Universidade do Minho

Escola de Ciências

Nuno Miguel Araújo Gomes

Construção de uma biblioteca de referência de DNA barcodes para Isópodes marinhos (Crustacea: ) de Portugal e da Macaronésia

Tese de Mestrado

Mestrado de Ecologia

Trabalho efetuado sob a orientação do

Professor Doutor Filipe Costa

Outubro de 2014

Agradecimentos

Gostaria agradecer ao meu orientador, Doutor Filipe Costa pela oportunidade de trabalho nas áreas da taxonomia e DNA barcoding e pelo auxilio na elaboração desta tese. Um agradecimento à Doutora Luísa Borges e à Mestre Sara Ferreira pelo ensino e iniciação no trabalho laboratorial. Gostaria também de agradecer aos colegas Marcos Teixeira, Jorge Lobo e Cláudia Hollatz pela ajuda, companheirismo e pelo bom ambiente de trabalho. Um agradecimento ao Pedro Vieira e ao Doutor Henrique Queiroga pela disponibilização de espécimes e sequências de DNA, e aos Doutores Ronaldo Sousa, Marina Cunha e Susana Carvalho pela disponibilização de material bibliográfico importantes para a realização desta tese.

Este trabalho foi financiado por Fundos FEDER através do Programa Operacional de Factores de Competitividade - COMPETE e por Fundos Nacionais através da FCT "Fundação para a Ciência e a Tecnologia (FCT)” / MEC no âmbito dos projetos FCOMP-01-0124-FEDER-015429 (ref. FCT: PTDC/MAR/113435/2009) e PEst-OE/BIA/UI4050/2014.

iii

Construção de uma biblioteca de referência de DNA barcodes para Isópodes marinhos (Crustacea Isopoda) de Portugal e da Macaronésia

Resumo

Apesar de a ordem Isopoda constituir um dos mais diversos grupos de crustáceos presentes em vários habitats marinhos, o conhecimento sobre a sua biodiversidade ainda é insuficiente, comprometendo o planeamento de estratégias de gestão de meios marinhos. A utilização de bibliotecas de referência de DNA barcodes (sequências de DNA obtidas a partir da extremidade 5’ do gene mitocondrial da sub-unidade I do citocromo oxidase, COI-5P) para auxiliar a identificação e a catalogação de macro invertebrados bentónicos marinhos tem contribuído para a melhoria do conhecimento sobre a composição e distribuição espacial destas comunidades, possibilitando o recurso a técnicas de sequenciação de segunda geração para agilização de métodos de monitorização. Este estudo teve como objetivos: 1) a compilação e elaboração de uma lista atualizada (“checklist”) de espécies de isópodes marinhos registados em Portugal continental e nos arquipélagos dos Açores e Madeira; 2) contribuir para a construção de uma biblioteca de DNA barcodes de isópodes marinhos das mesmas regiões. A elaboração da lista resultou na compilação de 146 espécies registadas desde zonas de mar profundo a zonas costeiras e estuarinas. Para a construção de uma biblioteca de referência de DNA barcodes de isópodes foram identificados 250 espécimes e geradas 105 sequências, resultantes de sequenciação bidirecional englobando 26 morfoespécies, distribuídas por 32 MOTU´s, recolhidas em vários pontos do Atlântico Nordeste, maioritariamente ao longo da costa de Portugal e da Galiza e nos arquipélagos dos Açores, Canárias e Madeira. Todos os espécimes foram catalogados na base de dados BOLD, incluindo dados sobre identificação taxonómica, dados de colheita e respetivas sequências e cromatogramas. De modo a garantir a qualidade dos resultados foram compiladas 60 sequências publicadas para comparação e classificação das sequências obtidas. As divergências intraespecíficas para os espécimes analisados variaram entre os 0 e os 2,8%, com uma divergência interespecífica média de 29%, variando entre 12% e 59%, comprovando-se a capacidade de descriminação do fragmento COI-5P para as espécies de isópodes em estudo. Foram encontradas 2 linhagens alopátricas de Campecopea lusitanica com 22% de divergência, e 3 linhagens de Dynamene edwardsi separadas entre a costa de Portugal e os arquipélagos da Madeira e Canárias com divergências entre os 18% e 21%.

iv

Construction of a DNA barcode reference library for marine Isopods (Crustacea: Isopoda) from Portugal and Macaronésia

Abstract

Although the order Isopoda constitutes one of the most diverse groups of , ocurring in a wide range of marine habitats and transition ecosystems, a rigorous and extensive knowldege of its biodiversity has not been reached yet, which may compromise the informed planning and management of the marine environment. The use of DNA barcodes (DNA sequences from the 5´end of the mitochondrial gene cytochrome oxydase I, or COI-5P) reference libraries to aid species identification and inventories of marine macroinvertebrates, has contributed to an improved knowledge of the composition and distribution of these communities, and enabled possible uses of second generation sequencing in in high-throughput monitoring methods. The objectives of this study were: 1) the compilation of an updated checklist for marine isopod species registed in Portuguese continental waters, and the archipelagos of Azores and Madeira; 2) contribute to the construction of a reference library of DNA barcodes for marine isopods from the same regions. The checklist compiles 146 species recorded in a variety of habitats, from deep-sea to coastal, estuarine and lagunar systems. As for the construction of the DNA barcode reference library we obtained 105 DNA sequences, resulting from bidirecional sequencing, assigned to 26 morphospecies and distributed in 32 MOTU´s, from specimens collected along the Northeast Atlantic, mostly along the coast of Portugal and Galiza and in the archipelagos of Azores, Canary and Madeira. Specimens were cataloged in the BOLD database with taxonomic information, collection data, and respective sequence and cromatograms. To assure the quality of the obtained data, 60 published COI-5 sequences were mined to compare and classify the sequences here generated. Intraspecific divergences ranged from 0 to 2,8% for the analysed specimens, and mean interspecific divergence was 29%, (ranging from 12% to 59%), globally confirming the species diagnosis ability of COI-5P barcodes for these isopod species. In addition, we detected two alopatric lineages of Campecopea lusitanica with a divergence of 22%, as well as three divergent lineages of Dynamene edwardsi which split among the west coast of Portugal and the archipelagos of Madeira and Canaries with a divergence ranging between 18 and 21%. The analises of partial sequences from the nuclear gene 18s rRNA of lineage- representative specimens of D. edwardsi confirmed the patterns observed with COI-5P.

v

Índice

Agradecimentos ………………………………………………………………………………………………………iii Resumo …………………………………………………………………………………………………………………iv Abstract ………………………………………………………………………………………………………………….v Índice …………………………………………………………………………………………………………………….vi Índice de figuras ………………………………………………………………………………………………………vii Índice de tabelas ………………………………………………………………………………………………………iv

Capítulo 1 Introdução geral

1.1 Diversidade, distribuição e ecologia de Isópodes marinhos (Crustacea: Isopoda)….. 2 1.2 Registo fóssil e classificação da ordem Isopoda…………………………………….…………3 1.3 Importância ecológica e impacto ambiental e económico……………………………….….4 1.4 Impedimento taxonómico e o uso de metodologias moleculares …………………………5 1.5 Objetivos gerais………………………………………………………………………………………....6 Referências……………………………………………………………………………………………….7

Capítulo 2 Checklist de Isópodes marinhos (Crustacea: Isopoda) para a costa de Portugal continental, Açores e Madeira 2.1 Introdução………………………………………………………………………………………..…….15 2.2 Metodologia……………………………………………………………………………………….…..15 2.3 Resultados………………………………………………………………………………………….….16 2.4 Discussão………………………………………………………………………………………………37 Referências…………………………………………………………………………………………………..39

vi

Capítulo 3 Construção de uma biblioteca de referência de DNA barcodes para Isópodes marinhos (Crustacea: Isopoda) de Portugal e da Macaronêsia 3.1 Introdução………………………………………………………………………………………………52 3.2 Metodologia……………………………………………………………………………………………53 3.2.1 Material de estudo……………………………………………………………………..53 3.2.2 Inventariação e processamento de amostras…………………………………..54 3.2.3 Extração, amplificação e sequenciação de DNA……………………………….54 3.2.4 Tratamento e análise de dados…………………………………………………….56 Alinhamento e construção de árvores filogenéticas…………………………56 Delimitação de MOTUs……………………………………………………………..57 Classificação dos DNA barcodes da biblioteca de referência…………….57 Teste de saturação de substituição nucleotídica e reconstrução de filogenias profundas……………………………………………………………..58 3.3 Resultados……………………………………………………………………………………………..59 3.3.1 Construção e classificação da biblioteca de referência………………………59 3.3.2 Linhagens divergentes de Dynamene edwardsi………………………………..62 3.3.3 Saturação de substituição nucleotídica…………………………………………..63 3.3.4 Reconstrução filogenética……………………………………………………………64 3.4 Discussão………………………………………………………………………………………………65 3.4.1 Construção da biblioteca de referência…………………………………………..65 3.4.2 Classificação da biblioteca de referência………………………………………..65 3.4.3 Possíveis complexos de linhagens crípticas…………………………………….66 3.4.4 Reconstrução filogenética……………………………………………………………67 Referências…………………………………………………………………………………………………..67

Capítulo 4 Considerações finais…………………………………………………………………………………………..74 Anexos……………………………………………………………………………………………………………….75

vii

Índice de figuras

Figura 1.1- Locais de amostragem dos espécimes de Isópodes usados para a construção da biblioteca de referência…………………………………………………………………….………………………..53

Figura 1.2- Árvore Neighbour-Joining compactada calculada com o modelo de substituição nucleotídica K2P……………………………………………………………………………………..………………..60

Figura 1.3- Árvore Neighbour-Joining calculada com o modelo K2P com 10000 bootstraps para a espécie Dynamene edwardsi…………………………………………………………………………..………..62

Figura 1.4- Árvore Neighbour-Joining construída com o modelo K2P e 10000 Bootstraps para o gene SSU rRNA 18s…………………………………………………………………………………………………..63

Figura 1.5- Árvores radiadas utilizadas para reconstrução filogenética profunda..……………….64

Figura 2.1- Árvore Neighbour-Joining construída com o modelo K2P…………..……………………84

Figura 2.2- Árvore Maximum-Likelihood construída com o modelo GTR+G+I…………………..….88

Figura 2.3- Árvore construída por Inferência Bayesiana com o modelo GTR+G+I..………………93

viii

Índice de tabelas

Tabela 1.1- Número de espécies compiladas divididos por Sub Ordem..…………………………..38

Tabela 1.2- Espécies compiladas divididas por habitat..…………………………………….…………..38

Tabela 2.1- Literatura usada na identificação de espécimes……………………………….…………..54

Tabela 2.2- Lista de primers utilizados para amplificação do fragmento COI-5P……….…………55

Tabela 2.3- Ciclos de PCR utilizados para amplificação do fragmento COI-5P………..…………..55

Tabela 2.4- Sistema de classificação dos DNA barcodes da biblioteca de referência..…….……57

Tabela 2.5- Parâmetros utilizados para a análise de filogenias profundas..…………………..……58

Tabela 2.6- Classificação dos MOTU´s obtidos e respetiva distância interna, calculada com o modelo K2P…………………………………………………………………………………………………………….61

Tabela 2.7- Distâncias nucleotídicas congenéricas calculadas com o modelo de sustituição K2P………………………………………………………….…………………………………………………………….61

Tabela 2.8- Resultados do teste de saturação de substituição nucleotídica..………………………63

Tabela 3.1- Lista de sinónimos para as espécies compiladas na checklist…..…………………….75

Tabela 3.2- Lista de sequências de COI-5P compiladas em bases de dados públicas….…..….78

Tabela 3.3- Lista de espécimes com DNA barcodes..………………………………………………..…..80

ix

Capítulo 1

Introdução geral

1

Capítulo 1

Introdução geral

1.1 Diversidade, distribuição e ecologia de Isópodes marinhos (Crustacea: Isopoda)

A ordem Isopoda é um grupo de crustáceos que contem entre 9000 a 11000 espécies marinhas, de águas doces e terrestres (Bruce, 2001; Brusca e Brusca, 2002), distribuídas por todo o mundo com a exceção do território terrestre Antártico (Poore e Bruce, 2012). Com 6250 espécies em ambientes marinhos e estuarinos (Poore e Bruce, 2012) são um grupo variado de macroinvertebrados bentónicos com diversos tipos de habitat, desde a zona intertidal até zonas de mar profundo (Poore e Bruce, 2012), e com diversas funções ecológicas como parasitismo, predação e herbivoria (Naylor, 1972). Em ambientes marinhos a ordem Isopoda inclui oito subordens distintas: Asellota, Anthuroidea, Cymothoida, Epicaridea, Limnoriidea, Phoratopodidea, Sphaeromatidea e Valvifera. Os Isópodes são tipicamente achatados dorsalmente, excetuando espécies da subordem Anthuroidea, apresentam o corpo dividido em três partes: a cabeça (cephalon) com dois pares de antenas, um pereon (tórax) de sete segmentos com sete pares de pereópodes, à excepção de espécies da família Gnathidae, e o pleon (abdómen) formado por cinco segmentos, por vezes fundidos, e o pleotelson (Naylor, 1972). Espécies da subordem Epicaridea devido à sua natureza parasítica podem apresentar perda de certas estruturas ou substituição por estruturas especializadas (Williams e Boyko, 2012). Os isópodes como membros da superordem não possuem fases larvares, com a exceção de certos grupos de espécies parasitas (Williams e Boyko, 2012), passando diretamente para uma fase juvenil denominada manca (Kavanagh, 2009). Tipicamente os ovos são incubados num marsúpio ventral durante 1-2 meses dependendo da espécie (Naylor, 1972). Durante as fases juvenis estes organismos desenvolvem o sétimo par de pereópodes e dependendo da espécie podem adquirir dimorfismo sexual através de mudas sucessivas (Naylor,1972). Os isópodes são crustáceos sem capacidade de nadar livremente, adotando por isso um habitat bentónico (Naylor, 1972) possuindo baixa capacidade de dispersão, à exceção

2

de fenómenos de deriva em algas, ou rafting (Franke et al., 1999), tornando os casos de isolamento populacional bastante acentuados (Naylor, 1972). As espécies pertencentes aos taxa Bopyroidea e Cryptoniscoidea são conhecidas como parasitas de outros crustáceos, incluindo Isópodes (Naylor, 1972; Ramdane et al., 2007; Shields e Gómez-Gutierrez, 1996; Williams e Boyko, 2012), existindo ainda espécies capazes de endoparasitismo (Hosie,2008; Kuris et al., 2004; Kuris et al., 2005; Peresan e Roccatagliata, 2005). Espécies pertencentes aos taxa Cymothooidea, Aegidae e Gnathidae são ectoparasitas de peixes (Williams e Boyko, 2012), no entanto, as espécies pertencentes à família Gnathidae, apenas apresentam comportamentos de parasitismo durante a sua fase larvar, denominada praniza (Smit e Davies, 2004).

1.2 Registo fóssil e classificação da ordem Isopoda

O primeiro registo fóssil, pertencente à espécie de Hesslerella shermani, subordem Phreatoicidea, remonta ao carbonífero superior (Schram, 1970). Os primeiros registos de parasitismo de decápodes por bopirídeos remontam ao período Jurássico (Markham, 1986). Fósseis encontrados ao longo de vários pontos do mundo entre os períodos Jurássico e Plioceno (Bowman, 1971; Feldmann, 2006; Feldmann, 2009; Guinot et al., 2005 Karasawa et al., 2008) representam maioritariamente as subordens Cymothoida e Sphaeromatidea (Poore e Bruce, 2012). Embora seja aceite que a ordem Isopoda forma um grupo monofilético, as relações com outros crustáceos peracarídeos permanecem conflituosas ou inconclusivas (Jenner et al., 2009; Poore, 2005; Wilson, 2009). Alguns estudos cladísticos entre grupos desta ordem indicam as subordens Phreatoicidea, Asellota e Oniscidea como os grupos mais primitivos da ordem Isopoda (Brusca e Wilson, 1991; Wagele, 1989). Estudos moleculares apontam para uma possível colonização de habitats de mar profundo por espécies da sub ordem Asellota a partir de algumas migrações de águas pouco profundas, resultando na radiação de várias linhagens de mar profundo (Luana et al., 2012; Raupach et al., 2009), a partir do princípio do período Pérmico (Lins et al., 2012).

3

1.3 Importância ecológica e impacto ambiental e económico

A ordem Isopoda é um dos taxa mais diversas (e.g. Carvalho et al., 2013; Cunha et al., 1997; Cunha et al., 1999; Marques et al., 1994) entre todos os crustáceos descritos, apresentando grande relevância para o funcionamento das comunidades marinhas devido à grande diversidade de espécies e de nichos ecológicos que pode ocupar (Naylor, 1972; Poore e Bruce, 2012), tendo grande importância na alimentação da fauna ictiológica (Pires, 1987) e resiliência a fatores de stress (Bordalo et al., 2011; Prato et al., 2006), levando à possibilidade de utilização de certas espécies de isópodes em ensaios de bioacumulação (Longo et al., 2013). Contudo verifica-se também a existência de espécies classificadas como sensíveis nas listas de espécies dos índices bióticos AMBI (Borja et al., 2000) e Bentix (Simboura e Zenetos, 2002), como por exemplo as espécies pertencentes aos géneros Gnathia, Eurydice, Jaera e Cymodoce, realçando a importância deste grupo de organismos em tarefas de monitorização e conservação marinha. Embora as populações nativas de Isópodes parasitas não possuam grande impacto sobre as populações de espécies hospedeiras (Williams e Boyko, 2012), o parasitismo de espécies de valor comercial produzidas em aquacultura pode levar ao descarte de peixe com destino ao consumo público (Bharadhirajan et al., 2014; Nowak, 2007). No entanto, as espécies parasitas invasoras têm um grande impacto sobre as espécies hospedeiras nativas (Dumbauld et al., 2011). Nos Estados Unidos da América, Quénia e Tanzânia foram reportados casos de erosão em mangais por ação do isópode perfurador Sphaeroma terebrans (Rehm, 1976; Svavarsson et al., 2002). Outro grande impacto económico relaciona-se com isópodes perfuradores de madeira do género Limnoria, causando danos em construções submersas e embarcações de madeira (Bruce e Gordon, 2005; Menzies, 1957; Borges e Costa, 2014). Devido à associação de limnorídeos a embarcações, este género encontra-se atualmente distribuído por várias regiões (Cookson, 1991). Outras espécies invasoras registadas incluem espécies como Cirolana harfordi, Paradella dianae e Paracerceis sculpta para a região da Austrália (Poore e Storey, 1999), e a espécie Synidotea laticauda em Espanha (Cuesta et al., 1996).

4

1.4 Impedimento taxonómico e o uso de metodologias moleculares

As zonas Europeias de águas pouco profundas, como zonas de fácil acesso e perto dos grandes centros urbanos, mantêm-se como habitats bem estudados, sendo os grandes desafios na inventariação de espécies de isópodes, as zonas de difícil acesso como zonas de mar profundo (Poore e Bruce, 2012), e os possíveis grandes complexos de espécies crípticas dentro de certos géneros como Dynamene ou Cymodoce (Poore e Bruce, 2012). Embora sejam um dos grupos mais abundantes de crustáceos peracarídeos, a identificação de certos grupos de isópodes marinhos pode levantar dúvidas relacionadas com o elevado dimorfismo sexual de certas espécies e falta de descrições de fêmeas ou machos adultos e juvenis (Horton, 2000). No entanto o maior problema relacionado com a taxonomia de isópodes marinhos prende-se com a fragmentação da informação e grandes assimetrias na cobertura geográfica e a ausência de chaves de identificação completas, ou sem descrição de caracteres morfológicos importantes (Horton, 2000). A taxonomia como base de investigação ecológica são fundamentais para assegurar resultados de qualidade e com relevância para efeitos de conservação (Bortolus, 1998). O uso de metodologias de DNAbarcoding (Hebert et al., 2003) em ambientes marinhos pode levar a um aumento do conhecimento sobre a biodiversidade refinando e acelerando processos de identificação de espécies através da associação de um fragmento standardizado da região 5´ do gene mitocondrial citocromo c oxidase I (COI-5P) a uma única espécie. A escolha do gene COI- 5P como código de barras de DNA para espécies animais, tem como bases a herança uniparental, contrariamente a genes nucleares, a ausência de intrões e uma taxa evolutiva superior comparada com outros genes (Radulovici et al., 2010), levando a um grande espaçamento entre as distâncias genéticas intra e interespecíficas, denominado de barcoding gap. No entanto o uso do gene COI pode apresentar falta de resolução em casos de hibridização, espécies com divergência recente (Radulovici et al., 2010), ou casos de introgressão mitocondrial (Kemppainen et al., 2009). O uso deste gene em DNA barcoding de organismos marinhos tem revelado resolução suficiente para a descriminação de várias espécies de isópodes (Costa et al., 2007; Radulovici et al., 2009; Xavier et al., 2012), bem como na diferenciação de complexos de espécies crípticas, como por exemplo a presença de duas linhagens crípticas de Ligia oceanica no Atlântico Europeu (Raupach et al., 2014), a descoberta de três linhagens de

5

Excirolana brasiliensis na costa do Chile (Varela and Haye, 2012) e quatro linhagens do isópode de mar profundo Chelator insignis na Islândia (Brix et al., 2014b), ou a presença de quinze linhagens distintas de Ligia occidentalis no Pacífico, entre o sul da Califórnia e México (Markow e Pfeiler, 2010), tendo-se demostrado também útil como ferramenta auxiliar para a descrição de novas espécies (Brix et al., 2014a; Khalaji-Pirbalouty e Raupach, 2014). O uso do gene COI-5P em estudos filogeográficos também pode fornecer dados importantes sobre a biologia de organismos marinhos como a distribuição espacial da variabilidade genética de populações (Raupach et al., 2014; Vagelli et al., 2009; Xavier et al., 2011), a conectividade e fluxo de genes entre populações (Palero et al., 2008) ou a monitorização de invasões de espécies não endémicas (Xavier et al., 2009). O desconhecimento taxonómico pode resultar em identificações erradas de espécimes levando por vezes a conclusões incorretas sobre a distribuição geográfica da espécie em questão (Xavier et al., 2009), tornando fundamentais descrições de distribuição para fins de conservação e investigação (Dormann, 2007). Uma das principais fontes de incerteza taxonómica deve-se à parcialidade das identificações (Rocchini et al., 2011; Soberón e Peterson, 2004), no entanto com o uso de metodologias de DNAbarcoding e com recurso a bibliotecas de referência de qualidade, é possível diminuir esta imparcialidade. O uso de uma zona padronizada para investigação torna também possível um aumento do valor comparativo entre diferentes estudos. Deste modo, a construção de uma biblioteca de referência robusta possibilitará a identificação de espécies invasoras (Saunders, 2009) ou de espécies de impacto económico (Borges et al., 2012), e a aplicação de metodologias de meta barcoding de grande escala recorrendo a sequenciação de segunda geração (Costa e Antunes, 2012), com possibilidade de uso de índices de biodiversidade genéticos como por exemplo gAMBI (Aylagas et al., 2014).

1.5 Objetivos gerais

Com o intuito de melhorar o conhecimento da biodiversidade presente na costa de Portugal e agilizar as tarefas de biomonitorização de macrobentos incluídas na Diretiva Quadro da Água (Diretiva 2000/60/CE do Parlamento Europeu e do Conselho, de 23 de Outubro de 2000), é proposto:

6

- A atualização de uma checklist de espécies marinhas de isópodes compilando informação fragmentada sobre a distribuição geográfica na costa Portuguesa (Capítulo 2).

