXELS PIXELS PIXELS ENABLED BY DOLBYVISION Comcast TPX 3 VIPER Architecture Volume of Scripted Workflows is Growing Not considering: • Live Events (news/sports) • Localized events but with wider distributions • User-generated content Comcast TPX 4 VIPER Architecture More Formats to Distribute to More Devices Standard Definition Broadcast/Cable IPTV WiFi DVDs/Files • More display devices: TVs, Tablets, Mobile Phones, Laptops • More display formats: SD, HD, HDR, 4K, 8K, 10-bit, 8-bit, 4:2:2, 4:2:0 • More distribution paths: Broadcast/Cable, IPTV, WiFi, Laptops • Integration/Compositing at receiving device Comcast TPX 5 VIPER Architecture Signal Normalization AUTOMATED LOGIC FOR CONVERSION IN • Compositing, grading, editing SDR HLG PQ depends on proper signal BT.709 BT.2100 BT.2100 normalization of all source files (i.e. - Still Graphics & Titling, Bugs, Tickers, Requires Conversion Native Lower-Thirds, weather graphics, etc.) • ALL content must be moved into a single color volume space. Normalized Compositing • Transformation from different Timeline/Switcher/Transcoder - PQ-BT.2100 colourspaces (BT.601, BT.709, BT.2020) and transfer functions (Gamma 2.4, PQ, HLG) Convert Native • Correct signaling allows automation of conversion settings.
    [Show full text]
  • AN9717: Ycbcr to RGB Considerations (Multimedia)
    YCbCr to RGB Considerations TM Application Note March 1997 AN9717 Author: Keith Jack Introduction Converting 4:2:2 to 4:4:4 YCbCr Many video ICs now generate 4:2:2 YCbCr video data. The Prior to converting YCbCr data to R´G´B´ data, the 4:2:2 YCbCr color space was developed as part of ITU-R BT.601 YCbCr data must be converted to 4:4:4 YCbCr data. For the (formerly CCIR 601) during the development of a world-wide YCbCr to RGB conversion process, each Y sample must digital component video standard. have a corresponding Cb and Cr sample. Some of these video ICs also generate digital RGB video Figure 1 illustrates the positioning of YCbCr samples for the data, using lookup tables to assist with the YCbCr to RGB 4:4:4 format. Each sample has a Y, a Cb, and a Cr value. conversion. By understanding the YCbCr to RGB conversion Each sample is typically 8 bits (consumer applications) or 10 process, the lookup tables can be eliminated, resulting in a bits (professional editing applications) per component. substantial cost savings. Figure 2 illustrates the positioning of YCbCr samples for the This application note covers some of the considerations for 4:2:2 format. For every two horizontal Y samples, there is converting the YCbCr data to RGB data without the use of one Cb and Cr sample. Each sample is typically 8 bits (con- lookup tables. The process basically consists of three steps: sumer applications) or 10 bits (professional editing applica- tions) per component.
    [Show full text]
  • Color Image Enhancement with Saturation Adjustment Method
    Journal of Applied Science and Engineering, Vol. 17, No. 4, pp. 341-352 (2014) DOI: 10.6180/jase.2014.17.4.01 Color Image Enhancement with Saturation Adjustment Method Jen-Shiun Chiang1, Chih-Hsien Hsia2*, Hao-Wei Peng1 and Chun-Hung Lien3 1Department of Electrical Engineering, Tamkang University, Tamsui, Taiwan 251 2Department of Electrical Engineering, Chinese Culture University, Taipei, Taiwan 111 3Commercialization and Service Center, Industrial Technology Research Institute, Taipei, Taiwan 106 Abstract In the traditional color adjustment approach, people tried to separately adjust the luminance and saturation. This approach makes the color over-saturate very easily and makes the image look unnatural. In this study, we try to use the concept of exposure compensation to simulate the brightness changes and to find the relationship among luminance, saturation, and hue. The simulation indicates that saturation changes withthe change of luminance and the simulation also shows there are certain relationships between color variation model and YCbCr color model. Together with all these symptoms, we also include the human vision characteristics to propose a new saturation method to enhance the vision effect of an image. As results, the proposed approach can make the image have better vivid and contrast. Most important of all, unlike the over-saturation caused by the conventional approach, our approach prevents over-saturation and further makes the adjusted image look natural. Key Words: Color Adjustment, Human Vision, Color Image Processing, YCbCr, Over-Saturation 1. Introduction over-saturated images. An over-saturated image looks unnatural due to the loss of color details in high satura- With the advanced development of technology, the tion area of the image.
    [Show full text]
  • Color Images, Color Spaces and Color Image Processing
    color images, color spaces and color image processing Ole-Johan Skrede 08.03.2017 INF2310 - Digital Image Processing Department of Informatics The Faculty of Mathematics and Natural Sciences University of Oslo After original slides by Fritz Albregtsen today’s lecture ∙ Color, color vision and color detection ∙ Color spaces and color models ∙ Transitions between color spaces ∙ Color image display ∙ Look up tables for colors ∙ Color image printing ∙ Pseudocolors and fake colors ∙ Color image processing ∙ Sections in Gonzales & Woods: ∙ 6.1 Color Funcdamentals ∙ 6.2 Color Models ∙ 6.3 Pseudocolor Image Processing ∙ 6.4 Basics of Full-Color Image Processing ∙ 6.5.5 Histogram Processing ∙ 6.6 Smoothing and Sharpening ∙ 6.7 Image Segmentation Based on Color 1 motivation ∙ We can differentiate between thousands of colors ∙ Colors make it easy to distinguish objects ∙ Visually ∙ And digitally ∙ We need to: ∙ Know what color space to use for different tasks ∙ Transit between color spaces ∙ Store color images rationally and compactly ∙ Know techniques for color image printing 2 the color of the light from the sun spectral exitance The light from the sun can be modeled with the spectral exitance of a black surface (the radiant exitance of a surface per unit wavelength) 2πhc2 1 M(λ) = { } : λ5 hc − exp λkT 1 where ∙ h ≈ 6:626 070 04 × 10−34 m2 kg s−1 is the Planck constant. ∙ c = 299 792 458 m s−1 is the speed of light. ∙ λ [m] is the radiation wavelength. ∙ k ≈ 1:380 648 52 × 10−23 m2 kg s−2 K−1 is the Boltzmann constant. T ∙ [K] is the surface temperature of the radiating Figure 1: Spectral exitance of a black body surface for different body.