- A iniciação da construção de uma biblioteca de referência de DNA barcodes para a ordem Isopoda, para ser usada em investigação, conservação e tarefas de monitorização (Capítulo 3).

- A revisão do estatuto taxonómicos através do confronto entre as identificações baseadas na morfologia e os DNA barcodes obtidos (Capítulo 3).

Referências

Aylagas, A., Borja, A., Rodriguez-Ezpeleta, N. (2014) Environmental Status Assessment Using DNA Metabarcoding: Towards a Genetics Based Marine Biotic Index (gAMBI). Plos One 9: e90529.

Bharadhirajan, P., Murugan, S., Sakthivel, A., Selvakumar, P. (2014) Isopods parasites infection on commercial fishes of Parangipettai waters, southeast coast of India. Asian Pacific Journal of Tropical Disease 4: S268-S272.

Bordalo, M.D., Ferreira, S.M.F., Cardoso, P.G., Leston, S., Pardal, M.A. (2011) Resilience of an isopod population (Cyathura carinata) population to multiple tress factors in a temperate estuarine system. Hydrobiologia 671: 13-25.

Borges, L.M.S., Sivrikaya, H., leRoux, A., Shipway, J.R., Cragg, S.M., Costa, F.O. (2012) Investigating the and systematics of marine wood borers (Bivalvia: Teredinidae) combining evidence from morphology, DNA barcodes and nuclear locus sequences. Invertebrate Systematics 26: 572–582.

Borges, L.M.S., Costa, F.O. (2014) New records of marine wood borers (Bivalvia: Teredinidae and Isopoda: Limnoriidae) from São Miguel, Azores, with a discussion of some aspects of their biogeography. Açoreana 10: 109-116.

Borja, A., Franco, J., Pérez, V. (2000) A marine biotic index to establish the ecological quality of soft bottom benthos within European estuarine and coastal environments. Marine Pollution Bulletin 40: 1100-1114.

Bortolus A. (2008) Error cascades in the biological sciences: the unwanted consequences of using bad taxonomy in ecology. AMBIO: A Journal of the Human Environment 37: 114- 118

Bowman, T.E. (1971) Palaega lamnae, new species (Crustacea: Isopoda) from the upper Cretaceous of Texas. Journal of Paleontology 45: 540–541.

Brix, S., Leese, F., Riehl, T., Kihara, T.C. (2014a) A new genus and new species of Desmosomatidae Sars, 1897 (Isopoda) from the eastern South Atlantic abyss described

7

by means of integrative taxonomy. Marine Biodiversity doi: 10.1007/s12526 −014−0218−3.

Brix, S., Svavarsson, J., Leese, F. (2014b) A multi−gene analysis reveals multiple highly divergent lineages of the isopod Chelator insignis (Hansen, 1916) south of Iceland. Polish Polar Research 35:225-242.

Bruce, N.L. (2001) Marine isopod crustaceans. New Zealand. Water and Atmosphere 9: 12-13.

Bruce, N.L., Gordon, D. (2005, unpublished) Interim report on degradation of marine timber by invertebrates at Nuhaka rail bridge. NIWA Client Report: 1–4.

Brusca, R. C. and Wilson, G. D. F. (1991) A phylogenetic analysis of the Isopoda with some classificatory recommendations. Memoirs of the Queensland Museum 31: 143-204.

Brusca, R. C. and Brusca, G. J. (2002) Invertebrates. Sinauer Associates, Sunderland, Massachusetts.

Carvalho, S., Moura, A., Cúrdia, J., Fonseca, L.C., Santos M.N. (2013) How complementary are epibenthic assemblages in artificial and nearby natural rocky reefs? Marine Environmental Research 92:170-177.

Cookson, L.J. (1991) Australasian species of Limnoriidae (Crustacea: Isopoda). Memoirs of the Museum of Victoria 52: 137–262.

Costa, F. O., deWaard, J. R., Boutillier, J., Ratnasingham, S., Dooh, R. T., Hajibabaei, M., Hebert, P. D. N. (2007) Biological identifications through DNA barcodes: the case of Crustacea. Canadian Journal of Fisheries and Aquatic Sciences 64: 272- 295.

Costa, F.O., Antunes, P.M. (2012) The contribution of the Barcode of Life initiative to the discovery and monitoring of Biodiversity. In: Natural Resources, Sustainability and Humanity - A Comprehensive View. Mendonca A, Cunha A, Chakrabarti R (eds) Springer Science+Business Media, Dordrecht, pp 37-68.

Cuesta, J.A., Serrano, L., Bravo, M.R., Toja, J. (1996) Four new crustaceans in the Guadalquiver River estuary (SW Spain), including an introduced species. Limnética 12: 41–45.

Cunha, M. R., Sorbe, J.C.,Bernardes, C. (1997) On the structure of the neritic suprabenthic communities from the Portuguese continental margin. Marine Ecology Progressive Series 157: 119-137.

Cunha, M. R., Sorbe, J.C., Moreira, M.H. (1999) Spatial and seasonal changes of brackish peracaridan assemblages and their relation to some environmental variables in two tidal channels of the Ria de Aveiro (NW Portugal). Marine Ecology Progressive Series 190: 69-87.

Dormann CF (2007b) Promising the future? Global change projections of species distributions. Basic and Applied Ecology 8: 387–397.

8

Dumbauld, B., Chapman, J., Torchin, M., Kuris, A. (2011) Is the collapse of mud shrimp (Upogebia pugettensis) populations along the Pacific Coast of North America caused by outbreaks of a previously unknown bopyrid isopod parasite (Orthione griffenis)? Estuaries and Coasts 34: 336–350.

Feldmann, R.M., Rust, S. (2006) Palaega kakatahi n. sp., the first record of a marine fossil isopod from the Pliocene of New Zealand. New Zealand Journal of Geology and Geophysics 49: 411–415.

Feldmann, R.M. (2009) A new cirolanid isopod (Crustacea) from the Cretaceous of Lebanon: dermoliths document the pre-molt condition. Journal of Biology 29: 373–378.

Franke, H.D., Gutow,L., Janke, M. (1999) The recent arrival of the oceanic isopod metallica Bosc off Helgoland (German Bight, North Sea): an indication of a warming trend in the North Sea? Helgoland marine research 52: 347-357.

Guinot, D., Wilson, G.D.F., Schram, F.R. (2005) Jurassic Isopod (: Peracarida) from Ranville, Normandy, France. Journal of Paleontology 79: 954–960.

Hebert, P.D.N., Cywinska, A., Ball, S.L., deWaard, J.R. (2003) Biological identifications through DNA barcodes. Proceedings of the Royal Society of London Series B-Biological Sciences 270:313–321.

Horton, T. (2000) Ceratothoa steinddachneri (Isopoda: ) new to British waters with a key to north-east Atlantic and Mediterranean Ceratothoa. Journal of the Marine Biological Association of the UK 80: 1041-1052.

Hosie, A.M. (2008) Four new species and a new record of Cryptoniscoidea (Crustacea: Isopoda: Hemioniscidae and Crinoniscidae) parasitizing stalked barnacles from New Zealand. Zootaxa 1795: 1–28.

Jenner, R.A., Dhubhghaill, C.N., Ferla, M.A., Wills, M.A. (2009) Eumalacostracan phylogeny and total evidence: limitations of the usual suspects. BMC Evolutionary Biology 9: 21

Karasawa, H., Ohara M., Kato, H. (2008) New Records for Crustacea from the Arida Formation (Lower Cretaceous, Barremian) of Japan.Boletin De La Socidad Geologica Mexicana 60: 101-110

Kavanagh, F.A. (2009) A catatalogue of the Asellota (CRUSTACEA: ISOPODA) off the west coast of Ireland and Britain, From 100-5000m. Bulletin Irish biogeographical Society 33: 14- 75.

Kemppainen, P., Panova, M., Hollander, J., Johannesson, K. (2009) Complete lack of mitochondrial divergence between two species of NE Atlantic marine intertidal gastropods. Journal of Evolutionary Biology 22:2000-2011.

9

Khalaji-Pirbalouty, V., Raupach, M.J. (2014) A new species of Cymodoce Leach, 1814 (Crustacea: Isopoda: Sphaeromatidae) based on morphological and molecular data, with a key to the Northern Indian Ocean species. Zootaxa 3826: 230-254

Kuris, A.M., Torchin, M.E., Lafferty, K.D., 2004. Parasites in the thoracic ganglion of Pachygrapsus marmoratus (Brachyura: Grapsidae) from the coast of Portugal. Parasite 11: 425–427.

Kuris, A. M., Lafferty, K.D., Torchin, M.E. (2005) Biological control of the European green crab, Carcinus maenas: natural enemy evaluation and analysis of host specificity. Pages 102- 115 in M. S. Hoddle, editor. Second International Symposium on Biological Control of . Forest Health Technology Enterprise Team, University of California, Riverside.

Lins, L.S., Ho, S.Y., Wilson, G.D., Lo, N. (2012) Evidence for Permo-Triassic colonization of the deep sea by isopods. Biology Letters 8: 979-982.

Longo, G., Trovato, M., Mazzei, V., Ferrante, M., Conti, G.O. (2013) Ligia italica (Isopoda, Oniscidea) as Bioindicator of Mercury Pollution of Marine RockyCoasts. PLoS ONE 8: e58548.

Markham, J.C. (1986) Evolution and zoogeography of the Isopoda Bopyridae, parasites of Crustacea Decapoda. In: Gore RH, Heck KL, eds. Crustacean Issues 4 Crustacean Biogeography. Rotterdam: A.A. Balkema. pp 143–164.

Markow, T. A., Pfeiler, E. (2010). Mitochondrial DNA evidence for deep genetic divergences in allopatric populations of the rocky intertidal isopod Ligia occidentalis from the eastern Pacific. Phylogenetics and Evolution 56: 468-473.

Marques, J.C., Martins, I., Teles-Ferreira C., Cruz S. (1994). Population Dynamics, Life History, and Production of Cyathura carinata (Krøyer) (Isopoda: Anthuridae) in the Mondego Estuary. Portugal Journal of Crustacean Biology 14: 258-272.

Menzies, R.J. (1957) The marine borer Family Limnoriidae (Crustacea, Isopoda). Bulletin of Marine Science of the Gulf and Caribbean 7: 101-200.

Naylor, E. (1972).British marine isopods: keys and notes for the identification of the species. 2nd ed. Synopses of the British fauna (new series), 3. Academic Press: London, UK. ISBN 0- 12-515150-0. 89 pp.

Nowak, B.F. (2007) Parasitic diseases in marine cage culture – An example of experimental evolution of parasites? International Journal for Parasitology 37: 581-588.

Palero, F., Abelló, P., Macpherson, E., Gristina, M., Pascual, M. (2008). Phylogeography of the European spiny lobster (Palinurus elephas): Influence of current oceanographical features and historical processes. Molecular Phylogenetics and Evolution. 48: 708-717.

Peresan, L., Roccatagliata, D. (2005) First record of the hyperparasite Liriopsis pygmaea (Cryptoniscidae, Isopoda) from a rhizocephalan parasite of the false king crab

10

Paralomis granulosa from the Beagle Channel (Argentina), with a redescription. Journal of Natural History 39: 311–324.

Pires, A.M.S. (1987) The contribution of Isopods in the feeding of Sympterygia spp. (Pisces: Rajidae) with a description of Ancinus gaucho sp. n. (Isopoda: Sphaeromatidae) Boletim do Instituto Oceanográfico de São Paulo 35: 115-122.

Poore, G.C.B. (2005) Peracarida: monophyly, relationships and evolutionary success. Nauplius 13: 1–27.

Poore, G.C.B., Storey, M. (1999) Soft sediment Crustacea of Port Phillip Bay. Centre for Research on Introduced Marine Pests, CSIRO Marine Research, Technical Report 20: 150–170.

Poore, G.C.B., Bruce, N.L. (2012) Global Diversity of Marine Isopods (Except Asellota and Crustacean Symbionts). PLoS ONE 7: e43529.

Prato, E., Biandolino, F., Scardicchio, C. (2006) Test for acute toxicity of copper, cadmium and mercury in five marine species. Turkish Journal of Zoology 30: 285-290.

Radulovici, A.E., Sainte-Marie, B. Dufresne, F. (2009). DNA barcoding of marine crustaceans from the Estuary and Gulf of St. Lawrence: a regional-scale approach. Molecular Ecology Resources 9:181-187

Radulovici, A.E., Archambault, P.. Dufresne, F. (2010) DNA Barcodes for Marine Biodiversity: Moving Fast Forward? Diversity 2: 450-472

Ramdane, Z., Bensouilah, M. A., Trilles, J.P. (2007) The Cymothoidae (Crustacea, Isopoda), parasites on marine fishes, from Algerian faunan. Belgian Journal of Zoology, 137: 67-74.

Raupach, M. J., Mayer, C., Malyutina, M. Wagele, J.W. (2009) Multiple origins of deep-sea Asellota (Crustacea: Isopoda) from shallow waters revealed by molecular data. Proceedings of the Royal Society B 276: 799–808.

Raupach, M.J., Bininda-Emonds, O.R.P., Knebelsberger, T., Laakmann, S., Pfaender, J., Leese, F. (2014) Phylogeographical analysis of Ligia oceanica (Crustacea: Isopoda) reveals two deeply divergente mitochondrial lineages. Biological Journal of Linnean Society 112: 16- 30.

Rehm, A.E. (1976) The effect of the wood-boring isopod Sphaeroma terebrans on the mangrove communities of Florida. Environmental Conservation 3: 47-57.

Rocchini, D., Hortal, J., Lengyel, S., Lobo, J.M., Jimenez-Valverde, A., Ricotta, C.,Bacaro, G., Chiarucci, A. (2011) Accounting for uncertainty when mapping species distributions: the need for maps of ignorance. Progress in Physical Geography 35:211 –226.

Saunders, G.W. (2009) Routine DNA barcoding of Canadian Gracilariales (Rhodophyta) reveals the invasive species Gracilaria vermiculophylla in British Columbia. Molecular Ecology Resources 9: 140-150.

11

Simboura, N., Zenetos, A. (2002) Benthic indicators to use in ecological quality classification of Mediterranean soft bottoms marine ecosystems, including a new biotic index. Mediterranean Marine Science 3: 77-111.

Schram, F. R. (1970). Isopod from the Pennsylvanian of Illinois. Science 169:854-855.

Shields, J.D., Gómez-Gutierrez, J. (1996) Oculophryxus bicaulis, a new genus and species of dajid isopod parasitic on the euphausid Stylocheiron affine Hansen. International Journal of Parasitology 26: 261–268.

Smit, N.J., Davies, A.J. (2004) The curious life-style of the parasitic stages of Gnathiid isopods. Advances in Parasitology 58: 289-391.

Soberón J., Peterson A.T. (2004) Biodiversity informatics: Managing and applying primary biodiversity data. Philosophical Transactions of the Royal Society of London B 359: 689– 698.

Svavarsson, J., Osore, M.K.W., Ólafsson, E. (2002) Does the wood-borer Sphaeroma terebrans (Crustacea) shape the distribution of the mangrove Rhizophora mucronata? A Journal of the Human Environment 31: 574-579

Vagelli, A., Burford, M. Bernardi, G. (2009). Fine scale dispersal in Banggai Cardinalfish, Pterapogon kauderni, a coral reef species lacking a pelagic larval phase. Marine Genomics 1: 129–134.

Varela, A. I. and Haye, P. A. (2012) The marine brooder Excirolana braziliensis (Crustacea: Isopoda) is also a complex of cryptic species on the coast of Chile. Revista Chilena de Historia Natural 85: 495-502.

Williams, J.D., Boyko, C.B. (2012) The Global Diversity of Parasitic Isopods Associated with Crustacean Hosts (Isopoda: Bopyroidea and Cryptoniscoidea). PLoS ONE 7: e35350.

Wagele, J.W. (1989) Evolution und phylogenetisches System der Isopoda. Stand der Forschung und neue Erkenntnisse. Zoologica (Stuttgart). 140: 1–262.

Wilson, G.D.F. (2009) The phylogenetic position of the Isopoda in the Peracarida (Crustacea: Malacostraca). Structure & Development. 67: 159–198.

Xavier, R., Santos, A. M., Lima, F. P., Branco, M. (2009) Invasion or invisibility: using genetic and distributional data to investigate the alien or indigenous status of the Atlantic populations of the peracarid isopod, Stenosoma nadejda (Rezig 1989) Molecular Ecology. 18: 3283- 3290.

Xavier, R., Zenboudji, S., Lima F. P., Harris, D. J., Santos, A. M., Branco, M. (2011). Phylogeography of the marine isopod Stenosoma nadejda (Rezig, 1989) in North African Atlantic and western Mediterranean coasts reveals complex differentiation patterns and a new species. Biological Journal of the Linnean Society. 104: 419-431.

12

Xavier, R., Santos, A. M., Harris, D. J., Sezgin, M., Machado, M., Branco, M. (2012). Phylogenetic analysis of the north-east Atlantic and Mediterranean species of the genus Stenosoma (Isopoda, Valvifera, ). Zoologica Scripta. 41: 386-399.

13

Capítulo 2 Checklist de Isópodes marinhos (Crustacea: Isopoda) para a costa de Portugal continental, Açores e Madeira

14

Capítulo 2 Checklist de Isópodes marinhos (Crustacea: Isopoda) para a costa de Portugal continental, Açores e Madeira

2.1 Introdução Os crustáceos marinhos da ordem Isopoda são um dos grupos mais abundantes de peracarídeos, com uma grande variabilidade morfológica e ecológica. Embora sejam um grupo abundante desde zonas estuarinas, intertidais e até zonas de mar profundo, o conhecimento sobre estes organismos na costa de Portugal é sobretudo fornecido por trabalhos, em comunidades de macrobentos (e.g. Cunha et al., 1997; Cunha et al., 1999; Marques et al., 1982; Mucha et al., 2003; Reis et al., 1982; Sousa et al., 2006; Sousa et al., 2008), fragmentados ao longo da costa e com maior incidência em zonas estuarinas. A falta de conhecimento na taxonomia de certos tipos de organismos tem levado a um desequilíbrio entre a quantidade de dados recentes e dados mais antigos, tornando a existência de sinonímias elevada (Baselga et al., 2010), e a possibilidade de desvios nas distribuições geográficas (Rocchini et al., 2011). Uma compilação de registos de ocorrência de isópodes marinhos pode permitir um melhor mapeamento das distribuições geográficas, auxiliar a identificação de certos organismos, bem como aumentar o conhecimento sobre um dos grupos mais abundantes de macrobentos.

2.2 Metodologia

A elaboração da checklist de espécies marinhas de Isópodes presentes na costa Portuguesa foi baseada em literatura científica, incluindo pesquisa em estudos de ecologia (e.g. Cunha et al., 1999; Pereira et al., 2006), parasitologia (e.g. Hermida et al., 2012; Kuris et al., 2004) descrições de espécies (e.g. Beddard, 1886; Richardson, 1911), revisões taxonómicas (e.g. Jacobs, 1987; Nolting et al., 1998), manuais de identificação de espécies (Saldanha, 2003), catálogos de espécies Europeias, Ibéricas, Portuguesas e insulares (e.g. Borges et al., 2010; Castelló e Junoy, 2007; Junoy e Castelló, 2003; van der Land, 2001) teses de mestrado e doutoramento (e.g. Ferreira, 2009; Pereira, 2004) e na base de dados pública WORMS (WORMS Editorial Board, 2014), com omissão de dados redundantes sobre local de recolha. Tendo sido

15

verificada e corrigida a validade da nomenclatura dos registos de acordo com a base de dados

WORMS (Lista de sinónimos na Tab. 3.1 em Anexo).

2.3 Resultados

Catálogo de espécies de Isópodes para a costa de Portugal e ilhas

Sub-Ordem Anthuridea (Monod, 1922)

Família Antheluridae Poor e Lew Ton, 1988

Anthelura elongata Norman e Stebbing, 1886

Espécie de águas profundas (Negoescu e Wagele, 1982) registada em Portugal (Negoescu e Wagele), sem referência a local de recolha.

Família Anthuridae Leach, 1814

Anthura gracilis (Montagu, 1808)

Espécie intertidal (Schotte et al, 1995) registada ao longo da costa sudoeste (Pereira, 2004) e nos Açores (Borges et al, 2010).

Cyathura carinata (Kroyer, 1847)

Espécie estuarina registada na Ria de Aveiro (Cunha et al, 1999), nos estuários dos rios Lima (Sousa et al, 2006), Minho (Sousa et al, 2008), Douro (Mucha et al, 2003), Mondego (Marques et al, 1994), Tejo (Salgado et al, 2004), Cávado (Carvalho e Santos, 2013) no estuário da Ria Formosa (Cruz et al, 2003) e em Sines (Carvalho et al, 2003). Presente em profundidades entre os 1 e os 5 metros (Schotte et al, 1995).

Família Expanathuridae Poore, 2001

Eisothistos adcentralis Knight-Jones e Knight-Jones, 2002

Espécie de águas pouco profundas (Schotte et al, 1995) descrita a partir de espécimes recolhidos na Madeira (Knight-Jones e Knight-Jones, 2002).

16

Família Leptanthuridae Poore, 2001

Bullowanthura aquitanica Kensley, 1982

Espécie de águas profundas, 641 a 860 metros (Schotte et al, 1995), registada nas planícies abissais do centro de Portugal e identificada como Bullowanthura cf. aquitanica (Ferreira, 2009)

Leptanthura tenuis (Sars, 1873)

Espécie registada em Portugal (Nobre, 1938), sem referência a local de recolha. Presente dos 0 aos 1500 metros de profundidade (Schotte et al, 1995)

Família Paranthuridae Menzies e Glynn, 1968

Paranthura costana Bate e Westwood, 1866

Espécie registada nos Açores (Borges et al, 2010; Castro e Viegas, 1980-1981). Presente em profundidades entre os 0 e os 355 metros (Schotte et al, 1995).

Paranthura nigropunctata (Lucas, 1846)

Espécie registada ao longo da costa oeste (Pereira, 2004), sul (Guerra-García e Sánchez, 2009) e nos Açores (Borges et al, 2010). Presente entre os 2 e os 50 metros de profundidade (Schotte et al, 1995)

Sub-Ordem Asellota Latreille, 1802

Família Dendrotionidae Vanhöffen, 1914

Dendrotion elegans Lincoln e Boxshall, 1983

Espécie de águas profundas, 1600 a 2200 metros de profundidade (Schotte et al, 1995), registada nas planícies abissais do centro de Portugal e identificada como Dendrotion cf. elegans (Ferreira, 2009).

17

Família Desmosomatidae Sars, 1897

Chelator insignis (Hansen, 1916)

Espécie registada nas planícies abissais do centro de Portugal, identificada como Chelator cf. insignis (Cunha et al, 2011).

Chelator verecundus Hessler, 1970

Espécie registada nas planícies abissais do centro de Portugal, identificada como Chelator cf. verecundus (Ferreira, 2009). Presente em águas profundas, 1150 a 2500 metros (Schotte et al, 1995).

Eugerda filipes (Hult, 1936)

Espécie registada na Ria de Aveiro (Cunha et al, 1997; Cunha et al, 1999). Presente em águas relativamente profundas, entre 34 a 1300 metros (Schotte et al, 1995).

Eugerda tetarta Hessler, 1970

Registada nas planícies abissais do centro de Portugal (Ferreira, 2009; Cunha et al, 2011). Espécie presente em águas profundas, 530 a 2496 metros (McLaughlin et al. 2005) e com dimorfismo sexual acentuado (Hessler, 1970).

Eugerdella ischnomesoides Hessler, 1970

Espécie de águas profundas, 1150 a 4833 metros (Schotte et al, 1995) registada nas planícies abissais do centro de Portugal e identificada como Eugerdella cf. ischnomesoides (Ferreira, 2009).

Eugerdella pugilator Hessler, 1970

Espécie de águas profundas, 2864 a 2886 metros (Schotte et al, 1995) registada nas planícies abissais do centro de Portugal (Ferreira, 2009).

18

Mirabilicoxa acuminata Hessler, 1970

Espécie registada nas planícies abissais do centro de Portugal, identificada como Mirabilicoxa cf. acuminata (Ferreira, 2009). Presente em águas profundas, 3834 a 4800 metros (Schotte et al, 1995).

Mirabilicoxa gracilipes (Hansen, 1916)

Espécie registada nas planícies abissais do centro de Portugal, identificada como Mirabilicoxa aff. gracilipes (Ferreira, 2009). Presente em águas profundas, 2194 a 2702 metros (Schotte et al, 1995).

Mirabilicoxa similis (Hansen, 1916)

Espécie registada nas planícies abissais do centro de Portugal, identificada como Mirabilicoxa cf. similis (Ferreira, 2009).

Prochelator abyssalis (Hessler, 1970)

Espécie de águas profundas, 3459 a 4833 metros (Schotte et al, 1995), registada nas planícies abissais do centro de Portugal e identificada como Prochelator aff. abyssalis (Ferreira, 2009).

Família Haploniscidae Hansen, 1916

Haploniscus angustus Lincoln, 1985

Espécie registada nas planícies abissais do centro de Portugal, identificada como Haploniscus cf. angustus (Ferreira, 2009). Presente em águas profundas, 1484 a 2910 metros (Schotte et al, 1995).

Haploniscus antarcticus Vanhöffen, 1914

Espécie de águas profundas, 385 a 3397 metros (Schotte et al, 1995), registada nas planícies abissais do centro de Portugal, identificada como Haploniscus cf. antarcticus (Ferreira, 2009).

Haploniscus foresti Chardy, 1974

Espécie de águas profundas, 1632 a 3697 metros (Schotte et al, 1995), registada nas planícies abissais do centro de Portugal e identificado como Haploniscus cf. foresti (Ferreira, 2009).

19

Família Ischnomesidae Hansen, 1916

Ischnomesus gracilis Chardy, 1974

Espécie de águas profundas, 3178 metros (Schotte et al, 1995), registada nas planícies abissais do centro de Portugal (Ferreira, 2009).

Ischnomesus norvegicus Svavarsson, 1984

Espécie registada nas planícies abissais do centro de Portugal, identificada como Ischnomesus cf. norvegicus (Ferreira, 2009). Presente em águas profundas, 794 a 860 metros (Schotte et al, 1995).

Heteromesus calcar Cunha e Wilson, 2006

Espécie descrita a partir de espécimes recolhidos a 1685 metros de profundidade nas chaminés hidrotermais de Lucky Strike Ridge (Cunha e Wilson, 2006), localizadas a sudoeste do arquipélago dos Açores.

Heteromesus ctenobasius Cunha e Wilson, 2006

Espécie descrita a partir de espécimes recolhidos nas chaminés hidrotermais de Lucky Strike Ridge, a 1685 metros de profundidade (Cunha e Wilson, 2006)

Heteromesus similis Richardson, 1911

Espécie descrita a partir de espécimes recolhidos nos Açores (Richardson, 1911). Presente em águas profundas a 2995 metros (Schotte et al, 1995),

Heteromesus spinosus Beddard, 1886

Descrita a partir de espécimes recolhidos nos Açores (Beddard, 1886). Espécie de águas profundas, 1829 metros (Schotte et al, 1995).

Família Haplomunnidae Wilson, 1976

Thylakogaster lobotourus Wilson e Hessler, 1974

Espécie de águas profundas, 1135 a 2223 metros (Schotte et al, 1995), registada em Lucky Strike Ridge (Cunha e Wilson, 2003).

20

Família Haploniscidae Hansen, 1916

Haploniscus charcoti Chardy, 1975

Espécie descrita a partir de espécimes recolhidos nos Açores (Chardy, 1975), recolhida entre os 3360 e 3600 metros de profundidade (Chardy, 1975). Registada recentemente para as planícies abissais do centro de Portugal (Ferreira, 2009; Cunha et al, 2011).

Haploniscus percavix Menzies, 1962

Espécie registada nos Açores (Wolff, 1962), com habitat de águas profundas, 2000 a 4885 metros (Schotte et al, 1995).

Família Janirellidae Menzies, 1956

Janirella nanseni Bonnier, 1896

Espécie registada nas planícies abissais do centro de Portugal, identificada como Janirella cf. nanseni (Ferreira, 2009).

Família Janiridae Sars, 1897

Carpias parvus (Omer-Cooper, 1921)

Espécie de águas pouco profundas (Schotte et al, 1995) registada nos Açores (Borges et al, 2010).

Ianiropsis breviremis (Sars, 1883)

Espécie registada nos Açores (Borges et al, 2010) e na Lagoa de Óbidos (Reis et al, 1982), com habitat entre 0 a 28 metros de profundidade (Schotte et al, 1995). Geralmente associada a poríferos, urocordados ou em Laminaria (Naylor, 1972).

Jaera albifrons Leach, 1814

Espécie registada ao longo da costa oeste Portuguesa (Pereira, 2004; Cunha et al, 1999). Comum em costas rochosas e estuários, entre rochas em zonas que retenham água entre marés (Naylor. 1972).

21

Jaera hopeana Costa, 1853

Espécie registada na costa norte de Portugal (Nolting, 1995). Apresenta relação comensal com indivíduos da espécie Sphaeroma serratum (Naylor, 1972)

Jaera nordmanni (Rathke, 1837)

Espécie registada nos Açores (Borges et al, 2010). Comum em cursos de água fresca adjacentes à costa (Naylor, 1972).

Jaera praehirsuta Forsman, 1949

Espécie intertidal (Schotte et al, 1995) registada na costa norte de Portugal (Nolting, 1995).

Janira maculosa Leach, 1814

Registada nos Açores (Borges et al, 2010), no estuário do Rio Tejo (Gaudêncio e Cabral, 2007), na praia da Aguda (Pereira, 2004) e no Algarve (Carvalho et al, 2013; Boaventura et al, 2006). Espécie presente em profundidades de 0 a 2147 metros (Schotte et al, 1995), associada a poríferos, urocordados ou em Laminaria (Naylor, 1972).

Família Joeropsididae Nordenstam, 1933

Joeropsis brevicornis Koehler, 1885

Espécie recolhida ao longo do sudoeste da costa Portuguesa (Pereira, 2004; Pereira et al, 2006) e na Ria de Aveiro (Cunha et al, 1999). Associado a poríferos e algas coralinas de zonas intertidais (Naylor, 1972).

Família Macrostylidae Hansen, 1916

Macrostylis abyssicola Hansen, 1916

Espécie registada nas planícies abissais do centro de Portugal e identificada como Macrostylis cf. abyssicola (Ferreira, 2009; Cunha et al, 2011).

22

Macrostylis longiremis (Meinert, 1890)

Espécie registada nas planícies abissais do centro de Portugal, identificada como Macrostylis aff. longiremis (Ferreira, 2009). Presente em profundidades de 149 a 228 metros (Schotte et al, 1995).

Macrostylis magnifica Wolff, 1962

Espécie registada nas planícies abissais do centro de Portugal (Ferreira, 2009; Cunha et al, 2011).

Macrostylis subinermis Hansen, 1916

Espécie registada nas planícies abissais do centro de Portugal, identificada como Macrostylis aff. subinermis (Ferreira, 2009). Presente em profundidades de 830 a 3474 metros (Schotte et al, 1995).

Família Microparasellidae Karaman, 1933

Microcharon coineanae Galhano, 1970

Espécie descrita a partir de espécimes recolhidos no norte de Portugal (Galhano, 1970).

Família Munnidae Sars, 1899

Munna limícola Sars, 1886

Espécie registada no estuário da Ria de Aveiro (Cunha et al, 1999) e na costa sul de Portugal (Guerra-García e Sánchez, 2009). Presente em profundidades entre os 40 e os 594 metros (Schotte et al, 1995).

Uromunna petiti (Amar, 1948)

Espécie registada em Sines, identificada como Uromunna cf. petiti (Carvalho et al, 2003), presente entre os 4 e os 281 metros de profundidade (Schotte et al, 1995).

23

Família Munnopsidae Lilljeborg, 1864

Amuletta abyssorum (Richardson, 1911)

Espécie de águas profundas, 2379 a 4829 metros (Schotte et al, 1995), descrita a partir de espécimes recolhidos nos Açores (Richardson, 1911)

Bathyopsurus abyssicolus (Beddard, 1885)

Espécie de águas profundas, 3977 metros (Schotte et al, 1995), descrita a partir de espécimes recolhidos nos Açores (Beddard, 1885).

Disconectes furcatus (Sars G. O., 1870)

Espécie registada em Aveiro, identificada como Disconectes cf. furcatus (Cunha et al 1999) presente em águas de 150 a 2258 metros de profundidade (Schotte et al, 1995).

Disconectes phalangium (Sars, 1864)

Espécie registada em Aveiro (Cunha et al, 1997; Cunha et al, 1999), presente entre os 54 e os 1597 metros de profundidade (Schotte et al, 1995).

Ilyarachna argentina

Espécie registada em Aveiro, identificada como Ilyarachna cf. argentina (Cunha et al, 1999), no entanto o estatuto taxonómico desta espécie encontra-se sobre revisão (WORMS, Editorial Board, 2014).

Ilyarachna longicornis (Sars G. O., 1864)

Espécie registada em Aveiro (Cunha et al, 1999), presente dos 8 aos 5233 metros de profundidade (Schotte et al, 1995).

Munnopsurus atlanticus (Bonnier, 1896)

Espécie registada em Aveiro (Cunha et al, 1997; Cunha et al, 1999), a 299 metros de profundidade (Cunha et al, 1997).

24

Pseudarachna hirsuta (Sars, 1864)

Espécie registada em Aveiro (Cunha et al, 1997; Cunha et al, 1999), a 299 metros de profundidade (Cunha et al, 1997).

Sursumura atlantica (Beddard, 1885)

Espécie descrita a partir de espécimes recolhidos nos Açores (Beddard, 1885).

Família Nannoniscidae Hansen, 1916

Regabellator profugus Siebenaller e Hessler, 1981

Espécie de águas profundas, 1964 a 3797 metros (Schotte et al, 1995), registada nas planícies abissais do centro de Portugal (Ferreira, 2009).

Família Paramunnidae Vanhöffen, 1914

Paramunna typica Tattersall, 1905

Espécie registada em Aveiro (Cunha et al, 1997; Cunha et al, 1999), recolhida dos 91 aos 299 metros de profundidade (Cunha et al, 1997).

Pleurogonium rubicundum (Sars G. O., 1864)

Espécie registada nas planícies abissais do centro de Portugal, identificada como Pleurogonium cf. rubicundum (Ferreira, 2009), presente dos 10 aos 274 metros de profundidade (Schotte et al, 1995).

Família Stenasellidae Dudich, 1924

Stenasellus virei Dollfus, 1897

Espécie intertidal (Schotte et al, 1995), registada em Portugal (Braga, 1942), sem referência a local de recolha.

25

Sub-Ordem Epicaridea Latreille, 1831

Família Bopyridae Rafinesque-Schmaltz, 1815

Bopyrus squillarum Latreille, 1802

Espécie registada em Portugal (Nobre, 1938), sem referência a local de recolha. Parasita de decápodes do género Paleomon (Brian, 1951).

Gigantione bouvieri Bonnier, 1900

Espécie descrita a partir de espécimes recolhidos nos Açores (Bonnier, 1900).

Gyge branchialis Cornalia e Panceri, 1861

Espécie registada em Portugal (Nobre, 1938), sem referência a local de recolha. Parasita em decápodes do género Upogebia (Tucker, 1930).

Pagurocryptella paguri (Bourdon, 1979)

Espécie descrita a partir de espécimes recolhidos nos Açores (Bourdon, 1979). Parasita em decápodes (Boyko e Williams, 2010).

Pseudione borealis Caspers, 1939

Espécie registada no norte de Portugal (Bourdon, 1981).

Pseudione confusa (Norman, 1886)

Espécie registada no cabo de São Vicente (Bourdon, 1981).

Família Cabiropidae Giard e Bonnier, 1887

Clypeoniscus hanseni Giard e Bonnier, 1893

Espécie registada no norte de Portugal (Nolting, 1995). Parasita de isópodes do género Idotea (Nolting, 1995; Sheader, 1977).

26

Família Dajidae Sars, 1882

Branchiophryxus koehleri Nierstrasz e Brender a Brandis, 1931

Espécie descrita a partir de espécimes recolhidos em Portugal (Nierstrasz e Brender a Brandis, 1931). Parasita em crustáceos da família Euphausiidae (Shields e Gómez-Gutiérrez, 1996).

Holophryxus richardi Koehler, 1911

Espécie descrita a partir de espécimes recolhidos nos Açores (Koehler, 1911b).

Zonophryxus grimaldii Koehler, 1911

Espécie descrita a partir de espécimes recolhidos na costa sul de Portugal (Koehler, 1911b). Ectoparasita em Heterocarpus grimaldii (Holthuis, 1949).

Família Entoniscidae Kossmann, 1881

Grapsion cavolinii (Fraisse, 1878)

Espécie registada na Ria de Mira (Kuris et al, 2004). Endoparasita em Pachygrapsus marmoratus (Kuris et al, 2004).

Portunion maenadis (Giard, 1886)

Espécie registada na costa Portuguesa (Torchin et al, 2001). Endoparasita em Carcinus maenas (Kuris et al, 2005).

Sub-Ordem Flabellifera Sars, 1882

Família Aegidae Leach, 1815

Aega megalops Norman e Stebbing, 1886

Espécie descrita a partir de espécimes recolhidos na costa Portuguesa (Norman e Stebbing, 1886).

Aega webbi (Guérin-Méneville, 1836)

Espécie descrita a partir de espécimes recolhidos na costa Portuguesa (Guérin-Méneville, 1836). Presente entre profundidades de 100 a 300 metros.

27

Aegapheles deshaysiana (Milne Edwards, 1840)

Espécie registada nos Açores (Borges et al, 2010), na Madeira (Hermida et al, 2013) e na costa continental (Nobre, 1938; Carvalho, 1944). Presente em profundidades entre os 40 e os 1105 metros (Schotte et al, 1995). Ectoparasita de peixes (Hermida et al, 2013).

Aegiochus ventrosa (M. Sars, 1859)

Espécie registada em Aveiro, identificada como Aegiochus cf. ventrosa (Cunha et al, 1999), presente em profundidades de 539 a 1734 metros (Schotte et al, 1995).

Rocinela danmoniensis Leach, 1818

Espécie registada na Madeira, Figueira da Foz e Peniche (Hermida et al, 2013). Ectoparasita de peixes (Hermida et al, 2013).

Rocinela dumerilii (Lucas, 1849)

Espécie registada em Viana do Castelo e Setúbal (Nobre, 1938), presente entre 60 e os 500 metros de profundidade (Schotte et al, 1995).

Xenuraega ptilocera Tattersall, 1909

Espécie descrita a partir de espécimes recolhidos nos Açores (Tattersall, 1909), presente entre os 310 e os 1250 metros de profundidade (Schotte et al, 1995).

Família Cirolanidae Dana, 1852

Cirolana cranchii Leach, 1818

Espécie intertidal (Schotte et al, 1995) registada em Portugal (Nobre, 1938; Carvalho, 1944).

Eurydice affinis Hansen, 1905

Espécie intertidal (Schotte et al, 1995) registada nos Açores (Borges et al, 2010; Castro e Viegas, 1983).

28

Eurydice grimaldii Dollfus, 1888

Espécie descrita a partir de espécimes recolhidos nos Açores (Dollfus, 1888), presente em profundidades de 0 a 1700 metros (Schotte et al, 1995).

Eurydice inermis Hansen, 1890

Espécie registada em águas Portuguesas (Pierpoint, 1992).

Eurydice lusitanica Jones e Pierpoint, 1997

Espécie descrita a partir de espécimes recolhidos na praia da Amoreira (Jones e Pierpoint, 1997).

Eurydice naylori Jones e Pierpoint, 1997

Espécie intertidal (Schotte et al, 1995) registada ao longo da costa sudoeste Portuguesa (Pereira, 2004).

Eurydice pulchra Leach, 1862

Espécie intertidal (Schotte et al, 1995) registada ao longo da costa sudoeste (Pereira et al, 2006; Cunha et al, 1999; Salgado et al, 2004) e na costa sul (Chicharo et al, 2002).

Eurydice spinigera Hansen, 1890

Espécie registada em Aveiro (Cunha et al, 1999) e em Sines (Carvalho et al, 2003).

Eurydice truncata Norman, 1868

Espécie registada em Aveiro (Cunha et al, 1999), presente entre profundidades de 50 a 200 metros (Schotte et al, 1995).

Natatolana borealis (Lilljeborg, 1851)

Espécie registada na costa sul de Portugal (Castro et al, 2005).

29

Família Cymothoidae Leach, 1818

Anilocra capensis Leach, 1818

Espécie registada em Setúbal (Nierstrasz, 1918).

Anilocra frontalis Milne Edwards, 1840

Espécie registada em águas Portuguesas (Carvalho, 1944). Ectoparasita de peixes (Innal et al, 2007).

Anilocra physodes (Linnaeus, 1758)

Espécie registada em águas Portuguesas (Carvalho, 1944; Saldanha, 2003). Ectoparasita de peixes (Innal et al, 2007).

Ceratothoa oestroides (Risso, 1826)

Espécie registada em águas Portuguesas (Carvalho, 1944). Ectoparasita de peixes (Oktner e Trilles, 2004).

Ceratothoa parallela (Otto, 1828)

Espécie registada em Setúbal (Nobre, 1938). Ectoparasita de peixes (Oktner e Trilles, 2004).

Ceratothoa steindachneri Koelbel, 1878

Espécie descrita a partir de espécimes recolhidos em Lisboa (Koelbel, 1878). Ectoparasita de peixes (Oktner e Trilles, 2004).

Nerocila bivittata (Risso, 1816)

Espécie registada em águas Portuguesas (Nobre, 1938). Ectoparasita de peixes (Oktner e Trilles, 2004).

Nerocila orbignyi (Guérin-Méneville, 1832)

Espécie ectoparasita de peixes (Cavaleiro e Santos, 2009; Oktner e Trilles, 2004) registada em Matosinhos (Cavaleiro e Santos, 2009).

30

Sub-Ordem Gnathiidea Hansen, 1916

Família Gnathiidae Harger, 1880

Bathygnathia bathybia (Beddard, 1886)

Espécie de águas profundas, 1638 metros (Schotte et al, 1995), descrita a partir de espécimes recolhidos nos Açores (Beddard, 1886).

Gnathia dentata (Sars, 1872)

Espécie de águas pouco profundas (Schotte et al, 1995), registada em Sines (Carvalho et al, 2003).

Gnathia maxillaris (Montagu, 1804)

Espécie de águas pouco profundas (Schotte et al, 1995), registada ao longo da costa oeste de Portugal (Pereira, 2004) e nos Açores (Barrois, 1888). Ectoparasitas de certas espécies de peixes (Davies, 2007).

Gnathia vorax (Lucas, 1849)

Espécie registada em Sines (Carvalho et al, 2003), ectoparasitas de certas espécies de peixes (González et al, 2004).

Paragnathia formica Hesse, 1864

Espécie de águas pouco profundas (Schotte et al, 1995), registada nos Açores (Borges et al, 2010), em Aveiro (Cunha et al, 1999) e nos estuários do Tejo (Salgado et al, 2004) e do Mondego (Chainho et al 2006).

Sub-Ordem Limnoriidea

Família Limnoriidae White, 1850

Limnoria quadripunctata Holthius, 1949

Espécie registada no norte de Portugal (Borges et al., 2014; Nolting, 1995) em São Miguel nos Açores (Borges e Costa, 2014) e no etuário do rio Tejo (Borges et al., 2010). Espécie

31

perfuradora de madeira presente entre os 0 e os 30 metros de profundidade (Schotte et al., 1995).

Limnoria tripunctata Menzies, 1951

Espécie registada nos Açores em São Miguel (Borges e Costa, 2014) e na Terceira (Borges et al., 2014), e no continente no Porto, Aveiro, Olhão (Borges et al.,2014) e no estuário do rio Tejo (Borges et al., 2010) Espécie perfuradora de madeira presente entre os 0 e os 7 metros de profundidade (Schotte et al., 1995).

Sub-Ordem Microcerberidea Lang, 1961

Família Microcerberidae Karaman, 1933

Coxicerberus remanei (Chappuis, Delamere-Deboutte-ville e Paulian 1956)

Espécie registada em Portugal (Galhano, 1970), sem referência a local de recolha.

Sub-Ordem Sphaeromatidea Wägele, 1989

Família Sphaeromatidae Latreille, 1825

Campecopea hirsuta (Montagu, 1804)

Espécie intertidal (Schotte et al, 1995) registada ao longo da costa oeste de Portugal (Pereira et al, 2006; Carvalho et al, 2003; Saldanha, 2003).

Campecopea lusitanica (Nolting, Reboreda e Wägele, 1998)

Espécie registada ao longo da costa oeste Portuguesa (Pereira, 2004) e nos Açores (Borges et al, 2010).

Cymodoce pilosa Milne Edwards, 1840

Espécie registada em Setúbal (Nobre, 1938).

Cymodoce truncata Leach, 1814

Espécie registada em Aveiro (Cunha et al, 1999) e nos Açores (Borges et al, 2010).

32

Dynamene bidentata (Adams, 1800)

Espécie registada ao longo da costa oeste de Portugal (Pereira et al, 2006; Cunha et al, 1999; Carvalho et al, 2003) ao longo da costa sul (Lima, 2007) e nos Açores (Borges et al, 2010).

Dynamene edwardsi (Lucas, 1849)

Espécie registada na costa sul de Portugal (Pereira et al, 2006).

Dynamene magnitorata Holdich, 1968

Espécie intertidal (Schotte et al, 1995) registada em toda a costa Portuguesa (Pereira et al, 2006) e nos Açores (Holdich, 1970).

Ischyromene lacazei Racovitza, 1908

Espécie registada na costa oeste de Portugal (Pereira et al, 2006).

Lekanesphaera bocqueti (Daguerre de Hureaux, Hoestlandt e Lejuez, 1960)

Espécie intertidal (Schotte et al, 1995) registada na costa sul de Portugal (Jacobs, 1987).

Lekanesphaera glabella Jacobs, 1987

Espécie intertidal (Schotte et al, 1995) descrita a partir de espécimes recolhidos na Madeira (Jacobs, 1987).

Lekanesphaera hookeri (Leach, 1814)

Espécie intertidal (Schotte et al, 1995) registada em Aveiro (Cunha et al, 1999) e no estuário do Mondego (Chainho et al, 2006)

Lekanesphaera levii (Argano e Ponticelli, 1981)

Espécie intertidal (Schotte et al, 1995) registada em Aveiro (Cunha et al, 1999), Faro (Jacobs, 1987), e na lagoa de Óbidos (Carvalho et al, 2011).