    [Show full text]
  • Arxiv:1902.00267V1 [Cs.CV] 1 Feb 2019 Fcmue Iin Oto H Aaesue O Mg Classificat Image Th for in Used Applications Datasets Fundamental the Most of the Most Vision
    ColorNet: Investigating the importance of color spaces for image classification⋆ Shreyank N Gowda1 and Chun Yuan2 1 Computer Science Department, Tsinghua University, Beijing 10084, China [email protected] 2 Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China [email protected] Abstract. Image classification is a fundamental application in computer vision. Recently, deeper networks and highly connected networks have shown state of the art performance for image classification tasks. Most datasets these days consist of a finite number of color images. These color images are taken as input in the form of RGB images and clas- sification is done without modifying them. We explore the importance of color spaces and show that color spaces (essentially transformations of original RGB images) can significantly affect classification accuracy. Further, we show that certain classes of images are better represented in particular color spaces and for a dataset with a highly varying number of classes such as CIFAR and Imagenet, using a model that considers multi- ple color spaces within the same model gives excellent levels of accuracy. Also, we show that such a model, where the input is preprocessed into multiple color spaces simultaneously, needs far fewer parameters to ob- tain high accuracy for classification. For example, our model with 1.75M parameters significantly outperforms DenseNet 100-12 that has 12M pa- rameters and gives results comparable to Densenet-BC-190-40 that has 25.6M parameters for classification of four competitive image classifica- tion datasets namely: CIFAR-10, CIFAR-100, SVHN and Imagenet. Our model essentially takes an RGB image as input, simultaneously converts the image into 7 different color spaces and uses these as inputs to individ- ual densenets.
    [Show full text]
  • Color Space Analysis for Iris Recognition
    Graduate Theses, Dissertations, and Problem Reports 2007 Color space analysis for iris recognition Matthew K. Monaco West Virginia University Follow this and additional works at: https://researchrepository.wvu.edu/etd Recommended Citation Monaco, Matthew K., "Color space analysis for iris recognition" (2007). Graduate Theses, Dissertations, and Problem Reports. 1859. https://researchrepository.wvu.edu/etd/1859 This Thesis is protected by copyright and/or related rights. It has been brought to you by the The Research Repository @ WVU with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Thesis has been accepted for inclusion in WVU Graduate Theses, Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU. For more information, please contact [email protected]. Color Space Analysis for Iris Recognition by Matthew K. Monaco Thesis submitted to the College of Engineering and Mineral Resources at West Virginia University in partial ful¯llment of the requirements for the degree of Master of Science in Electrical Engineering Arun A. Ross, Ph.D., Chair Lawrence Hornak, Ph.D. Xin Li, Ph.D. Lane Department of Computer Science and Electrical Engineering Morgantown, West Virginia 2007 Keywords: Iris, Iris Recognition, Multispectral, Iris Anatomy, Iris Feature Extraction, Iris Fusion, Score Level Fusion, Multimodal Biometrics, Color Space Analysis, Iris Enhancement, Iris Color Analysis, Color Iris Recognition Copyright 2007 Matthew K.
    [Show full text]
  • Application of Contrast Sensitivity Functions in Standard and High Dynamic Range Color Spaces
    https://doi.org/10.2352/ISSN.2470-1173.2021.11.HVEI-153 This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. Color Threshold Functions: Application of Contrast Sensitivity Functions in Standard and High Dynamic Range Color Spaces Minjung Kim, Maryam Azimi, and Rafał K. Mantiuk Department of Computer Science and Technology, University of Cambridge Abstract vision science. However, it is not obvious as to how contrast Contrast sensitivity functions (CSFs) describe the smallest thresholds in DKL would translate to thresholds in other color visible contrast across a range of stimulus and viewing param- spaces across their color components due to non-linearities such eters. CSFs are useful for imaging and video applications, as as PQ encoding. contrast thresholds describe the maximum of color reproduction In this work, we adapt our spatio-chromatic CSF1 [12] to error that is invisible to the human observer. However, existing predict color threshold functions (CTFs). CTFs describe detec- CSFs are limited. First, they are typically only defined for achro- tion thresholds in color spaces that are more commonly used in matic contrast. Second, even when they are defined for chromatic imaging, video, and color science applications, such as sRGB contrast, the thresholds are described along the cardinal dimen- and YCbCr. The spatio-chromatic CSF model from [12] can sions of linear opponent color spaces, and therefore are difficult predict detection thresholds for any point in the color space and to relate to the dimensions of more commonly used color spaces, for any chromatic and achromatic modulation.
    [Show full text]