Lekanesphaera monodi (Arcangeli, 1934)

Registada no estuário do rio Tejo (Gaudêncio e Cabral, 2007) e nos Açores (Borges et al, 2010). Espécie presente entre os 0 e os 20 metros de profundidade (Schotte et al, 1995).

33

Lekanesphaera rugicauda (Leach, 1814)

Espécie estuarina registada em Aveiro (Cunha et al, 1999) e nos Açores (Borges et al, 2010).

Lekanesphaera terceirae Jacobs, 1987

Espécie descrita a partir de espécimes recolhidos nos Açores (Jacobs, 1987).

Sphaeroma serratum (Fabricius, 1787)

Espécie intertidal (Schotte et al, 1995) registada nos estuários dos rios Douro (Mucha et al, 2003), e Cávado (Carvalho e Santos, 2013),em Aveiro (Cunha et al, 1999), São Julião (Pereira et al, 2006) e nos Açores (Borges et al, 2010).

Sphaeroma venustissimum Monod, 1931

Espécie intertidal (Schotte et al, 1995) registada na costa sul de Portugal (Jacobs, 1987).

Sub-Ordem Oniscidea Latreille, 1803

Família Ligiidae Brandt, 1883

Ligia oceanica (Linnaeus, 1767)

Espécie registada nos Açores (Borges et al, 2010) e em Aveiro (Cunha et al, 1999).

Família Tylidae Milne Edwards, 1840

Tylos europaeus Arcangeli, 1938

Registada em Aveiro (Cunha et al, 1999) e no Rio Tejo (Calvário, 1984). Espécie semi-terrestre presente em praias arenosas (Brown e Mclachlan, 1990).

Sub-Ordem Valvifera Sars, 1882

Família Arcturidae White, 1857

Astacilla bocagei Nobre, 1903

Espécie descrita a partir de espécimes recolhidos em Portugal (Nobre, 1903).

34

Astacilla cornuta (Koehler, 1911)

Espécie descrita a partir de espécimes recolhidos nos Açores (Koehler, 1911a).

Astacilla damnoniensis (Stebbing, 1874)

Espécie registada em Sines (Carvalho et al, 2003).

Astacilla longicornis (Sowerby, 1806)

Espécie registada nos Açores (Borges et al, 2010), presente em profundidades entre os 18 e os 752 metros (Schotte et al, 1995).

Família Chaetiliidae Dana, 1853

Saduriella losadai Holthuis, 1964

Espécie registada em Aveiro (Cunha et al, 1999), nos estuários do rio Minho (Sousa et al, 2008) e Tejo (Gaudêncio e Cabral, 2007) e Mondego (Chainho et al. 2006). Presente entre os 1,5 e 3,5 metros de profundidade (Schotte et al, 1995).

Família Holognathidae Thomson, 1904

Cleantis prismatica (Risso, 1826)

Espécie registada ao longo da costa noroeste de Portugal (Pereira et al, 2006) e no estuário do Rio Tejo (Gaudêncio e Cabral, 2007).

Família Idoteidae Samouelle, 1819

Idotea balthica (Pallas, 1772)

Espécie registada ao longo da costa noroeste Portuguesa (Pereira et al, 2006), e nos Açores (Borges et al, 2010). Espécie de águas pouco profundas, 20 a 34 metros (Schotte et al, 1995), geralmente associada a algas (Naylor, 1972).

Idotea chelipes (Pallas, 1766)

Espécie estuarina registada na Ria de Aveiro (Cunha et al, 1999) e no Rio Tejo (Salgado et al, 2004).

35

Idotea granulosa Rathke, 1843

Espécie intertidal (Schotte et al, 1995), registada ao longo da costa oeste de Portugal (Pereira, 2004) e nos Açores (Borges et al, 2010). Geralmente associada a algas (Naylor, 1972).

Idotea linearis (Linnaeus, 1766)

Espécie intertidal (Schotte et al, 1995) registada em Portugal (Nobre, 1938; Carvalho, 1944) sem referência a local de recolha.

Idotea mettalica Bosc, 1802

Espécie intertidal (Schotte et al, 1995) registada em Aveiro (Cunha et al, 1999) e nos Açores (Borges et al, 2010).

Idotea neglecta Sars, 1897

Espécie intertidal (Schotte et al, 1995) registada nos Açores (Borges et al, 2010).

Idotea pelagica Leach, 1815

Espécie intertidal (Schotte et al, 1995) registada ao longo da costa oeste Portuguesa (Pereira et al, 2006; Carvalho et al, 2003).

Stenosoma acuminatum (Leach, 1814)

Espécie registada ao longo da costa noroeste de Portugal (Pereira et al, 2006; Xavier et al, 2012).

Stenosoma appendiculatum (Risso, 1826)

Espécie registada em Portugal (Nobre, 1938; Carvalho, 1944) sem referência a local de recolha.

Stenosoma bellonae Daguerre de Hureaux, 1968

Espécie intertidal (Schotte et al, 1995) registada em Sines (Carvalho et al, 2003).

Stenosoma capito (Rathke, 1837)

Espécie intertidal (Schotte et al, 1995) registada ao longo da costa sudoeste de Portugal (Pereira et al, 2006) e na Ria Formosa (Xavier et al, 2012).

36

Stenosoma lancifer (Miers, 1881)

Espécie intertidal (Schotte et al, 1995) registada ao longo da costa oeste de Portugal (Pereira et al, 2006; Carvalho et al, 2003).

Stenosoma nadejda Rezig, 1989

Espécie de águas pouco profundas (Schotte et al, 1995) registada em Sines (Xavier et al, 2012).

Stenosoma raquelae Hedo e Junoy, 1999

Espécie de águas pouco profundas (Schotte et al, 1995) registada no Algarve (Xavier et al, 2012).

Synischia hectica (Pallas, 1772)

Espécie registada em Portugal (Nobre, 1938) sem referência a local de recolha.

2.4 Discussão

Para a elaboração desta checklist foram compilados registos de 146 espécies pertencentes a 36 famílias e 76 géneros (Tab. 1.1), incluindo espécies costeiras, estuarinas e de mar profundo (Tab. 1.2). Entre estas denota-se uma maior falta de conhecimento para Isópodes de mar profundo tendo uma maior incidência de classificações taxonómicas incertas e uma grande fragmentação relativamente a dados sobre distribuição geográfica. Existe também uma falta de conhecimento sobre Isópodes parasitas nomeadamente sobre a infraordem Epicaridea sendo grande parte dos registos verificados em estudos de parasitologia em espécies de valor comercial.

37

Tabela 1.1- Número de espécies de isópodes registadas em Portugal continental, Açores e Madeira divididas por Sub Ordem.

Sub Ordem Nº de espécies Anthuridea 8 Asellota 52 Epicaridea 12 Flabellifera 26 Gnathidea 5 Limnoriidea 2 Microcerberidea 1 Oniscidea 2 Sphaeromatidea 17 Valvifera 21

Tabela 1.2- Número de espécies compiladas divididas por habitat de recolha

Habitat Nº de espécies Supralitoral 1 Estuarino 6 Intertidal 30 Sublitoral 13 Mar profundo 44 Parasitas 25

Regista-se também um elevado número de endemismos nos arquipélagos, com doze espécies endémicas dos Açores e duas espécies endémicas da Madeira. Todos os valores de profundidade foram registados entre os valores propostos em Schotte et al., (1995), contudo os valores limite de profundidade para cada espécie poderão não ser os adequados para os espécimes da costa Portuguesa, uma vez que esses dados foram compilados através de vários registos em diferentes zonas de ocorrência numa escala mundial. Esta checklist vem acrescentar às últimas checklists elaboradas para a Península Ibérica (Junoy e Castelló, 2003) e para a Macaronésia (Castelló e Junoy, 2007), vinte e seis novos registos, sendo a maioria espécies registadas em mar profundo com vinte e três espécies, dois novos registos de espécies parasitas e um registo de uma espécie de águas pouco profundas.

38

Referências

Arcangeli, A. (1934) Duo specie ed un genere di Isopodi terrestri nuovi per la Libia. Bollettino Musei di Zoologia e di Anatomia comparata R. Universita di Torino 44:213-220.

Argano, R., Ponticelli, A. (1981) Nomenclature e geonemia di Sphaeroma monodi Arcangeli, 1934, del Mediterraneo e del Mar Nero (Crustacea, Isopoda Flabellifera). Bolletino del Museo Civico di Storia Naturale di Verona 1980: 227-234.

Barrois, T. (1888) Catalogue des Crustacés marins recueillis aux Açores, durant les mois d’Août et Septembre 1887. Le Bigot Frères. Lille, Francia: 110 pp; lám. I-IV.

Baselga, A., Lobo, J.M., Hortal, J., Jiménez-Valverde, A., Gómez, J.F. (2010) Assessing alpha and beta taxonomy in Eupelmid wasps: Determinants of the probability of describing good species and synonyms. Journal of Zoological Systematics and Evolutionary Research 48: 40–49.

Beddard, F.E. (1885) Preliminary Notice of the Isopoda collected during the Voyage of H.M.S. "Challenger". Part 2. Munnopsidae. Proceedings of the Zoological Society of London 1885: 916-925.

Beddard, F.E. (1886) Report on the Isopoda collected by H.M.S. Challenger during the years 1873-1876. Part 2. Report of the Voyage of H.M.S. Challenger 17: 1-178.

Boaventura, D., Moura, A., Francisco, L., Carvalho, S., Cúrdia, J., Pereira, P., Fonseca, L. C., Miguel, N.S., Monteiro, C.C. (2006). Macrobenthic colonisation of artificial reefs on the southern coast of Portugal (Ancão Algarve). Hydrobiologia 555: 335–343.

Bonnier, J. (1896) Edriophthalmes in: Resultats scientifiques de la Campagne du "Caudan" dans le Golfe de Gascogne, Fasc. III: Annelides, Poissons, Edriophthalmes, Diatomees, Debris Vegetaux et Roches, Liste des especes recueillies. Annales de l'Universite de Lyon 26: 527-689.

Bonnier, J. (1900) Contribution à l’étude des Épicarides. Les Bopyridae. Travaux de l’Institut Zoologique de Lille et du Laboratoire de Zoologie Maritime de Wimereux 8: 1-478.

Borges, L.M.S., Valente, A.A., Palma, P., Nunes, L. (2010) Changes in the wood boring community in the Tagus Estuary: a case study. Marine Biodiversity Records 3: 1–7.

Borges, L.M.S., Costa, F.O. (2014) New records of marine wood borers (Bivalvia: Teredinidae and Isopoda: Limnoriidae) from São Miguel, Azores, with a discussion of some aspects of their biogeography. Açoreana 10: 109-116.

Borges, L.M.S., Merckelbach, L.M., Cragg, S.M. (2014) Biogeography of Wood-Boring Crustaceans (Isopoda: Limnoriidae) Established in European Coastal Waters. Plos One 9: e109593.

Borges, P.A.V., Costa, A., Cunha, R., Gabriel, R., Gonçalves, V., Martins, A.F., Melo, I., Parente, M., Raposeiro, P., Rodrigues, P., Santos, R.S., Silva, L., Vieira, P. & Vieira, V. (Eds.)

39

(2010) A list of the terrestrial and marine biota from the Azores. Princípia, Oeiras, 432 pp.

Bosc, L.A.G. (1802) Histoire naturelle des Crustaces, contenant leur description et leurs moeurs. 2 volumes, Paris.

Bourdon, R. (1968) Les Bopyridae des mers Européennes. Mémoires du Muséum National d’Histoire Naturelle de Paris. Nouvel Série (A) 50: 77-424.

Bourdon, R. (1979) Bopyridae de la campagne Biacores (Isopoda Epicaridea). Bulletin du Museum National d'Histoire Naturelle, Paris (4) 1, Section A 2: 507-512.

Bourdon, R. (1981) Bopyriens noveaux pour la faune européene de l’Atlantique (Isopoda Epicaridea). Bulletin du Museum National d´Histoire Natturelle Section A 2: 615-634.

Boyko, C.B., Williams, J.D. (2010) A new genus and species of primitive Bopyrid (Isopoda, Bopyridae) parasitizing hermit crabs (Anomura) from deep waters in the eastern Atlantic and Japan. Charles Fransen,Sammy de Grave,Peter Ng (Eds) Studies on Malacostraca: Lipke Bijdeley Holthuis Memorial Volume Crustaceana Monographs 14:145-159.

Braga, J.M. (1942) Un Isopode nouveau du Portugal: Stenasellus Nobrei n. sp. Volume 132 de Memórias e estudos do Museu Zoológico da Universidade de Coimbra: Museu Zoológico, 10pp.

Brian, A. (1951) Sur un épicaride parasite des crevettes (Nika edulis (Latr.)) des côtes du Portugal. Arquivos do Museu Bocage 22:57-61.

Brown, A.C., Maclachlan, A. (1990) Ecology of sandy shores. Elsevier, Amsterdam

Bruce, N. L. (2004) Reassessment of the isopod crustacean Aega deshaysiana (Milne Edwards, 1840) (Cymothoida: Aegidae): a world-wide complex of 21 species. Zoological Journal of the Linnean Society 142: 135-232.

Calvario, J. (1984) Étude préliminaire des peuplements benthiques intertidaux (substrats muebles) de l’estuaire du Tage (Portugal) et sa cartographie. Arquivos do Museu Bocage 2:187-206.

Carvalho, A.N., Santos, P.T. (2013) Factors affecting the distribution of epibenthic biodiversity in the Cávado estuary (NW Portugal). Journal of Integrated Coastal Zone Management 13: 101-111.

Carvalho, R. N. (1944) Catálogo da colecçao de Invertebrados de Portugal existentes no Museu Zoológico da Universidade de Coimbra. Memórias e Estudos do Museu Zoológico da Universidade de Coimbra 160:1-15.

Carvalho, S., Moura, A., Cúrdia, J., Fonseca, L.C., Santos M.N. (2013) How complementary are epibenthic assemblages in artificial and nearby natural rocky reefs? Marine Environmental Research 92:170-177.

Caspers, H. (1939) Zwei neue Epicariden-Arten aus der Nordsee (Pseudione borealis n. sp. und Ps. tuberculata n. sp.). Zoologischer Anzeiger 125: 236-244.

40

Castelló J., Carballo J.L., (2001) Isopod fauna, excluding Epicaridea, from the Strait of Gibraltar and nearby areas (Southern Iberian Peninsula). Scientia Marina 65: 221-241.

Castro, M.L., Viegas M.C. (1980-1981) Povoamentos intertidais do Estuario do Tejo. Estudo preliminar da fácies de Mytilus galloprovincialis Lamarck, 1818. Boletim da Sociedade Portuguesa de Ciéncias Naturais 20: 71-81.

Castro, M. L., Viegas, M.C. (1983) Estudo dos povoamentos de algas fotófilas da ilha de S. Miguel (Açores). "Arquipélago, Série Ciências da Natureza" 4: 7-30.

Castro, M., Araújo, A., Monteiro, P. (2005) Fate of discards from deep water crustacean trawl fishery off the south coast of Portugal. New Zealand Journal of Marine and Freshwater Research 39: 437-446.

Cavaleiro, F.I., M. J. Santos, M.J. (2009) Seasonality of metazoan ectoparasites in marine European flounder Platichthys flesus (Teleostei: Pleuronectidae). Parasitology 136: 855- 865.

Chainho, P., Costa, J.L., Chaves M.L., Lane, M.F., Dauer, D.M., Costa, M.J. (2006) Seasonal and spatial patterns of distribution of subtidal benthic invertebrate communities in the Mondego River, Portugal – a poikilohaline estuary. Hydrobiologia 555: 59–74.

Chappuis, P.A., Delamare-Deboutteville, C. (1952) Nouveaux isopodes (Crustacea) du sable des plages du Roussillon. Comptes rendus hebdomadaires des seances de l'Academie des Sciences 234: 2014-2016.

Chardy, P. (1974) Les Haploniscidae (Crustaces Isopodes Asellotes) de l'Atlantique. Description de huit especes nouvelles. Bulletin du Museum National d'Histoire Naturelle, (Sér. 3) 243, Zool. 167, pp.

Chardy, P. (1975) Isopodes nouveaux des campagnes Biacores et Biogas IV en Atlantique Nord. Bulletin du Museum National d'Histoire Naturelle, (Sér. 3) 303, Zool. 213, pp.

Chícharo, L., Chícharo, A., Gaspar, M., Alves, F., Regala, J. (2002). Ecological characterization of dredged and non-dredged bivalve fishing areas off south Portugal. Journal of the Marine Biological Association of the United Kingdom 82: 41-50.

Cornalia, E. Panceri, P. (1861) Osservazioni zoologische ed anatomische spora un nuovo genere di isopodo sedentari (Gyge branchialis). Memorie della Reale Accademia di Scienze di Torino 19: 85-118.

Cruz S., Marques J.C., Gamito S., Martins I. (2003). Autecology of the isopod, Cyathura carinata (Krøyer, 1847) in the Ria Formosa (Algarve, Portugal). Crustaceana 76: 781-802.

Cunha, M. R., Sorbe, J.C.,Bernardes, C. (1997) On the structure of the neritic suprabenthic communities from the Portuguese continental margin. Marine Ecology Progressive Series 157: 119-137.

Cunha, M. R., Sorbe, J.C., Moreira, M.H. (1999) Spatial and seasonal changes of brackish peracaridan assemblages and their relation to some environmental variables in two tidal

41

channels of the Ria de Aveiro (NW Portugal). Marine Ecology Progressive Series 190: 69- 87.

Cunha M.R., Wilson G.D.F. (2003) Haplomunnidae (Crustacea: Isopoda) reviewed, with a description of an intact specimen of Thylakogaster Wilson & Hessler, 1974. Zootaxa. 326

Cunha, M.R. and Wilson, G.D.F. (2006) The North Atlantic genus Heteromesus (Crustacea: Isopoda: Asellota: Ischnomesidae) Zootaxa 1192: 1-76.

Cunha, M.R., Paterson, G.L.J., Amaro, T., Blackbird, S., deStiger, H.C., Ferreira, C., Glover, A., Hilário, A., Kiriakoulakis, K., Neal, L., Ravara, A., Rodrigues, C.F., Tiago, A., Billet, D.S.M. (2011) Biodiversity of macrofaunal assemblages from three Portuguese submarine canyons (NE Atlantic). Deep Sea Reasearch Pt II 58: 2433-2447.

Daguerre de Hureaux, N. (1968) Contribution a l'etude des isopodes marins du Maroc. 1. Description sommaire d'un isopode nouveau des cotes atlantiques marocaines; Idotea (Pentidotea) panousei (valvifere, Idoteidae). Bulletin de la Societe des Sciences Naturelles et Physiques du Maroc 48: 77-85.

Davies, J.A. (2007) Further Studies on Haemogregarina bigemina Laveran & Mesnil, the Marine Fish Blennius pholis L., and the Isopod Gnathia maxillaris Montagu. Journal of Eukaryotic Microbiology 29: 576-583.

Davoult, D., Dewarumez, J.-M., Glaçon, R. (1993). Nouvelles signalisations d'espèces macrobenthiques sur les côtes françaises de la Manche orientale et de la Mer du Nord: 4. Groupes divers [New macrobenthic species in the French part of the eastern Channel and of the North Sea: 4. Miscellaneous groups]. Cahiers de Biologie Marine 34: 55-64

Dollfus, A. (1888) Sur quelques crustaces isopodes du littoral des Acores (Troisieme campagne de l'Hirondelle). Bulletin de la Societe Zoologique de France 23: 1-5.

Elizalde M., Weber O., Pascual A., Sorbe J.C., Etcheber H. (1999) Benthic response of Munnopsurus atlanticus (Crustacea Isopoda) to the carbon content of the near-bottom sedimentary environment on the southern margin of the Cap-Ferret Canyon (Bay of Biscay, northeastern Atlantic Ocean). Deep Sea Research Part II: Topical Studies in Oceanography 46: 2331–2344.

Fabricius, J. C. (1787) Mantissa Insectorum, sistens eorum species nuper detectas; adjectis characteribus genericus, differentiis specificis, emendationibus, observationibus .Copenhagen.

Ferreira, M.C. (2009) Crustacean Abundance and Diversity in Portuguese Canyons. Tese doutoral. Universidade de Aveiro.

Fraisse, P. (1878) Entoniscus cavolinii n. sp., nebst bemerkungen über die umwandlung und systematik der bopyriden. Arbeiten aus dem Zoologisch-Zootomischen Institut in Würzburg 4: 382-440, pls. 20-21.

Galhano, M. H. (1970) Contribuicao para o conhecimento da fauna intersticial em Portugal. Publicacoes do Instituto de Zoologia "Dr. Augusto Nobre" 110: 9-206.

42

Gaudencio, M. J., Cabral, H. N. (2007). Trophic structure of macrobenthos in the Tagus estuary and adjacente coastal shelf. Hydrobiologia 587: 241–251.

Giard, A., Bonnier, J. (1895). Contributions a l'étude des épicarides. XX. Sur les épicarides parasites des arthrostracés et sur quelques copépodes symbiotes de ces épicarides. Bulletin Scientifique de la France et de la Belgique 25: 417-493, pls. 5-13.

Giard, A., Bonnier, J. (1887) Contributions a l'etude des bopyriens. Travaux de l'Institut Zoologique de Lille et du Laboratoire Marine de Wimereux 5: 1-272.

González, P.,Sánchez, M.I., Chirivella, J., Carbonell, E., Riera, F., Grau, A. (2004) A preliminary study on gill metazoan parasites of Dentex dentex (Pisces: ) from the western Mediterranean Sea (Balearic Islands). Journal of Applied Ichthyology 20:276-281.

Guérin-Méneville F.E. 1832. Crustaces. In Expedition scientifique de Moree (sous la direction de M. Bory de Saint-Vincent).Volume 3.Paris.

Guerra-García J.M., Ros M., Sanchez J.A. (2009) Isopods, tanaids and cumaceans (Crustacea. Peracarida) associated to the seaweed Stypocaulon scoparium in the Iberian Peninsula. Zoologica Baetica 20: 35-48.

Hansen, H. J. (1890) Cirolanidae et familiae nonnullae propinquae Musei Hauniensis. Et Bidrag til Kundskaben om nogle Familier af isopode Krebsdyr. Kongelige Danske Videnskabernes Selskabs Skrifter, 6te Raekke, Naturvidenskabelig og mathematisk Afdeling 3: 239-426.

Hansen, H. J. (1905) Revision of the European forms of the Cirolaninae, a subfamily of Crustacea, Isopoda. Journal of the Linnean Society, Zoology 29: 337-373.

Hansen, H. J. (1916) Crustacea Malacostraca 3. Danish Ingolf Expedition 3: 1-262.

Hedo, G. and Junoy, J. (1999) A new species of Synisoma (Isopoda: Valvifera: Idoteidae) from the Strait of Gibraltar and the Alboran Sea (Spain, western Mediterranean. Cahiers de Biologie Marine 40: 87-92.

Hermida, M., Cruz, C., Saraiva, A. (2013) Ectoparasites of the blackspot seabream (Pagellus bogaraveo) (Teleostei: Sparidae) from Portuguese waters of the north-east Atlantic. Journal of the marine biological association of the United Kingdom. 93: 503-510.

Hesse, E. (1864) Memoire sur les Pranizes et les Ancees (texte complet). Memoires des Savants Etrangers presentes a l'Academie des Sciences, Paris 18: 231-302.

Hessler, R. (1970) The Desmosomatidae (Isopoda, Asellota) of the Gay Head-Bermuda Transect. Bulletin of the Scripps Institution of Oceanography 15: 1-185.

Holdich, D. M. (1968) A systematic revision of the genus Dynamene (Crustacea: Isopoda) with descriptions of three new species. Pubblicazioni Stazione Zoologica di Napoli 36: 401- 426.

Holdich, D. M. (1970) The distribution and habitat preferences of the afro-european species of Dynamene (Crustacea: Isopoda). Journal of Natural History (London) 4:419-438.

43

Holthuis, L. B. (1949) Zonophryxus dodecapus nov. spec., a remarkable species of the family Dajidae (Crustacea Isopoda) from the Canary Islands. Koninklijke Nederlandsche Akademie van Wetenschappen 52: 1-8.

Holthuis, L. B. (1964) Saduriella, a new genus of Isopoda Valvifera from northwestern Spain. Zoologische Mededelingen 40: 29-35.

Hult, J. (1936) On some species and genera of Parasellidae. Arkiv for Zoologie 29A: 1-14.

Innal D., Kirkim F., Erk’akan F. (2007) The parasitic isopods, Anilocra frontalis and Anilocra physodes (Crustacea; Isopoda) on some marine fish in Antalya Gulf, Turkey. Bulletin of the European Association Fish Pathologists 27: 239-241.

Jacobs, B.J.M. (1987) A taxonomic revision of the European, Mediterranean and NW. African species generally placed in Sphaeroma Bosc, 1802 (Isopoda: Flabellifera: Sphaeromatidae). Zoologische Verhandelingen 238: 1-71.

Kensley, B. (1982) Deep-Water Atlantic Anthuridea (Crustacea: Isopoda). Smithsonian Contributions to Zoology 346: 1-60.

Knight-Jones, E.W., Knight-Jones, P. (2002) Four new species of Eisothistos (Anthuridea: Isopoda) fromtubes of Spirbidae (Serpuloidea: Polychaeta) Journal of Natural History 36: 1397-1419.

Koehler, R. (1885) Description d'un Isopode nouveau, le Joeropsis brevicornis. Annales des Sciences Naturelles (Paris) Zoologie (6) 19: 1-7.

Koehler, R. (1911a) Arcturides nouveaux provenant des campagnes de la "Princess Alice", ou appartenant au Musee oceanographique de Monaco. Bulletin Institut Oceanographique (Monaco) 214: 65.

Koehler, R. (1911b) Isopodes nouveaux de la famille des Dajidés provenant des campagnes de la “Princesse-Alice”. Bulletin de l’Institut Océanographique 196: 1-34.

Koelbel, K. (1879) Über einige neue Cymothoiden. Sitzungberichte der Mathematisch- Nautwissenschaftlichen Klasse der Kaiserlichen Akademie der Wissenschaften 78: 401- 416.

Kroyer, H. (1847) Karcinologiste Bidrag. Naturhistorisk Tidsskrift, Kjobenhavn 2: 366-346.

Kuris, A.M., Torchin, M.E., Lafferty, K.D., 2004. Parasites in the thoracic ganglion of Pachygrapsus marmoratus (Brachyura: Grapsidae) from the coast of Portugal. Parasite 11: 425–427.

Latreille, P.A. (1802-1805). Histoire Naturelle, Générale et Particulière des Crustacés et des Insectes : Ouvrage Faisant Suite aux Oeuvres de Leclerc de Buffon, et Partie du Cours Complet d´Histoire Naturelle Rédigé par C.S. Sonnini. 14 vols. F. Dufart, Paris.

Leach, W.E. (1813) Crustaceology. In: Brewster, D. (Ed), The Edinburgh Encyclopædia: pp 383- 437.

44

Leach W.E. (1815b) A tabular view of the external characters of four classes of , wich Linne arranged under Insecta; with the distribution of the genera composing three of these classes into orders, etc. and descriptions of several new genera and species. Transactions of the Linnean Society, London 11: 307-400.

Leach, W.E. (1818) Cymothoadees. In F. Cuvier, Editor, Dictionnaire des Sciences Naturelles, 12.Paris.

Lilljeborg, W. (1851) Norger Crustaceer. Ofversigt af Kongliga Vetenskapsakademiens Forhandligar, Stockholm 8:19-25.

Lima F.P.S. (2007) Biogeography of Benthic Invertebrate Assemblages on the Portuguese Rocky Coast: Relation with Climatic and Océanographie Patterns. Tese doutoral. Universidade do Porto.

Lincoln, R. J. (1985) Deep-sea asellote isopods of the north-east Atlantic family Haploniscidae. Journal of Natural History 19: 655-695.

Lincoln, R. J., Boxshall, G. A. (1983) Deep-sea asellote isopods of the north-east Atlantic; the family Dendrotionidae and some new ectoparasitic copepods. Journal of the Linnean Society of London, Zoology 79: 297-318.

Linnaeus, C. (1758). Systema Naturae per regna tria naturae, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Editio decima, reformata. Laurentius Salvius: Holmiae. ii, 824 pp.

Linnaeus, C. (1766). Systema naturae sive regna tria naturae, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Laurentii Salvii, Holmiae. 12th ed. v. 1 (pt 1): 1-532.

Linnaeus, C. (1767). Systema naturae sive regna tria naturae, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Laurentii Salvii, Holmiae. 12th ed. v. 1 (pt 2): 533-1327

Lucas, H. (1846) Crustaces. Exploration scientifique de l'Algerie pendant les annees 1840, 1842. Science physiques. Zoologie 1. Histoire Naturelle des Animaux articules pt. 1, pages 1-88, pls. 1-8.

Lucas, H. (1849) Histoire naturelle des Animaux Articules. Exploration scientifique de l'Algerie pendant les annees 1840, 1841, 1842. Sciences Physiques Zoologie 1: 1-403.

McLaughlin, P.A., Camp, D.K., Ange,l M.V., Bousfield, E.L., Brunel, P., Brusca, R.C., Cadien, D. (2005). Common and Scientific Names of Aquatic Invertebrates from the United States and Canada: Crustaceans. American Fisheries Society Special Publication 31. pp. 545.

Marques, V., Reis, C., Calvario, J., Marques, J.C., Melo, R., Santos, R. (1982) Contribuçao para o estudo dos povoamentos bentónicos (substrato rochoso) da costa ocidental portuguesa. Zona intertidal. Oecologia Aquatica 6: 119-145.

45

Marques, J.C., Martins, I., Teles-Ferreira C., Cruz S. (1994). Population Dynamics, Life History, and Production of Cyathura carinata (Krøyer) (Isopoda: Anthuridae) in the Mondego Estuary. Portugal Journal of Crustacean Biology 14:258-272.

Meinert, F. W. (1890) Crustacea Malacostraca af Kanonbaad. Videnskabelige Udbytte af Kanonbaaden. Hauchs Togter 3: 147-230.

Menzies, R. J. (1962) The isopods of abyssal depths in the Atlantic Ocean. Vema Research Series 1: 79-206.

Miers, E. J. (1881) Revision of the Idoteidae, a family of sessile-eyed Crustacea. Journal of the Linnean Society of London 16: 1-88.

Milne Edwards, H., 1834-1840. Histoire naturelle des Crustacés, comprenant l’anatomie, la physiologie et la classification de ces animaux: 1-468, 1-532, 1-638, 1-32, Plates 1-42. Librairie encyclopédique de Roret, Paris.

Monod, T. (1931) Faune de l'appontement de l'administration a Port- Etienne (Afrique Occidentale Francaise). Bulletin de la Societe Zoologique de France 55: 489-501.

Montagu G. (1804). Description of several marine animals found on the south coast of Devonshire. Transactions of the Linnean Society, London, 7, pp. 61-85;pls. 6-7.

Montagu, G. (1808) Description of several marine animals found on the south coast of Devonshire. Transactions of the Linnean Society of London 9: 81-114

Mucha, A.P., Vasconcelos, M.T., Bordalo, A.A., (2003). Macrobenthic community in the Douro estuary: relations with trace metals and natural sediment characteristics. Environmental Pollution 121:169-180.

Naylor, E., Slinn, D.J., Spooner, G.M. (1961). Observations on the British species of Jaera (Isopoda: Asellota). Journal of the Marine Biological Association of the United Kingdom 41:817-28.

Naylor, E. (1972). British marine isopods: keys and notes for the identification of the species. 2nd ed. Synopses of the British fauna (new series), 3. Academic Press: London, UK. ISBN 0-12-515150-0. 89 pp.

Negoescu, I., Wagele, J.W. (1984) - World list of Anthuridean Isopods (Crustacea, Isopoda, Anthuridea). Trav. Mus. Hist. oat. "Grigore Antipa" 25: 99-145

Nierstrasz, H.F. (1918) Alte und neue Isopoden. Zoologische Medelingen 4: 103-142.

Nierstrasz, H.F. Brender a Brandis, G.A. (1931) Papers from Dr. Th. Mortensen's Pacific Expedition 1914-16. 57. Epicaridea 2. Videnskabelige Meddelelser fra Dansk Naturhistorisk Forening i Kjobenhavn 91: 147-225.

Nobre, A. (1903) Subsidios para o estudo da fauna marinha do norte de Portugal. Annaes de Sciencias Naturaes, Porto 8: 37-94.

46

Nolting, C. (1995) Die litorales Isopodenfauna Nord-Portugals (Crustacea, Peracarida): Untersuchung zur Zusammensetzung und Zoogeographie. Diplomarbeit. Fakultät für Biologie. Universität Bielelfeld. 107 pp.

Nolting, C., Reboreda, P., Wägele, J.W. (1998) Systematic revision of the genus Anoplocopea Racovitza, 1907 (Crustacea: Isopoda) with a description of a new species from the Atlantic Coast of the Iberian Peninsula. Mitt.Mus. Naturk. Berl. Zool.Reihe 74:19-41.

Norman, A.M. (1868) On two isopods, belonging to the genera Cirolana and Anilocra, new to the British Islands. Annals and Magazine of Natural History (4) 2: 421-422.

Norman, A.M. (1886) Museum Normanianum, or a catalogue of the Invertebrata of Europe, and the Arctic and North Atlantic Oceans, which are contained in the collection of the Rev. Canon A. M. Norman, M.A.D.C.L., F.L.S. III-Crustacea. Houghton-Le-Spring: Morton.

Norman, A. M. and Stebbing, T. R. R. (1886) Crustacea Isopoda of the 'Lightning', 'Porcupine', and 'Valorous' Expeditions, Part 1. Transactions of the Zoological Society of London 12: 119- 133.

Öktener A., Trilles J.P. (2004) Report on the Cymothoids (Crustacea, Isopoda) collected from marine fishes in Turkey. Acta Adriatica 45: 145-154.

Omer-Cooper, J. (1921) A new species of Isopod (Janiropsis parva) from Fanning Island, Pacific Ocean. Proceedings of the Bournemouth Natural Science Society 12: 79-82.

Pallas P.S. (1766). Miscellanea zoologica. Quibus novae imprimis atque obscurae animalium species describuntur et observationibus iconibusque illustrantur. Petrum van Cleef. Hagí Comitum., xii + 224 pp.;14 pls

Pallas, P.S. (1772) Spicilegia Zoologica, quibus novae imprimus et obscurae animalium species iconibus, descriptionibus atque commentariis illustrantur cura P.S. Pallas... 1767-1780 Berlin.

Pereira S.G. (2004) Diversidade e Biogeografia de Isópodes intertidais de Substrato Rochoso na Costa Continental Portuguesa. Tese de mestrado. Universidade do Porto

Pereira S.G., Lima F.P., Queiroz N.C., Ribeiro P.A., Santos A.M. (2006) Biogeographic patterns of intertidal macroinvertebrates and their associationwith macroalgae distribution along the Portuguese coast. Hydrobiologia 555: 185-192.

Pierpoint, C. J. L. 1992. Some aspects of the ecology and taxonomy of the genus Eurydice (Isopoda: Cirolanidae) from sand beaches on the Iberian Peninsula. Tese doutoral. Universidade de Gales. Reino Unido.

Racovitza, E.G. (1908) Ischyromene Lacazei n. g., n. sp. Isopode mediterraneen de la famille des Spheromides (Note preliminaire). Archives de Zoologie Experimentale et Generale (4), Notes et Revue (3) 9: 60-64.

Rathke, H. (1837). Zur Fauna der Krym. Mémoires de l’Académie Impériale des Sciences de St. Pétersbourg 3: 291-454, Plates 1-10.

47

Rathke H. (1843). Beiträge zur fauna Norwegens. Verhandlungen Kaiserlichen Leopoldinisch- Carolinischen Akademie Naturforscher, Breslau, 20, 1, pp. 1-264, 264b, 264c; 12 pls.

Reboreda P, and Urgorrin V. (1995) Nuevos datos sobre los isópodes (Crustacea; Peracarida) en las costas del noroeste de la Península Ibérica. Graellsia 51: 129-141

Reis, C., Marques, V., Calvario, J., Marques, J.C., Melo, R., Santos, R. (1982) Contribuçao para o estudo dos povoamentos bentónicos (substrato móvel) da costa occidental portuguesa. Oecologia aquatica 6: 91-105.

Richardson, H. (1911) Les crustaces isopodes du Travailleur et du Talisman; formes nouvelles. Bulletin du Museum National Histoire Naturelle 17: 518-534.

Risso, A. (1816) Histoire naturelle des crustacés des environs de Nice: 1-175, Plates 1-3. Librairie GrecqueLatine-Allemande, Paris.

Risso, A. (1826). Histoire naturelle des principales productions de l'Europe Méridionale et particulièrement de celles des environs de Nice et des Alpes Maritimes. Paris: F.G. Levrault. Vol. 5: VIII, 1-403, 10 pls

Rocchini, D., Hortal, J., Lengyel, S., Lobo, J.M., Jimenez-Valverde, A., Ricotta, C.,Bacaro, G., Chiarucci, A. (2011) Accounting for uncertainty when mapping species distributions: the need for maps of ignorance. Progress in Physical Geography 35:211 –226.

Saldanha L. (2003) Fauna Submarina Atlântica: Portugal continental, Açores e Madeira. Europa- América (Ed.) pp.

Salgado, J.P., Cabral, H.N., Costa, M.J. (2004). Feeding ecology of the gobies Pomatoschistus minutus (Pallas, 1770) and Pomatoschistus microps (Krøyer, 1838) in the upper Tagus estuary, Portugal. Sciencia Marina 68: 425-434

Sars, M. (1858). Oversigt over de i den norsk-arctiske Region forekommende Krebsdyr.-- Christiana Videnskabs-Selskabs Forhandlinger 1858: 122-163.

Sars, G.O. (1864). Om en anomal Gruppe af Isopoder. Forhandlinger i Videnskaps-selskabet i Christiania 1863: 205-221.

Sars, G.O. (1866) (1868). II. Beretning om en i Sommeren 1865 foretagen zoologisk Reise ved Kysterne af Christianias og Christiansands Stifter. Nyt Magazin for Naturvidenskaberne 15: 84-128.

Sars, G.O. (1870). Nye Dybvandscrustaceer fra Lofoten. Forhandlinger i Videnskaps-selskabet I Christiania 1869: 205-221.

Sars, G.O. (1872). Undersøgelser over Hardangerfjordens fauna Forh. Videnskabsselsk. Kristiania 1871: 246-286

Sars, G.O. (1873). Bidrag til Kundskaben om Dyrelivet paa vore Havbanker Forh. Videnskabsselsk. Kristiania 1872: 73-119

48

Sars, G.O. (1883). Oversigt af Norges Crustaccer med forelubige Bemaerkninger over nye eller mindre bekjandte Arter. I. (Podophthalmata-Cumacea-Isopoda-Amphipoda). Forhandlinger i Videnskaps-selskabet i Christiania 18: 1-124.

Sars, G.O. (1897). On some additional Crustacea from the Caspian Sea. Annales du Musée Zoologique Academie Imperiale des Sciences, St. Petersburg 2: 273-305.

Schotte M., Kensley, B.F., Shilling, S. (1995). World list of marine, freshwater and terrestrial crustacea isopoda. National Museum of Natural History Smithsonian Institution: Washington D.C., USA. Http://www.nmnh.si.edu/iz/isopod/

Sheader, M. (1977) The breeding biology of Idotea pelagica (Isopoda: Valvifera) with notes on the ocurrence and biology of its parasite Clypeoniscus hanseni (Isopoda: Epicaridea). Journal of the Marine Biological Association of the United Kingdom 57: 659-674.

Shields, J.D., Gómez-Gutiérrez, J. (1996) Oculophryxus bicaulis, a new genus and species of dajid isopod parasitic on the euphausiid Stylocheiron affine Hansen, International Journal for Parasitology 26:261-268

Siebenaller, J., Hessler, R. (1981) The genera of the Nannoniscidae (Isopoda, Asellota). Transactions of the San Diego Society of Natural History 19: 227-250.

Sousa, R., Dias, S., Antunes, C. (2006). Spatial subtidal macrobenthic distribution in relation to abiotic conditions in the Lima estuary, NW of Portugal. Hydrobiologia 559:135-148.

Sousa, R., Dias, S., Freitas, V., Antunes, C. (2008). Subtidal macrozoobenthic assemblages along the River Minho estuarine gradient (north-west Iberian Peninsula). Aquatic Conservation - Marine and Freshwater Ecosystems 18: 1063-1077.

Sowerby, J. (1806) The British Miscellany: or coloured figures of new, rare, or little known subjects; many not before ascertained to be inhabitants of the British Isles; and chiefly in the possession of the author. London.

Stebbing, T. R. R. (1874) On a new species of Arcturus (A. danmoniensis). Annals and Magazine of Natural History (4) 13: 291-292.

Svavarsson, J. (1984) Ischnomesidae (Isopoda: Asellota) from bathyal and abyssal depths in the Norwegian and North Polar Seas. Sarsia 69: 25-36.

Tattersall W.M. (1909). Amphipoda and Isopoda, with descriptions of new species. Scientific and biological researches in the North Atlantic conducted by the author on his yachts "The Walwin" and "The Silver Belle" by R. Norris Wolfenden. Memoirs of the Challenger Society 1:210-219

Torchin, M.E., Lafferty, K.D., Kuris, A.M. (2001) Release from parasites as natural enemies: increased performance of a globally introduced marine crab. Biological Invasions 3: 333–345

Tucker, B.W. (1930) On the effects of an Epicaridan Parasite, Gyge branchialis, on Upogebia littoralis. Quart. Journ. Micr. Sci 74, N. S., PI

49

van der Land, J. (2001) European register of marine species: a check-list of the marine species in Europe and a bibliography of guides to their identification. Isopoda - excluding Epicaridea, in: Costello, M.J. et al. (Ed.) Collection Patrimoines Naturels, 50: pp. 315- 321.

Vanhoeffen, E. (1914) Die Isopoden der Deutschen Suedpolar- Expedition 1901-1903. Deutsche Südpolar-Expedition 1901-1903, 25. Zoologie 7: 447-598.

Wolff, T. (1962) The systematics and biology of bathyal and abyssal Isopoda Asellota. Galathea Report 6: 1-320.

WoRMS Editorial Board (2014). World Register of Marine Species. Available from http://www.marinespecies.org at VLIZ. Accessed 2014-06-10.

Xavier, R., Santos, A. M., Harris, D. J., Sezgin, M., Machado, M., Branco, M. (2012). Phylogenetic analysis of the north-east Atlantic and Mediterranean species of the genus Stenosoma (Isopoda, Valvifera, Idoteidae). Zoologica Scripta 41: 386-399.

50

Capítulo 3 Construção de uma biblioteca de referência de DNA barcodes para Isópodes marinhos (Crustacea: Isopoda) de Portugal e da Macaronésia

51

Capítulo 3

Construção de uma biblioteca de referência de DNA barcodes para isópodes marinhos (Crustacea: Isopoda) de Portugal e da Macaronésia

3.1 Introdução

Com a proposta e implementação do uso de um fragmento da extremidade 5´ do gene COI-5P, como DNA barcode, para a identificação de espécies animais (Hebert et al, 2003), surge a possibilidade de rever e melhorar a fiabilidade dos catálogos e inventários de espécies, nomeadamnete diminuindo a possibilidade de identificações incorretas através da comparação direta entre sequências obtidas em diferentes estudos, aumentado a capacidade de deteção de casos de sinonímia ou de ocorrência de espécies crípticas (Kekkonen e Hebert, 2014). A criação de uma biblioteca de referência de DNA barcodes robusta pode auxiliar estudos de monitorização ambiental, permitindo a agilização de processos laboriosos de triagem e identificação com recurso a metodologias de meta-barcoding envolvendo sequenciação de segunda geração (Costa e Antunes, 2012; Yu et al., 2012). O estado corrente das bibliotecas de referência de DNA barcodes para invertebrados marinhos, em especial para a ordem Isopoda é muito incipiente consistindo apenas num número comparativamente reduzido de sequências obtidas no âmbito de estudos de grupos alargados de invertebrados marinhos (e.g. Costa et al., 2007; Radulovici et al., 2009) ou derivadas de estudos populacionais focados num taxon de Isopoda em particular (e.g. Markow e Pfeiler, 2010; Varela e Haye, 2012; Xavier et al., 2012). O estado incipiente destas bibliotecas, combinado com incapacidade de verificação da fiabilidade das identificações das sequências publicadas em bases de dados públicas (e.g. GenBank), exige o uso de bases de dados dedicadas para a construção destas bibliotecas de referência, nomeadamente a base “Barcode of Life Datasystems” (BOLD) (Ratnasingham e Hebert, 2007). O uso da base de dados BOLD, que integra dados relativos à identificação dos espécimes, coordenadas GPS, sequências de COI-5P e os respetivos cromatogramas, em conjunto com métodos de classificação da fiabilidade das bibliotecas de referência (Costa et al., 2012) torna

52

possível um aumento da credibilidade das identificações taxonómicas. A tendência crescente de acumulação de sequências de COI em bases de dados públicas (e.g. GenBank) evidenciou a ocorrência de possíveis pseudogenes mitocondriais (NUMT´s) ou COI like sequences (Buhay, 2009) não existindo habitualmente a possibilidade de verificação da origem mitocondrial ou nuclear das sequências obtidas. A possibilidade de depositar cromatogramas na base de dados BOLD, permitindo a verificação da sua qualidade pode assim auxiliar na deteção de possíveis pseudogenes, diminuindo os impactos nas análises de sequências. No âmbito deste trabalho foram analisados espécimes da ordem Isopoda amostrados no Atlântico Nordeste e obtidos DNA barcodes para 26 espécies presentes em Portugal e na Macaronésia, iniciando a construção de uma biblioteca de referência de DNA barcodes, com vista à sua utilização em biomonitorização e conservação de comunidades marinhas em Portugal,

3.2 Metodologia

3.2.1 Material de estudo

O material de estudo foi constituído por amostras de 250 espécimes de isópodes pertencentes às famílias Anthuridae, Arcturidae, Cirolanidae, Idoteidae e Sphaeromatidae provenientes dos projetos LusoMarBoL, BEstBarcode e DiverseShores. Os espécimes foram recolhidos em vários pontos do Atlântico nordeste, maioritariamente ao longo da costa de Portugal e da Macaronésia (Fig.1.1) e preservados em etanol (96%-99%).

Figura 1.1 Locais de amostragem dos espécimes de isópodes usados para a construção da biblioteca de referência

53

3.2.2 Inventariação e processamento das amostras

Os espécimes amostrados foram identificados com recurso à literatura listada na Tabela 2.1, e catalogados na base de dados BOLD (Ratnasingham e Hebert, 2007) com informações referentes à classificação taxonómica, imagens, dados de colheita, cromatogramas, sequências de DNA e primers utilizados na amplificação e sequenciação. A identificação taxonomica de todos os espécimes foi revista antes e após a obtenção das sequências de DNA. O uso de nomenclatura aberta foi feito segundo as recomendações de Bengtson (1988).

Tabela 2.1- Literatura usada na identificação dos espécimes da ordem Isopoda analisados.

Grupo Taxonómico Manual usado para identificação Anthuridae Naylor, 1972 Cirolanidae Naylor, 1972 Janiridae Naylor, 1972 Sphaeromatidea Naylor, 1972; Hayward e Ryland, 1996; Nolting et al., 1998; Schuller e Wagele, 2005; Jacobs, 1987; Bruce e Holdich, 2002

Valvifera Naylor, 1972; Naylor 1955

3.2.3 Extração, amplificação e sequenciação de DNA

A extração de DNA foi realizada através do kit E.Z.N.A. (Omega Bio-tek), segundo o protocolo sugerido pelo fabricante utilizando todo ou metade do espécime, dependendo do tamanho, seguida de amplificação por PCR dos fragmentos COI-5P usando alternadamente 1 dos 3 conjuntos de primers LOBO F1/LOBO R1, LCO1490/HCO2198 e CrustDF1/CrustDR1 (Tab. 2.2 e 2.3) até à obtenção de amplificação com sucesso. As reações de PCR foram realizadas num volume total de 25 µl contendo 2,5 µl de tampão (10x), 2,5 µl de cloreto de magnésio (25 mM), 0,5 a 1 µl de dNTP´s (10 mM), 0,5 a 1,5 µl de cada primer forward e reverse (10 mM), 0,2 de Taq (Thermo Scientific™), 4 a 12 µl de extrato de DNA, dependendo da sua concentração e água ultrapura para perfazer o volume. O sucesso da amplificação foi verificado por meio de electroforese a 90V em gel de agarose a 1%. Os produtos de PCR obtidos foram purificados com adição de 0,5 µl de exonuclease (New England Biolabs) e 1 µl de fosfatase alcalina (SAP, Promega), submetidos a temperaturas de 37°C por 15 minutos e 85°C

54

por 15 minutos, e sequenciados bidireccionalmente num fornecedor externo de serviços (STABVida).

Tabela 2.2- Lista de primers utilizados para amplificação dos fragmentos de COI-5P e de 18s rRNA.

Primer Sequência (5´- 3´) Referência CrustDF1 (Forward) GGTCWACAAAYCATAAAGAYATTGG Steinke (2007, CrustDR1 (Reverse) TAAACYTCAGGRTGACCRAARAAYCA unpublished) LCO1490 (Forward) GGTCAACAAATCATAAAGATATTGG Folmer et al, 2004 HCO2198 (Reverse) TAAACTTCAGGGTGACCAAAAAATCA LoboF1 (Forward) KBTCHACAAAYCAYAARGAYATHGG Lobo et al., 2013 LoboR1 (Reverse) TAAACYTCWGGRTGWCCRAARAAYCA 18sAi (Forward) CCTGAGAAACGGCTACCACATC Whiting et al., 2002 18sBi (Reverse) GAGTCTCGTTCGTTATCGGA

Tabela 2.3- Ciclos de temperatura utilizados nas reações de amplificação dos fragmentos de COI-5P e de 18s rRNA, em função do primer utilizado.

Ciclo de PCR utilizado Primer 1-Desnaturação a 94°C (60s) CrustDF1/ 2- (5 Ciclos)- Desnaturação a 94°C (30s), hibridização a 45°C (90s) CrustDR1 e extensão a 72°C (60s) E 3- (35 Ciclos) Desnaturação a 94°C (30s), hibridização a 51°C (90s) HCO2198/ e extensão a 72°C (60s) LCO1490 4-Extensão final a 72°C (5min.) 1-Desnaturação a 94°C (60s) 2- (5 Ciclos) Desnaturação a 94°C (45s), hibridização a 56°C (45s) e extensão a 72°C (60s) LoboF1/ 3- (45 Ciclos) Desnaturação a 94°C (30s), hibridização a 54°C (90s) LoboR1 e extensão a 72°C (60s) 4-Extensão final a 72°C (5min.) 1-Desnaturação a 94°C (180s) 2- (35 Ciclos) Desnaturação a 94°C (30s), hibridização a 45°C (90s) 18sA i/18sBi e extensão a 72°C (60s) 4-Extensão final a 72°C (5min.)

55

3.2.4 Tratamento e análise de dados

Edição e alinhamento de sequências, e construção de árvores filogenéticas

Todas as sequências obtidas foram editadas com recurso ao software MEGA5 (Tamura et al., 2011), consistindo na verificação dos cromatogramas, remoção de zonas ilegíveis e primers correspondentes, e correção de bases ambíguas (N). As sequências editadas foram alinhadas com recurso ao método Clustal W (Thompson et al., 1994) implementado no software MEGA5, seguido de uma inspeção cuidadosa do alinhamento obtido para detetar a eventual ocorrência de inserções e deleções, e após tradução foi verificada a presença de codões stop, desvios na grelha de leitura ou padrões aminoacídicos anormais, seguindo as recomendações de Song et al., (2008) para despistar de ocorrência de pseudogenes. O conjunto de resultados foi submetido a uma busca de sequências homólogas na base de dados GenBank (Benson et al., 2005), através da ferramenta BLAST (Altschul et al., 1990), e na base de dados BOLD (Ratnasingham e Hebert, 2013). A escolha do melhor modelo de substituição para o conjunto de dados foi efetuada através do software JModelTest (Darriba et al., 2012; Guindon e Gascuel, 2003) com um esquema de três substituições. A análise filogenética foi efetuada através dos métodos Maximum Likelihood (ML) (Aldrich, 1997) e Inferência Bayesiana (IF) (Yang e Rannala, 1997) com o modelo de substituição General Time Reversible (GTR) +G+I (Tavaré, 1986), sugerido na análise para escolha de modelos, e com o método Neighbour-Joining (NJ) (Saitou e Nei, 1987), utilizando o modelo de substituição nucleotídica Kimura 2 parameter (K2P) (Kimura, 1980), como um dos métodos mais utilizados em estudos desta natureza. As análises ML e NJ foram efetuadas através do software MEGA5 e a análise de inferência bayesiana efetuada com o software MrBayes (Huelsenbeck e Ronquist, 2001). As árvores ML e NJ foram submetidas a 500 e 10000 bootstraps (Felsenstein, 1985), respetivamente, para determinar o grau de suporte dos nós dos ramos. A construção de árvores por inferência bayesiana foi efetuada após análise de 720000 gerações, com uma frequência de amostragem de 500 gerações através de 4 cadeias com uma temperatura de 0,1 e com um descarte de 25% da análise inicial. Todos os priors foram mantidos em default. A construção da visualização da árvore foi efetuada com o software FigTree. A construção das árvores filogenéticas foi ainda efetuado sem adição de outgroups externos de modo a evitar fenómenos de long-branch attraction (Bergsten, 2005), resultados da aproximação de ramos longos e distintos por artefactos metodológicos.

56

Delimitação de MOTUs

De modo a delinear espécies putativas, cada cluster monofilético com divergência interna inferior a 3% foi designado uma unidade taxonómica molecular operacional (MOTU) (Blaxter et al,, 2005), deste modo expondo possíveis espécies crípticas e diminuindo os impactos de sinonímia (Kekkonen e Hebert, 2014). Este valor foi escolhido como aproximação aos limites intraespecíficos com base em dados publicados para crustáceos (Costa et al., 2007; Lefébure et al., 2006; Radulovici et al., 2009). O valor de 3% tem um carácter unicamente indicativo, não devendo ser considerado como um limite taxativo na delimitação de espécies. O cálculo das distâncias inter e intraespecíficas foram efetuadas com o software MEGA5, através do modelo de substituição nucleotídica K2P.

Classificação dos DNA barcodes da biblioteca de referência

De modo a atribuir um grau de fiabilidade das identificações dos espécimes analisados foi usado o sistema de classificação proposto em Costa et al., 2012 (Tab. 2.4), com o uso das sequências compiladas em bases de dados públicas. Dada a impossibilidade de verificar as identificações das sequências compiladas, MOTU´s que compreendam exclusivamente estas sequências não foram incluídos nas análises de classificação bem como no cálculo de distâncias intraspecíficas.

Tabela 2.4- Sistema de classificação dos DNA barcodes da biblioteca de referência baseado em Costa et al., (2012)

Grau de fiabilidade Descrição taxonómica Concordância externa - as sequências formam um grupo monofilético com Nível A divergência interna ≤ 3% em conjunto com sequências da mesma espécie compiladas de bases de dados públicas Concordância interna- as sequências formam um grupo monofilético com Nível B divergência interna ≤ 3% em conjunto com as da mesma espécie da biblioteca de referência Concordância sub-óptima- as sequências formam um grupo monofilético com divergência interna superior 3% em conjunto com sequências da mesma Nível C espécie, quer sejam de bases de dados públicas quer da biblioteca de referência Nível D Dados insuficientes- número de espécimes analisados insuficiente (<3) Nível E DNA barcodes discordantes- cluster formado por diferentes espécies

57

Teste de saturação de substituição nucleotídica e reconstrução de filogenias profundas

Para determinar a fiabilidade do sinal nucleotídico na reconstrução de filogenias profundas, devido à grande variabilidade e redundância associadas à terceira posição de cada codão, foram realizados testes de saturação de substituição nucleotídica (Xia e Lemey, 2009) com o software DAMBE (Xia et al., 2000), através do teste Xia et al. (2003), para todas as posições do codão e para a primeira e segunda posição em conjunto. Estes valores de saturação são calculados através das frequências de nucleótidos em cada posição. De modo a ultrapassar a limitação do software na análise de um máximo de 32 MOTU´s foram usados nos cálculos de saturação 10000 subsets para maximizar o número de combinações. De modo a diluir o efeito de zonas extremamente divergentes, o conjunto de dados foi submetido a uma redução do alinhamento para apenas uma zona central do alinhamento relativamente conservada com 265 pares de bases com o sotware Gblocks (Castresana, 2000). Para a reconstrução de filogenias profundas foram feitas as seguintes árvores: NJ apenas com a primeira e segunda posição do codão com o modelo de substituição nucleotídico K2P e 10000 bootstraps; e NJ com o modelo de substituição aminoacídica Jones Taylor Thornton (JTT) (Jones et al., 1992) e 1000 bootstraps para todo o alinhamento e para o alinhamento conservado obtido por Gblocks; ML com a primeira e segunda posição do codão com o modelo GTR+G+I e 500 bootstraps (Tab. 2.5). O modelo de substituição aminoacídica JTT sendo o modelo mais actualizado entre os disponíveis no programa MEGA5.0.

Tabela 2.5- Diferentes métodos e parâmetros utilizados para a análise de filogenias profundas, com base nas sequências de COI-5P de 165 espécimes

Método de Tipo de Modelo de Nº de Posição do Outros reconstrução sequência substituição bootstraps codão utilizada parâmetros Neighbour- Joining Amino-acídica JTT 1000 Neighbour- Redução com Joining Amino-acídica JTT 1000 GBlocks Neighbour- Joining Nucleotídica K2P 10000 1+2 Maximum- Likelihood Nucleotídica GTR+G+I 500 1+2

58

3.3 Resultados

3.3.1 Construção e classificação da biblioteca de referência

Dos 250 espécimes analisados, foram obtidas 105 sequências de COI-5P, e usadas na construção de cladogramas (Fig. 1.2; Fig 2.1, 2.2 e 2.3 em Anexo) conjuntamente com 60 sequências compiladas das bases de dados GenBank e BOLD, distribuindo-se por um total 30 espécies (Tab. 3.2 e 3.3 em Anexo). Nas sequências Idotea emarginata AF241933, Idotea baltica AF241916 e AF241889, Idotea metallica AF241928 e Idotea granulosa AF241935 (Wares e Cunningham, 2001), recolhidas do GenBank detectou-se uma zona na extremidade 5’ (posição 34 a 44 do nosso alinhamento) contendo uma sequência amino-acídica (com cerca de 8-9 aminoácidos) anormalmente diferenciada das restantes, apesar de se encontrar numa zona extremamente conservada, presente em todos os isópodes deste estudo. Por se tratar de um conjunto de sequências de um mesmo estudo suspeita-se de alguma incorrecção comum, pelo que se decidiu remover a zona inicial destas sequências. Após classificar as sequências obtidas (Tab. 2.6) verifica-se uma falta de dados de COI-5P com uma grande incidência de espécies sem DNA barcode de referência. Das 105 sequências obtidas para 26 espécies analisadas foram encontrados 32 MOTU´s, apresentando uma divergência intraespecífica entre 0 e 2,8% e uma divergência interespecífica média de 29% com um valor mínimo de 12% e com um valor máximo de 59%. Os maiores valores de distâncias interespecíficas são obtidos em espécimes da família Anthuridae, sendo o grupo mais divergente entre todos os espécimes analisados. Os valores de distância congenéricos envolvendo sequências geradas e compiladas para 7 géneros representados por 35 espécies, incluindo linhagens divergentes, variam entre os 5% e os 29% (Tab. 2.7).

59

99 Idotea granulosa (Atlântico Norte) MOTU 1 (25 espécimes) 99 99 Idotea pelagica (Atlântico Norte) MOTU 2 (15 espécimes) 99 Stenosoma lancifer (Portugal Oeste) MOTU 3 (4 espécimes) 99 Idotea resecata Stenosoma raquelae JQ425510 99 Stenosoma capito Stenosoma mediterraneum JQ425502

99 Stenosoma appendiculatum JQ425494 Stenosoma spinosum JQ425508 Stenosoma acuminatum FJ905099 Stenosoma nadejda JQ425506 Idotea emarginata AF241933 Idotea metallica AF241928 99 Idotea chelipes (Portugal Oeste + Mediterrânico) MOTU 4 + 5 (5 espécimes) 99 98 Idotea neglecta (Açores) MOTU 6 (6 espécimes) 99 Idotea balthica (Atlântico Norte) MOTU 7 (8 espécimes) Cilicaea sp. EF989646 99 Ischyromene lacazei (Portugal Oeste + Galiza) MOTU 8 (8 espécimes) Paridotea ungulata AF255783 Idotea linearis JQ425515 Astacilla danmonensis SFCM6-005 (Portugal Norte) MOTU 9 (1 espécime) Saduria entomon DQ889111 Synidotea sp. GQ302700 82 Cleantis prismatica (Portugal Norte + Galiza) MOTU 10 + 11 (2 espécimes) 99 Cymodoce fuscina Cymodoce sp. BUA21-001 (Portugal Oeste) MOTU 12 (1 espécime) 99 Cymodoce sp. (Portugal Oeste) MOTU 13 (2 espécimes) 99 98 Cymodoce waegelei 99 Cymodoce tribulis 99 Campecopea lusitanica (Madeira) MOTU 14 (2 espécimes) 99 Campecopea lusitanica (Portugal Oeste + Galiza) MOTU 15 (4 espécimes) 99 93 Dynamene edwardsi (Madeira + La Palma) MOTU 16 (10 espécimes) 99 97 Dynamene edwardsi (Gran Canária) MOTU 17 (7 espécimes) Dynamene edwardsi NGIM35-002 (Portugal Oeste) MOTU 18 (1 espécime) 99 Dynamene magnitorata (Portugal Oeste + Sul) MOTU 19 (14 espécimes) 80 99 Dynamene bidentata (Portugal Oeste + Escócia) MOTU 20 (20 espécimes)

99 Campecopea hirsuta (Portugal Sul + Galiza) MOTU 21 (5 espécimes) Exosphaeroma DQ889151 Sphaeroma quadridentatum AF255785 99 Sphaeroma serratum (Portugal Norte) MOTU 22 + 23 (2 espécimes) 86 99 Sphaeromatidae sp. (Portugal Norte) MOTU 24 (3 espécimes) 99 86 Lekanesphaera terceirae (Açores) MOTU 25 (2 espécimes) 99 Lekanesphaera hookeri (Portugal Norte) MOTU 26 (5 espécimes)

97 Cirolana cranchii LMBP4-002 Cymodoce emarginata SFP19-001 (Madeira) MOTU 27 (1 espécime)

99 Eurydice pulchra GU130253 99 Eurydice spinigera (Portugal Norte) MOTU 28 (2 espécimes) 99 Ianiropsis epilittoralis Joeropsis dubia AF260837 Edotia triloba FJ581624

85 Eurydice sp. RBGC066-03 Cirolana rugicauda AF255788 99 Cirolana harfordi 99 Jaera albifrons (Portugal Norte + Canadá) MOTU 29 (5 espécimes) Janira maculosa GU130255 Cirolana rugicauda AF260840 99 97 Anthuridae sp. (Madeira + Canárias) MOTU 30 (2 espécimes) 87 Anthura gracilis SFC3-001 (Portugal Norte) MOTU 31 (1 espécime)

87 Apanthura sp. AF255789 Haliophasma geminata CMBIA412-11

95 Cyathura sp AF520451 99 Cyathura carinata (Portugal Norte) MOTU 32 (9 espécimes)

0.05

Figura 1.2- Árvore NJ compactada obtida pela análise de 165 sequências de COI-5P de isópodes marinhos com recurso ao modelo K2P. Junto a cada nó é apresentado o repespectivo grau de suporte obtido por análise bootstrap a partir de 10000 réplicas.

60

Tabela 2.6- Classificação dos MOTU´s obtidos baseada em Costa et al., 2012 e respetiva distância interna e desvio padrão, calculados com o modelo K2P.

Espécie Classificação Divergência interna (K2P) ± d.p. Anthuridae não identificado D 0,006 ± 0,003 Anthura gracilis D Sequência única Astacilla danmonensis D Sequência única Campecopea hirsuta B 0,0005 ± 0,0004 Campecopea lusitanica C 0,12 ± 0,01 Cleantis prismatica D 0,13 ± 0,017 Cyathura carinata B 0,01 ± 0,003 Cymodoce emarginata D Sequência única Cymodoce sp. D Sequência única Cymodoce sp. D 0 ± 0 Dynamene bidentata B 0,002 ± 0,0007 Dynamene magnitorata B 0,01 ± 0,002 Dynamene edwardsi C 0,104 ± 0,008 Eurydice spinigera D 0,003 ± 0,002 Idotea balthica A 0,025 ± 0,004 Idotea chelipes C 0,068 ± 0,008 Idotea granulosa A 0,005 ± 0,001 Idotea neglecta B 0,009 ± 0,002 Idotea pelagica A 0,005 ± 0,001 Ischyromene lacazei B 0,009 ± 0,002 Jaera albifrons A 0,012 ± 0,003 Lekanesphaera terceirae D 0,024 ± 0,007 Lekanesphaera hookeri A 0,028 ± 0,005 Sphaeroma serratum D 0,058 ± 0,009 Sphaeromatidae sp. B 0,001 ± 0,001 Stenosoma lancifer A 0,002 ± 0,001

Tabela 2.7- Distâncias nucleotídicas congenéricas para 7 géneros de isópodes, determinadas a partir de sequências de COI-5P e calculadas com o modelo de sustituição K2P

Género Taxa Distância congenérica mínima (K2P) Distância congenérica máxima (K2P) Campecopea 3 22% 29% Cymodoce 6 12% 26% Dynamene 5 16% 27% Eurydice 2 12% 12% Idotea 9 12% 27% Lekanesphaera 2 18% 18% Stenosoma 8 5% 20%

61

3.3.2 Linhagens divergentes de Dynamene edwardsi

Os espécimes identificados como Dynamene edwardsi, com identificação confirmada pelo Doutor David Holdich, especialista taxonómico neste género, apresentam três linhagens distintas: uma linhagem para o sul de Portugal, uma para Gran Canária e uma linhagem partilhada para a Madeira e La Palma (Fig. 3), aqui considerada apenas uma MOTU pelo facto de a distância entre espécimes dos dois locais não ultrapassar 3%. As linhagens de Portugal e o grupo Madeira\La Palma distanciam-se em média 21%, as linhagens de Portugal e Gran Canária 22%, e entre Gran Canária e o grupo Madeira\La Palma distanciam-se 16%. A divergência entre as duas grandes linhagens presentes nos arquipélagos é confirmada com o marcador molecular 18s rRNA (Fig.4), com 0,3% de divergência entre as linhagens de Gran Canária e de Madeira\La Palma, e sem partilha de haplótipos entre grupos.

Figura 1.3- Árvore NJ obtida pela análise de sequências de COI-5P da espécie Dynamene edwardsi com recurso ao modelo K2P. Junto a cada nó é apresentado o repespectivo grau de suporte obtido por análise bootstrap a partir de 10000 réplicas.

62

Figura 1.4- Árvore NJ obtida pela análise de sequências de 18s rRNA da espécie Dynamene edwardsi, separando a linhagem de Gran Canária (CAL7-001, TAL8-001)) do grupo Madeira\La Palma (restantes sequências de D. edwardsi). A análise foi efetuada com recurso ao modelo K2P. Junto a cada nó é apresentado o respectivo grau de suporte obtido por análise bootstrap a partir de 10000 réplicas.

3.3.3 Saturação de substituição nucleotídica

Quando testada a saturação para todas as posições do codão, a saturação obtida é superior à saturação esperada para uma topologia assimétrica (Tab. 2.8). Quando a terceira posição do codão é retirada para o cálculo da saturação verifica-se um aumento de posições invariáveis bem como uma diminuição significativa da saturação obtida para topologias assimétricas (Tab.2.8). Devido ao desconhecimento da verdadeira topologia de uma árvore filogenética, é seguro assumir que o modelo mais adequado para reconstruir filogenias profundas com sequências de COI-5P, deverá usar apenas a primeira e segunda posição do codão, permitindo assim o uso de modelos de substituição nucleotídica para reconstrução filogenética.

Tabela 2.8- Resultados do teste de saturação de substituição nucleotídica (Iss- Saturação esperada; Issc- Saturação obtida para topologias simétricas- Sym e assimétricas- Asym; P- Valor de probabilidade)

Posições do codão usadas Iss Iss.cSym P Iss.cAsym P 1+2+3 0,323 0,682 0 0,355 0,4316 1+2 0,13 0,7 0 0,395 0

63

3.3.4 Reconstrução filogenética

Com o uso de vários métodos de reconstrução e modelos de substituição, o agrupamento entre os vários organismos mantem-se semelhante (Fig. 1.5), embora certos clusters variem a sua posição nas várias análises, nomeadamente as espécies Idotea chelipes, Ischyromene lacazei, Campecopea lusitanica, Campecopea hirsuta, Eurydice spinigera e o espécime Saduria entomon DQ889111 (Costa et al., 2007), compilado da base de dados GenBank. De entre todas as sub-ordens analisadas, apenas espécimes pertencentes à sub- ordem Anthuridea apresentam uma relação monofilética.

Figura 1.5- Árvores radiadas contendo as sub-ordens Sphaeromatidea (verde), Valvifera (vermelho), Asellota (amarelo), Anthuridea (azul) e Flabillifera (roxo). A- NJ com modelo JTT; B- NJ após redução com Gblocks e com modelo JTT; C- NJ com 1ª e 2ª posição do codão e modelo K2P; D- ML com a 1ª e 2ª posição do codâo e com o modelo GTR+G+I

64

3.4 Discussão

3.4.1 Construção da biblioteca de referência

Em todas os tipos de árvores analisadas é formado um igual número de MOTU´s, 32 para 26 espécies, sem ocorrência de polifilias, embora existam casos formação clades separados para a mesma espécie como nos casos de Dynamene edwardsi e Campecopea lusitanica. A distância interespecífica mínima de 12% é bastante superior à distância intraespecífica máxima de 2,8% denotando-se a existência de um barcoding gap para a maioria das espécies identificadas. As maiores distâncias interespecíficas são apresentadas por espécimes pertencentes à família Anthuridae, sendo um grupo extremamente divergente em termos nucleotídicos e morfológicos em relação às restantes famílias da sub-ordem Isopoda. É de notar o estado incipiente das bases de dados de sequências de COI para espécimes da ordem Isopoda no Atlântico Nordeste, tendo sido obtidas pela primeira vez 15 sequências de espécies relativamente comuns em vários pontos das costas Europeias. Dos 250 espécimes analisados foram obtidas 105 sequências para 26 espécies, tendo falhado a amplificação de 1 espécime de Stenosoma acuminatum e vários espécimes de Lekanesphaera e Cymodoce apenas identificados até ao género. Relativamente as sequências compiladas no GenBank também é possível verificar a capacidade de discriminação para a maioria das espécies de isópodes compiladas, contudo o número de sequências únicas é bastante elevado

3.4.2 Classificação da biblioteca de referência

Na construção da biblioteca de referência notou-se uma maior incidência de espécimes classificados com o nível B, não havendo sequências publicadas para a maioria das espécies analisadas, sendo as únicas identificações taxonómicas classificadas com o nível A, pertencentes às espécies Stenosoma lancifer, Jaera albifrons e Idotea balthica Como característico dos peracarídeos, os isópodes carecem de fase larvar e, em consequência apresentam populações potencialmente mais isoladas e com menor fluxo genético entre si. No entanto, existem casos como a espécie Idotea balthica com espécimes amostrados nos lados Europeu e Norte- americano do Atlântico que apresentam divergências dentro dos limites habituais. Embora a espécie Idotea balthica seja uma espécie capaz de apresentar comportamentos migratórios de grandes distâncias por rafting, o mesmo não acontece com a espécie Jaera albifrons que

65

também apresenta uma divergência dentro dos limites para espécimes de Portugal e do Canadá. O espécime marcado na árvore como Cyathura sp. AF520440 (Haye et al., 2004) foi considerado como um possível erro na submissão da sequência ao GenBank ou um erro de identificação, uma vez que esta sequência não agrupou com a família Anthuridae que forma um grupo monofilético extremamente divergente, tendo sido usado nos cálculos de divergência interna para o MOTU de Jaera albifrons. Os espécimes identificados como Idotea chelipes, classificados com o nível C, apresentam uma distância interna de 7%, existindo a possibilidade de os dados recolhidos para esta espécie poderem incluir as três sub-espécies descritas, Idotea chelipes chelipes para águas Atlânticas, Idotea chelipes mediterranea e Idotea chelipes bocqueti para águas Mediterrânicas, que segundo Charfi-Cheikhrouha et al. (1998) apresentam um padrão de divergência semelhante na análise de aloenzimas. No entanto foi confirmado nesse mesmo estudo que estes espécimes de diferentes sub-espécies apresentam descendências viáveis após realização de cruzamentos. Os espécimes Cymodoce PEN5-002, PEN19-001 e BUA21-1 não foram identificados até à espécie, uma vez que ainda se apresentavam num estado juvenil.

3.4.3 Possíveis complexos de linhagens crípticas

Quanto aos espécimes identificados como Cleantis prismática, embora estes apresentem uma divergência interna de 13% podendo indicar a presença de duas linhagens distintas, o baixo número de amostras não permite realizar inferências mais conclusivas, sendo uma das sequências obtida no GenBank e recolhida na Corunha (Xavier et al, 2012) e outra amostrada em Viana do Castelo. O mesmo acontece com o espécime identificado como Sphaeroma serratum apresentando uma divergência interna de 6% entre um espécime amostrado em Viana do Castelo e uma sequência compilada no GenBank sem referência a local de recolha. Nos casos dos espécimes identificados como Campecopea lusitanica observou-se uma divergência de 22% entre espécimes recolhidos em águas continentais (Portugal e Galiza) e espécimes recolhidos em Porto Santo (Madeira), indicando a existência possível de duas linhagens distintas. Morfologicamente estes espécimes parecem coincidir com os morfotipos A e B descritos em Bruce e Holdich (2002), com o morfotipo A aproximando-se dos espécimes recolhidos no continente e o morfotipo B dos espécimes de Porto Santo. Os valores de divergência encontrados para as três linhagens de Dynamene edwardsi são semelhantes a

66

valores de outras linhagens crípticas encontrados nas espécies Ligia occidentalis com uma gama de divergência entre as 15 linhagens encontradas de 13,2% a 26,7% (Markow e Pfeiler, 2010) e Excirolana brasiliensis com 3 linhagens de divergência entre os 14% e 19% (Varela e Haye, 2012). Com a análise das sequências de 18s rRNA existem apenas 3 nucleótidos de diferença entre as linhagens de Gran Canária e do grupo Madeira/ La Palma, não havendo contudo qualquer distinção entre sequências de espécimes de La Palma e Madeira, neste último caso em contraste com se observou com COI-5P, apesar de a distância não ser pronunciada (<3%).

3.4.4 Reconstrução filogenética

Com o uso do marcador genético COI-5P desenhado especificamente para diferenciação entre espécies, a falta de resolução para filogenias profundas torna-se evidente na visualização das árvores construídas. Contudo com o uso de diferentes métodos na reconstrução é possível obter um sinal filogenético fiável (Fig. 1.5). É de notar que embora em nenhuma das análises as sub-ordens analisadas apresentem monofilia, à exceção da sub-ordem Anthuridea (Fig. 1.5), a grande maioria dos espécimes agrupam na respetiva sub-ordem. Existem também ramos problemáticos que variam a sua posição dependendo do tipo de análise utilizada, nomeadamente as espécies Idotea chelipes, Ischyromene lacazei, Campecopea lusitanica, Campecopea hirsuta e Eurydice spinigera, podendo agrupar em certos modelos na respetiva sub-ordem. Embora o conjunto de dados não seja suficientemente representativo para uma análise robusta é evidente uma possível relação entre as sub-ordens Valvifera e Sphaeromatidea (Fig. 4) indo ao encontro com outros dados publicados em filogenia de isópodes (Brandt e Poore, 2003) incluindo dados com o marcador molecular 18s rRNA (Wetzer et al, 2013). Com o aumento do número de sequências de COI-5P disponíveis e com um uso direcionado de diferentes ferramentas, modelos, e métodos de construção de árvores filogenéticas, a quantidade e qualidade de informação que é possível obter pode aumentar consideravelmente.

Referências

Aldrich, J. (1997) R. A. Fisher and the making of maximum likelihood 1912-1922. Statistical Science 12: 162–176.

Almada, F., Almada, V.C., Guillemaud, T., Wirtz, P. (2005) Phylogenetic relationships of the north-eastern Atlantic and Mediterranean blenniids. Biological Journal of the Linnean Society 86: 283-295.

67

Altschul, S.F., Gish, W., Miller, W., Meyers, E.W., Lipman, D.J. (1990). Basic local alignment search tool. Journal of Molecular Biology 215: 403-410.

Bengtson, P. (1988). Open nomenclature. Palaeontology 31: 223–227.

Benson, D.A., Karsch-Mizrachi, I., Lipman, D.J., Ostell, J., Wheeler, D.L. (2005). Genbank. Nucleic Acids Research 33: 34-38.

Bergston, J. (2005) A review of long-branch attraction. Cladistics 21: 163-193.

Best, R.J., Stachowicz, J.J. (2013) Phylogeny as a proxy for ecology in seagrass amphipods: which traits are most conserved? Plos One 8: e57550.

Blanc, P.L. (2002). The opening of the Plio-Quaternary Gibraltar Strait: assessing the size of a cataclysm. Geodinamica Acta 15: 303–317.

Blaxter, M., Mann, J., Chapman, T., Thomas, F., Whitton, C., Floyd, R., Abebe, E. (2005). Defining operational taxonomic units using DNA barcode data. Philosophical Transactions of the Royal Society London B Biological Sciences 1462:1935-1943.

Brandt, A., Poore, G.C.B. (2003) Higher classification of the flabelliferan and related Isopoda based on a reappraisal of relationships. Invertebrate Systematics 17: 893–923.

Browne, W.E., Haddock, S.H.D., Martindale, M.Q. (2007). Phylogenetic analysis of lineage relationships among hyperiid amphipods as revealed by examination of the mitochondrial gene, cytochrome oxidase I (COI). Integrative and Comparative Biology 47: 815-830.

Bruce, N.L., Holdich, D.M. (2002) Revision of the isopod crustacean genus Campecopea Flabellifera: Sphaeromatidae) with discussion of the phylogenetic significance of dorsal processes. Journal of the Marine Biological Association of the UK 82:51-68.

Buhay, J.E. (2009) ‘‘COI-like’’ sequences are becoming problematic in molecular systematic and DNA barcoding studies. Journal of Crustacean Biology 29: 96-110

Castresana, J. (2000). Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis.Molecular Biology and Evolution 17: 540-552.

Charfi-Cheikhrouha, F., Laulier, M., Hamelin, E., Mocquard, J.P. (1998) Genetic differentiation and evolutionary process of speciation in the Idotea chelipes complex (Crustacea, Isopoda). Genetics Selection Evolution 30: 289-303.

Costa, F.O., Antunes, P.M. (2012) The contribution of the Barcode of Life initiative to the discovery and monitoring of Biodiversity. In: Natural Resources, Sustainability and Humanity - A Comprehensive View. Mendonca A, Cunha A, Chakrabarti R (eds) Springer Science+Business Media, Dordrecht, pp 37-68.

Costa, F. O., deWaard, J. R., Boutillier, J., Ratnasingham, S., Dooh, R. T., Hajibabaei, M., Hebert, P. D. N. (2007) Biological identifications through DNA barcodes: the case of Crustacea. Canadian Journal of Fisheries and Aquatic Sciences 64: 272-295.

68

Costa, F.O., Landi, M., Martins, R., Costa, M.H., Costa, M.E., Carneiro, M., Alves, M.J., Steinke, D., Carvalho, G.R. (2012) A Ranking System for Reference Libraries of DNA Barcodes: Application to Marine Fish Species from Portugal. PLoS ONE 7: e35858.

Darriba, D., Taboada, G.L., Doallo, R., Posada, D. (2012) jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9: 772.

Domingues, V.S., Bucciarelli, G., Almada, V.C., Bernardi, G. (2005) Historical colonization and demography of the Mediterranean damselfish, Chromis chromis. Molecular Ecology 14: 4051-4063.

Dreyer, H., Waegele, J.W. (2002) The Scutocoxifera tax. nov. and the information content of nuclear ssu rRNA sequences for reconstruction of isopod phylogeny (Peracarida: Isopoda). Journal of Crustacean Biology 22: 217-234.

Felsenstein, J. (1985) Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39:783-791.

Fernández-Palacios, J.M, Nascimento, L., Otto, R., Delgado, J.D., Garcia-del-Rey, E., Arévalo, J.R., Whittaker, R.J. (2011) A reconstruction of Palaeo-Macaronesia, with particular reference to the long-term biogeography of the Atlantic island laurel forests. Journal of Biogeography 38: 226-246.

Folmer. O., Black. M., Hoeh. W., Lutz. R., Vrijenhoek. R. (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3:294-299.

Gautier, F., Clauzon, G., Suc, J.P., Cravatte, J., Violanti, D. (1994) Age and duration of the Messinian salinity crisis. Comptes Rendus de l´Academie des Sciences, Paris 318: 1103–1109.

Guindon, S., Gascuel, O. (2003). A simple, fast and accurate method to estimate large phylogenies by maximum-likelihood". Systematic Biology 52: 696-704.

Haye, P.A., Kornfield, I., Watling, L. (2004) Molecular insights into Cumacean family relationships (Crustacea, Cumacea). Molecular Phylogenetics and Evolution 30: 798-809.

Hayward, P.J., Ryland, J.S. (1996) Handbook of the Marine Fauna of North-West Europe. Oxford University Press: Oxford U.K.

Hebert, P.D.N., Cywinska, A., Ball, S.L., deWaard, J.R. (2003) Biological identifications through DNA barcodes. Proceedings of the Royal Society of London Series B-Biological Sciences 270:313–321.

Hewitt, G.M. (1996) Some genetic consequences of ice ages, and their role in divergence and speciation. Biological Journal of the Linnean Society 58: 247-276.

Huelsenbeck, J.P., Ronquist, F. (2001) MRBAYES: Bayesian inference of phylogeny. Bioinformatics 17:754-755.

69

Hurt, C., Haddock, S.H., Browne, W.E. (2013) Molecular phylogenetic evidence for the reorganization of the Hyperiid amphipods, a diverse group of pelagic crustaceans. Molecular Phylogenetics and Evolution 67: 28-37.

Jacobs, B.J.M. (1987) A taxonomic revision of the European, Mediterranean and NW. African species generally placed in Sphaeroma Bosc, 1802 (Isopoda:Flabellifera:Sphaeromatidae). Zoologische Verhandelingen 238: 1-71.

Jones, D.T., Taylor, W.R., Thornton, J.M. (1992). The rapid generation of mutation data matrices from protein sequences. Computer Applications in Biosciences 8: 275–282.

Khalaji-Pirbalouty, V., Raupach, M.J. (2014) A new species of Cymodoce Leach, 1814 (Crustacea: Isopoda: Sphaeromatidae) based on morphological and molecular data, with a key to the Northern Indian Ocean species. Zootaxa 3826: 230-254

Kekkonen, M., Hebert, P.D.N. (2014) DNA barcode based delineation of putative species: efficient start for taxonomic workflows. Molecular Ecology Resources 14:706-715.

Kilpert, F., Held, C., Podsiadlowski, L. (2012) Multiple rearrangements in mitochondrial genomes of Isopoda and phylogenetic implications. Molecular Phylogenetics and Evolution 64: 106-117.

Kimura, M. (1980). A simple method of estimating evolutionary rate of base sustitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16: 111- 120.

Lefebure, T., Douady, C. J., Gouy, M., Gibiert, J. (2006). Relationship between morphological taxonomy and molecular divergence within Crustacea: Proposal of a molecular threshold to help species delimitation. Molecular Phylogenetics and Evolution 40: 435–447.

Lobo, J., Costa, P.M., Teixeira, M.A.L., Ferreira, M.S.G., Costa, M.H., Costa, F.O.C. (2013) Enhanced primers for amplification of DNA barcodes from a broad range of marine metazoans. BMC Ecology 13: 34.

Maggs, C.A., Castilho, R., Foltz, D., Henzler, C., Jolly, M.T., Kelly, J., Olsen, J., Perez, K.E., Stam, W., Väinölä, R., Viard, F., Wares, J. (2008) Evaluating signatures of glacial refugia for North Atlantic benthic marine taxa. Ecology 89 11: 108 - 122.

Naylor, E. (1955) The comparative external morphology and revised taxonomy of the British species of Idotea. Journal of the Marine Bioogical Association of the U.K. 34:467-93.

Naylor, E. (1972). British marine isopods. In: Synopses of the British Fauna, nº. 3. Academic Press: London.

Nolting, C., Reboreda, P., Wägele, J.W. (1998) Systematic revision of the genus Anoplocopea Racovitza, 1907 (Crustacea: Isopoda) with a description of a new species from the Atlantic Coast of the Iberian Peninsula. Mitt.Mus. Naturk. Berl. Zool.Reihe 74:19-41.

70

Podsiadlowski, L., Bartolomaeus, T. (2006) Major rearrangements characterize the mitochondrial genome of the isopod Idotea baltica (Crustacea: Peracarida). Molecular Phylogenetics and Evolution 40: 893-909.

Radulovici, A.E., Sainte-Marie, B. Dufresne, F. (2009). DNA barcoding of marine crustaceans from the Estuary and Gulf of St. Lawrence: a regional-scale approach. Molecular Ecology Resources 9:181-187

Ratnasingham, S., Hebert, P.D.N. (2007) BOLD: the barcode of life data system (www.barcodinglife.org). Molecular Ecology Notes 7: 355–364.

Ratnasingham, S., Hebert, P.D.N. (2013) A DNA-Based Registry for All Animal Species: The Barcode Index Number (BIN) System. PLoS ONE 8: e66213.

Rogl, F. (1999) Mediterranean and Paratethys facts and hypotheses of na Oligocene to Miocene paleogeography. Geologica Carpathica 50: 339-349.

Schuller, M., Wagele, J.W. (2005) Redescription of Ischyromene lacazei Racovitza, 1908 (Isopoda: Sphaeromatidae) from the Mediterranean Coast of southern France. Organisms, Diversity and Evolution 5: 165-166.

Song. H., Buhay. J.E., Whiting. M.F., Crandall. K.A. (2008) Many species in one: DNA barcoding overestimates the number of species when nuclear mitochondrial pseudogenes are co amplified. Procedings of the National Academy of Sciences USA 105:13486-13491.

Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., Kumar, S. (2011). MEGA5: Molecular Evolutionary Genetics Analysis using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Molecular Biology and Evolution (In Press).

Tavaré, S. (1986) Some Probabilistic and Statistical Problems in the Analysis of DNA Sequences. Lectures on Mathematics in the Life Sciences (American Mathematical Society) 17: 57– 86.

Thompson J., Higgins D., and Gibson T. (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignement through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research 22: 4673-4680.

Wares, J.P., Cunningham, C.W. (2001). Phylogeography and historical ecology of the North Atlantic intertidal. Evolution 55 12:2455-2469

Wetzer, R. (2001). Hierarchical analysis of mtDNA variation and the use of mtDNA for isopod systematics (Crustacea: Isopoda). Contributions to Zoology 70:23-39.

Wetzer, R., Pérez-Losada, M., Bruce, N.L. (2013) Phylogenetic relationships of the family Sphaeromatidae Latreille, 1825 (Crustacea: Peracarida: Isopoda) within Sphaeromatidea based on 18S-rDNA molecular data. Zootaxa 3599: 161-177.

Whiting, M.F. (2002) Mecoptera is paraphyletic: multiple genes and phylogeny of Mecoptera and Siphonaptera. Zoologica Scripta 31:93–104.

71

Xavier, R., Santos, A. M., Lima, F. P., Branco, M. (2009) Invasion or invisibility: using genetic and distributional data to investigate the alien or indigenous status of the Atlantic populations of the peracarid isopod, Stenosoma nadejda (Rezig 1989) Molecular Ecology 18: 3283- 3290

Xavier, R., Zenboudji, S., Lima F. P., Harris, D. J., Santos, A. M., Branco, M. (2011). Phylogeography of the marine isopod Stenosoma nadejda (Rezig, 1989) in North African Atlantic and western Mediterranean coasts reveals complex differentiation patterns and a new species. Biological Journal of the Linnean Society. 104: 419-431.

Xavier, R., Santos, A. M., Harris, D. J., Sezgin, M., Machado, M., Branco, M. (2012). Phylogenetic analysis of the north-east Atlantic and Mediterranean species of the genus Stenosoma (Isopoda, Valvifera, Idoteidae). Zoologica Scripta. 41: 386-399.

Xia, X. (2000) Data Analysis in Molecular Biology and Evolution. Kluwer Academic Publishers.

Xia, X., Xie, Z., Salemi, M., Chen, L., Wang, Y. (2003) An index of substitution saturation and its application. Molecular Phylogenetics and Evolution 26:1-7.

Xia, X., Lemey, P. (2009) Assessing substitution saturation with DAMBE. in Philippe Lemey, Marco Salemi and Anne-Mieke Vandamme, eds. The Phylogenetic Handbook: A Practical Approach to DNA and Protein Phylogeny. 2nd edition Cambridge University Press Pp. 615-630.

Yang, Z., Rannala, B. (1997) Bayesian phylogenetic inference using DNA sequences: a Markov chain Monte carlo method. Molecular Biology and Evolution 14:717-724.

Yu, D.W., Ji, Y., Emerson, B.C., Wang, X., Ye, C., Yang, C., Ding, Z. (2012). Biodiversity soup: metabarcoding of arthropods for rapid biodiversity assessment and biomonitoring. Methods in Ecology and Evolution. 3: 613- 623.

72

Capítulo 4 Considerações finais

73

Capítulo 4

Considerações finais

A proteção da fauna marinha Ibérica é essencial sendo a biodiversidade em espécies de Isópodes uma das maiores e uma parte importante das comunidades de invertebrados bentónicos marinhos, com elevados graus de endemismo para as zonas dos Açores e Madeira. A elaboração da biblioteca de referência contribuiu para a obtenção de DNA barcodes para 26 espécies, das 146 espécies compiladas na checklist, com a possível adição de um novo registo para a espécie Cymodoce emarginata cuja identificação requer confirmação. Foi confirmada também a capacidade de discriminação de espécies da ordem Isopoda a partir de sequências de COI-5P, observando-se o agrupamento das espécies em clados monofiléticos para a maioria dos espécimes analisados A deteção de 3 linhagens com elevada divergência e geograficamente delimitadas do morfotípo Dynamene edwardsi na Macaronésia e na costa sul de Portugal sugere a existência de um complexo de espécies crípticas, evidenciadas por sequências de genes mitoncondriais e nucleares. A clarificação deste complexo requer o alargamento de amostragem de modo a incluir espécimes de outras ilhas dos arquipélagos da Madeira e Canárias, bem como espécimes de populações Mediterrânicas. A divergência entre linhagens continentais e linhagens presentes nos arquipélagos é também evidenciada pela divergência encontrada entre duas linhagens de Campecopea lusitanica podendo indicar isolamento por distância entre as ilhas e o continente. De modo a completar a biblioteca de referência de DNA barcodes para a ordem Isopoda será necessário um alargamento das redes de amostragem, de modo a obter espécimes de várias gamas de profundidade bem como aumentar os tipos de habitat amostrados. Para além da grande biodiversidade de Isópodes presente na costa Portuguesa foi verificada a importância da conservação deste grupo devido ao grande pool de biodiversidade genética presente em espécimes Ibéricos, sendo este pool de importância vital para a sobrevivência e manutenção a longo prazo para estas espécies com baixa capacidade de dispersão. A crescente construção de bibliotecas de referência de sequências de COI-5P e uso de diferentes metodologias de análise de sequências e construção de árvores filogenéticas, com possibilidade de utilização de dados de sequências públicas, permite analisar a diversidade genética e história evolutiva de populações em grande escala.

74

Anexos

Tabela 3.1- Lista de sinónimos para as espécies de isópodes compiladas na checklist, segundo a base de dados WORMS.

Taxa Aceite Taxa Sínonimo Aega webbii (Guérin-Méneville, 1836) Pterelas webbi (Guerin-Meneville, 1836 ) Aegapheles deshaysiana (Milne Edwards, 1840) Aega schioedteana (Bovallius, 1885) Rocinela deshaysiana (Milne Edwards, 1840) Aegiochus ventrosa (Sars, 1859) Aega loveni (Bovallius, 1886) Aega nordenskjoldii (Bovallius, 1885) Aega ventrosa (Sars, 1859) Amuletta abyssorum (Richardson, 1911) Ilyarachna abyssorum (Richardson, 1911) Anilocra physodes (Linnaeus, 1758) Colombia physodes (Linnaeus, 1758) Oniscus physodes (Linnaeus, 1758) Anthura gracilis (Montagu, 1808) Oniscus gracilis (Montagu, 1808) Astacilla cornuta (Koehler, 1911) Arcturella cornuta (Koehler, 1911) Astacilla damnoniensis (Stebbing, 1874) Arcturella damnoniensis (Stebbing, 1874) Arcturus damnoniensis (Stebbing, 1874) Astacilla longicornis (Sowerby, 1806) Arcturus deshayesii (Lucas, 1849) Arcturus linearis (Stebbing, 1878) Leachia gracilis (Goodsir, 1841) Oniscus longicornis (Sowerby, 1806) Bathyopsurus abyssicolus (Beddard, 1885) Eurycope abyssicola (Beddard, 1885) Bopyrus squillarum (Latreille, 1802) Bopyrus fougerouxi (Giard e Bonnier, 1890) Bopyrus helleri (Giard e Bonnier, 1890) Bopyrus rathkei (Giard e Bonnier, 1890) Bopyrus rathkei (Bonnier, 1900) Bopyrus rathkei (Stebbing, 1893) Bopyrus treillianus (Giard e Bonnier, 1890) Bopyrus treillianus (Bonnier, 1900) Bopyrus xiphias (Giard e Bonnier, 1890) Monoculus crangorum (Fabricius, 1798) Campecopea hirsuta (Montagu, 1804) Oniscus hirsutus (Montagu, 1804) Campecopea lusitanica (Nolting, Reboreda e Anoplocopea lusitanica (Nolting, Reboreda e Wägele, 1998) Wägele, 1998) Carpias parvus (Omer-Cooper, 1921) Janiropsis parvus (Omer-Cooper, 1921) Ceratothoa oestroides (Risso, 1816) Canolira oestroides (Risso, 1816) Ceratothoa parallela (Otto, 1828) Ceratothoa deplanata (Bovallius, 1885) Cymothoa parallela (Otto, 1828) Chelator insignis (Hansen, 1916) Desmosoma insignis (Hansen, 1916) Cleantis prismatica (Risso, 1826) Zenobia prismatica (Risso, 1826) Cyathura carinata (Krøyer, 1847) Anthura carinata (Krøyer, 1847) Disconectes furcatus (Sars, 1870) Eurycope furcatus (Sars, 1870)

75

Disconectes phalangium (Sars, 1864) Eurycope phalangium (Sars, 1864) Dynamene bidentata (Adams, 1800) Dynamene bidentatus (Adams, 1800) Oniscus bidentata (Adams, 1800) Dynamene edwardsi (Lucas, 1849) Naesea edwardsi (Lucas, 1849) Eugerda filipes (Hult, 1936) Desmosoma filipes (Hult, 1936) Pseudogerda filipes (Hult, 1936) Eurydice truncata (Norman, 1868) Cirolana truncata (Norman, 1868) Gnathia dentata (Sars G.O., 1872) Anceus dentata (Sars, 1872) Gnathia maxillaris (Montagu, 1804) Cancer maxillaris (Montagu, 1804) Grapsion cavolinii (Fraisse, 1878) Entoniscus cavolinii (Fraisse, 1878) Gyge branchialis (Cornalia e Panceri, 1861) Gyge galatheae (Bate e Westwood, 1868) Idotea balthica (Pallas, 1772) Idotea (Stenosoma) pusilla (Eichwald, 1842) Idotea baltica (Pallas, 1772) Idotea basteri (Audouin, 1826 ) Idotea sarsi (Collinge, 1917) Idotea tricuspidata (Desmarest, 1825) Idotea tridentata (Latreille, 1806) Idotea variegata (Roux, 1830) Oniscus balthica (Pallas, 1772) Oniscus tridens (Scopoli, 1763) Stenosoma irrorata (Say, 1818) Idotea chelipes (Pallas, 1766) Idotea angusta (Sars, 1897) Idotea salinarium (Dollfus, 1895) Oniscus chelipes (Pallas, 1766) Idotea granulosa (Rathke, 1843) Idotea cretaria (Dahl, 1916) Idotea linearis (Linnaeus, 1766) Idotea diodon (Latreille, 1817) Idotea sexlineata (Krøyer, 1846) Oniscus linearis (Linnaeus, 1766) Idotea metallica (Bosc, 1802) Idotea algirica (Lucas, 1849) Idotea annulata (Dana, 1849) Idotea argentea (Dana, 1849) Idotea atrata (Costa, 1838) Idotea brevicornis (Rathke, 1843) Idotea margaritacea (Dana, 1853) Idotea peloponesiaca (Roux, 1830) Idotea robusta (Krøyer, 1846) Idotea rugosa (Milne Edwards, 1840) Ilyarachna longicornis (Sars, 1864) Mesostenus longicornis (Sars, 1864) Lekanesphaera hookeri (Leach, 1814) Exosphaeroma pulchellum (Colosi, 1921) Sphaeroma hookeri (Leach, 1814) Lekanesphaera levii (Argano e Ponticelli, 1981) Sphaeroma levii (Argano e Ponticelli, 1981) Lekanesphaera rugicauda (Leach, 1814) Sphaeroma rugicauda (Leach, 1814) Leptanthura tenuis (Sars, 1873) Paranthura tenuis (Sars, 1873) Ligia oceanica (Linnaeus, 1767) Oniscus oceanica (Linnaeus, 1767)

76

Macrostylis longiremis (Meinert, 1890) Vana longiremis (Meinert, 1890) Mirabilicoxa gracilipes (Hansen, 1916) Desmosoma gracilipes (Hansen, 1916) Mirabilicoxa similis (Hansen, 1916) Desmosoma similis (Hansen, 1916) Munnopsurus atlanticus (Bonnier, 1896) Eurycope atlanticus (Bonnier, 1896) Natatolana borealis (Lilljeborg, 1851) Cirolana borealis (Lilljeborg, 1851) Nerocila bivittata (Risso, 1816) Cymothoa bivittata (Risso, 1816) Nerocila orbignyi (Guérin-Méneville, 1832) Ichthyophilus orbignyi (Guerin-Meneville, 1832) Nerocila maculata (Milne Edwards, 1840) Nerocila neapolitana (Schiodte e Meinert, 1879) Pagurocryptella paguri (Bourdon, 1979) Pleurocryptella paguri (Bourdon, 1979) Paragnathia formica (Hesse, 1864) Anceus formica (Hesse, 1864) Paranthura nigropunctata (Lucas, 1846) Anthura nigropunctata (Lucas, 1849) Pleurogonium rubicundum (Sars, 1864) Pleuracantha rubicundum (Sars, 1864) Portunion maenadis (Giard, 1886) Entoniscus maenadis (Giard, 1886) Pseudione borealis (Caspers, 1939) Pseudione caspersi (Gruner, 1966) Pseudione tuberculata (Caspers, 1939) Pseudione confusa (Norman, 1886) Gyge confusa (Norman, 1886) Pseudarachna hirsuta (Sars, 1864) Ilyarachna hirsuta (Sars, 1894) Rocinela dumerilii (Lucas, 1849) Acherusia dumerilii (Lucas, 1849) Sphaeroma serratum (Fabricius, 1787) Oniscus serratum (Fabricius, 1787) Stenosoma acuminatum (Leach, 1814) Synisoma acuminatum auctorum Stenosoma appendiculatum (Risso, 1826) Leptosoma appendiculata (Risso, 1826) Leptosoma lanceolata (Risso, 1826) Synisoma appendiculatum (Risso, 1816) Stenosoma bellonae (Daguerre de Hureaux, 1968) Synisoma bellonae (Daguerre de Hureaux, 1968) Stenosoma capito (Rathke, 1837) Synisoma capito auctorum Stenosoma lancifer (Miers, 1881) Synisoma lancifer auctorum Stenosoma nadejda (Rezig, 1989) Synisoma nadejda (Rezig, 1989) Stenosoma raquelae (Hedo e Junoy, 1999) Synisoma raquelae (Hedo e Junoy, 1999) Sursumura atlantica (Beddard, 1885) Storthyngura atlantica (Beddard, 1885) Synischia hectica (Pallas, 1772) Idotea hectica (Pallas, 1772) Idotea viridissima (Risso, 1816) Stenosoma eruginosa (Costa, 1838) Uromunna petiti (Amar, 1948) Munna minuta (Hansen, 1916) Munna petiti (Amar, 1948)

77

Tabela 3.2- Lista de sequências de COI-5P e 18s compiladas em bases de dados públicas

Nº de acesso Tamanho Família Espécie GenBank BOLD ID (bp) Local de recolha Referência Apanthura sp. AF255789 402 Wetzer, 2001 Anthuridae Cyathura sp. AF520451 668 Haye et al, 2004 Cyathura sp. AF520440 676 Haye et al, 2004 Haliophasma CMBIA412- Califórnia, Estados geminata 11 658 Unidos da América

Costa et al, Chaetiliidae Saduria entomon DQ889111 657 2007

Cirolana harfordi AF255787 561 Wetzer, 2001 Cirolana harfordi AF260838 578 Wetzer, 2001 Cirolana Cirolanidae rugicauda AF255788 583 Wetzer, 2001 Cirolana rugicauda AF260840 604 Wetzer, 2001 RBGC066- Eurydice sp. 03 655 Kilpert et al, Eurydice pulchra GU130253 658 2012

Cleantis Xavier et al, Holognathidae prismatica JQ425511 441 Espasante, Espanha 2012

Golfo de St. Lawrence, Radulovici et al, Edotia triloba FJ581624 657 Canadá 2009 Idotea sp. KC428828 658 Hurt et al, 2013 Wares e Cunningham, Idotea balthica AF241889 417 Atlântico Norte 2001 Wares e Cunningham, Idotea balthica AF241916 417 Atlântico Norte 2001 Golfo de St. Lawrence, Radulovici et al, Idotea balthica FJ581714 658 Canadá 2009 Podsiadlowski e Bartolomaeus, Idotea balthica DQ442915 658 2006 Xavier et al, Idoteidae Idotea balthica JQ425513 441 Djerba, Tunísia 2012 Xavier et al, Idotea chelipes JQ425516 441 Djerba, Tunísia 2012 Koutmos et al (dados não Idotea chelipes GQ302695 480 publicados)

78

Wares e Cunningham, Idotea emarginata AF241933 417 Atlântico Norte 2001 Xavier et al, Idotea granulosa JQ425514 441 Toriñan, Espanha 2012 Wares e Cunningham, Idotea granulosa AF241935 417 Atlântico Norte 2001 Idotea granulosa FMIB004-12 522 Rauma, Finlândia Idotea granulosa FMIB005-12 523 Rauma, Finlândia Idotea granulosa FMIB006-12 525 Rauma, Finlândia Xavier et al, Idotea linearis JQ425515 441 Cap Bon, Tunísia 2012 Wares e Cunningham, Idotea metallica AF241928 417 Atlântico Norte 2001 Vila Praia de Âncora, Xavier et al, Idotea pelagica JQ425512 441 Portugal 2012 Wares e Cunningham, Idotea resecata AF255782 582 Atlântico Norte 2001 Best e Bodega Bay, Estados Stachowicz, Idotea resecata JX545469 658 Unidos da América 2013 Paridotea ungulata AF255783 565 Wetzer, 2001 Stenosoma Xavier et al, acuminatum FJ905099 627 Mindelo, Portugal 2009 Stenosoma Xavier et al, appendiculatum JQ425494 441 Djerba, Tunísia 2012 Xavier et al, Idoteidae Stenosoma capito FJ905097 627 Skala Kallonis, Grécia 2009 Xavier et al, Stenosoma capito JQ425509 441 Skala Kallonis, Grécia 2012 Stenosoma Xavier et al, lancifer FJ905098 627 2009 Stenosoma Xavier et al, mediterraneum JQ425502 441 Nabeul, Tunísia 2012 Stenosoma Xavier et al, nadejda JQ425506 441 Molivos, Grécia 2012 Stenosoma Xavier et al, raquelae JQ425510 441 Algarve, Portugal 2012 Stenosoma Xavier et al, spinosum JQ425508 441 Cap Bon, Tunísia 2012 Koutmos et al (dados não Synidotea sp. GQ302700 480 publicados)

Ianiropsis epilittoralis AF260835 596 Wetzer, 2001 Ianiropsis Janiridae epilittoralis AF260836 617 Wetzer, 2001 Golfo de St. Lawrence, Radulovici et al, Jaera albifrons FJ581736 658 Canadá 2009 Kilpert et al, Janira maculosa GU130255 658 2012

Joeropsidae Joeropsis dubia AF260837 512 Wetzer, 2001

79

Campecopea Dreyer e hirsuta AF279601 950 Waegele, 2002 Browne et al, Sphaeromatidae Cilicaea sp. EF989646 658 2007 Khalaji- Cymodoce Golfo Pérsico, Arábia Pirbalouty e fuscina KJ410467 658 Saudita Raupach, 2014 Khalaji- Cymodoce Golfo Pérsico, Arábia Pirbalouty e fuscina KJ410468 658 Saudita Raupach, 2014 Khalaji- Pirbalouty e Cymodoce tribulis KJ410458 658 Nelly Bay, Austrália Raupach, 2014 Khalaji- Pirbalouty e Cymodoce tribulis KJ410459 658 Nelly Bay, Austrália Raupach, 2014 Khalaji- Cymodoce Pirbalouty e Sphaeromatidae wagelei KJ410471 658 Golfo Pérsico, Irão Raupach, 2014 Khalaji- Cymodoce Pirbalouty e wagelei KJ410472 658 Golfo Pérsico, Irão Raupach, 2014 Exosphaeroma Costa et al, sp. DQ889151 654 2007 Koutmos et al Lekanesphaera (dados não hookeri GQ302697 480 publicados) Sphaeroma Kilpert et al, serratum GU130256 658 2012 Sphaeroma quadridentatum AF255785 544 Wetzer, 2001

Tabela 3.3- Lista de espécimes com DNA barcodes com respetivo local de recolha e primer usado na amplificação

Primer usado na Espécie Código Local de recolha amplificação Astacilla damnoniensis SFCM6-005 Viana do Castelo LCO1490/HCO2198 Anthura gracilis SFC3-001 Viana do Castelo LCO1490/HCO2198 Anthura sp. CAL7-001 Gran Canária LCO1490/HCO2198 Anthura sp. SFP18-001 Madeira LCO1490/HCO2198 Campecopea hirsuta ARR5-001 Algarve LCO1490/HCO2198 Campecopea hirsuta ARR5-002 Algarve LCO1490/HCO2198 Campecopea hirsuta ARR6-001 Algarve LCO1490/HCO2198 Campecopea hirsuta ING15-001 Algarve LCO1490/HCO2198 Campecopea hirsuta BAR34 Galiza Lobo F1/Lobo R1 Campecopea lusitanica PED1-001 Galiza Lobo F1/Lobo R1 Campecopea lusitanica PED13 Galiza Lobo F1/Lobo R1 Campecopea lusitanica PED24 Galiza Lobo F1/Lobo R1 Campecopea lusitanica PEN7-002 Peniche Lobo F1/Lobo R1 Campecopea lusitanica SFP4-001 Madeira LCO1490/HCO2198

80

Campecopea lusitanica SFP6 Madeira LCO1490/HCO2198 Cyathura carinata NGIM8-002 Rio Minho LCO1490/HCO2198 Cyathura carinata NGIM9-001 Rio Minho LCO1490/HCO2198 Cyathura carinata NGIM10-001 Rio Lima LCO1490/HCO2198 Cyathura carinata NGIM10-002 Rio Lima LCO1490/HCO2198 Cyathura carinata NGIM27-001 Rio Lima LCO1490/HCO2198 Cyathura carinata NGIM27-002 Rio Lima LCO1490/HCO2198 Cyathura carinata NGIM27-003 Rio Lima LCO1490/HCO2198 Cymodoce emarginata SFP19-001 Madeira LCO1490/HCO2198 Cymodoce sp. PEN5-002 Peniche LCO1490/HCO2198 Cymodoce sp. PEN19-001 Peniche LCO1490/HCO2198 Cymodoce sp. BUA21-001 Figueira da Foz Lobo F1/Lobo R1 Dynamene bidentata BUA16-003 Figueira da Foz Lobo F1/Lobo R1 Dynamene bidentata LMBV32-007 Vila do Conde Lobo F1/Lobo R1 Dynamene bidentata NGIM15-001 Rio Lima Lobo F1/Lobo R1 Dynamene bidentata NGIM15-002 Rio Lima Lobo F1/Lobo R1 Dynamene bidentata NGIM16-002 Viana do Castelo Lobo F1/Lobo R1 Dynamene bidentata NGIM16-003 Viana do Castelo Lobo F1/Lobo R1 Dynamene bidentata NGIM32-001 Sines Lobo F1/Lobo R1 Dynamene bidentata NGIM32-003 Sines Lobo F1/Lobo R1 Dynamene bidentata PED18-001 Galiza LCO1490/HCO2198 Dynamene edwardsi BAN6-001 Gran Canária Lobo F1/Lobo R1 Dynamene edwardsi BAN20-001 Gran Canária Lobo F1/Lobo R1 Dynamene edwardsi CAL7-001 Gran Canária Lobo F1/Lobo R1 Dynamene edwardsi ELF20 La Palma LCO1490/HCO2198 Dynamene edwardsi FA13 La Palma LCO1490/HCO2198 Dynamene edwardsi NGIM35-002 Sines LCO1490/HCO2198 Dynamene edwardsi PC17-002 Madeira LCO1490/HCO2198 Dynamene edwardsi PC20-001 Madeira CrustdF1/CrustdR1 Dynamene edwardsi RM4-001 Madeira LCO1490/HCO2198 Dynamene edwardsi RM16-002 Madeira LCO1490/HCO2198 Dynamene edwardsi TAL8-001 Gran Canária Lobo F1/Lobo R1 Dynamene magnitorata ARR8-1 Algarve Lobo F1/Lobo R1 Dynamene magnitorata ARR8-002 Algarve Lobo F1/Lobo R1 Dynamene magnitorata ARR13 Algarve Lobo F1/Lobo R1 Dynamene magnitorata ARR13-001 Algarve Lobo F1/Lobo R1 Dynamene magnitorata LAG10-002 Algarve LCO1490/HCO2198 Dynamene magnitorata LAG10-003 Algarve LCO1490/HCO2198 Dynamene magnitorata PEN4-002 Peniche Lobo F1/Lobo R1 Dynamene magnitorata PEN4-004 Peniche Lobo F1/Lobo R1 Eurydice spinigera NGIM12-003 Rio Lima LCO1490/HCO2198 Eurydice spinigera NGIM20-001 Rio Lima LCO1490/HCO2198

81

Idotea balthica ICE1-001 Islândia LCO1490/HCO2198 Idotea balthica ICE1-003 Islândia Lobo F1/Lobo R1 Idotea chelipes SFC25-006 Aveiro LCO1490/HCO2198 Idotea granulosa BAL1-001 Noruega LCO1490/HCO2198 Idotea granulosa BAL13-001 Noruega Lobo F1/Lobo R1 Idotea granulosa BAR9-001 Galiza Lobo F1/Lobo R1 Idotea granulosa BAR23-001 Galiza LCO1490/HCO2198 Idotea granulosa BEL38-001 Escócia LCO1490/HCO2198 Idotea granulosa BUA19-001 Figueira da Foz Lobo F1/Lobo R1 Idotea granulosa CAR54-001 Escócia Lobo F1/Lobo R1 Idotea granulosa EAS33-001 Escócia LCO1490/HCO2198 Idotea granulosa HEL6-001 Noruega LCO1490/HCO2198 Idotea granulosa HEL13-001 Noruega Lobo F1/Lobo R1 Idotea granulosa ICE1-009 Islândia LCO1490/HCO2198 Idotea granulosa ICE2-029 Islândia LCO1490/HCO2198 Idotea granulosa MUX1-001 Galiza Lobo F1/Lobo R1 Idotea granulosa MUX13-001 Galiza Lobo F1/Lobo R1 Idotea granulosa MUX22-001 Galiza LCO1490/HCO2198 Idotea granulosa NGIM5-001 Rio Lima Lobo F1/Lobo R1 Idotea granulosa PED2-001 Galiza LCO1490/HCO2198 Idotea granulosa PED8 Galiza LCO1490/HCO2198 Idotea granulosa PED18-001 Galiza LCO1490/HCO2198 Idotea neglecta LBAZ28 Açores Lobo F1/Lobo R1 Idotea neglecta LBAZ29 Açores Lobo F1/Lobo R1 Idotea neglecta LBAZ30 Açores Lobo F1/Lobo R1 Idotea neglecta LBAZ31 Açores Lobo F1/Lobo R1 Idotea neglecta LBAZ34 Açores Lobo F1/Lobo R1 Idotea neglecta LBAZ35 Açores Lobo F1/Lobo R1 Idotea pelagica BEL39-001 Escócia LCO1490/HCO2198 Idotea pelagica EAS34-001 Escócia Lobo F1/Lobo R1 Idotea pelagica HEL18-001 Noruega LCO1490/HCO2198 Idotea pelagica ICE2-015 Islândia LCO1490/HCO2198 Idotea pelagica NGIM19-001 Rio Lima Lobo F1/Lobo R1 Idotea pelagica PED5 Galiza LCO1490/HCO2198 Ischyromene lacazei MUX24-001 Galiza Lobo F1/Lobo R1 Ischyromene lacazei MUX24-002 Galiza Lobo F1/Lobo R1 Ischyromene lacazei MUX27-001 Galiza Lobo F1/Lobo R1 Ischyromene lacazei LMBV32-017 Vila do Conde Lobo F1/Lobo R1 Jaera albifrons NGIM6-002 Rio Lima Lobo F1/Lobo R1 Jaera albifrons NGIM18-001 Rio Lima CrustdF1/CrustdR1 Jaera albifrons NGIM21-001 Rio Lima Lobo F1/Lobo R1 Lekanesphaera terceirae NGIM24-002 Açores Lobo F1/Lobo R1

82

Lekanesphaera terceirae NGIM24-003 Açores LCO1490/HCO2198 Lekanesphaera hookeri NGIM13-001 Rio Minho Lobo F1/Lobo R1 Lekanesphaera hookeri NGIM13-004 Rio Minho LCO1490/HCO2198 Lekanesphaera hookeri NGIM13-005 Rio Minho Lobo F1/Lobo R1 Lekanesphaera hookeri NGIM13-006 Rio Minho LCO1490/HCO2198 Stenosoma lancifer BUA7-001 Figueira da Foz LCO1490/HCO2198 Stenosoma lancifer BUA7-003 Figueira da Foz LCO1490/HCO2198

83

Figura 2.1- Árvore NJ obtida pela análise de 165 sequências de COI-5P de isópodes com recurso ao modelo K2P. Junto a cada nó é apresentado o repespectivo grau de suporte obtido por análise bootstrap a partir de 10000 réplicas.

84

85

86

87

Figura 2.2- Árvore ML obtida pela análise de 165 sequências de COI-5P de isópodes com recurso ao modelo GTR+G+I. Junto a cada nó é apresentado o repespectivo grau de suporte obtido por análise bootstrap a partir de 500 réplicas.

88

89

90

91

92

Figura 2.3- Árvore IF obtida pela análise de 165 sequências de COI-5P de isópodes com recurso ao modelo GTR+G+I.

93

94

95