Studiu Despre Volvo Aero Company Si Motoarele Sale

Total Page:16

File Type:pdf, Size:1020Kb

Studiu Despre Volvo Aero Company Si Motoarele Sale STEM Educational Lab Studiu despre Volvo Aero Company si motoarele sale Chiorean Răzvan Published on: Jan 24, 2021 License: Creative Commons Attribution 4.0 International License (CC-BY 4.0) STEM Educational Lab Studiu despre Volvo Aero Company si motoarele sale VOLVO AERO COMPANY SI MOTOARELE SALE Răzvan-Nicolae CHIOREAN Academia Fortelor Aeriene ,,Henri Coanda” Brasov Abstract: O aeronava are nevoie de energie mecanica pentru a fi propulsata, aceasta energie este obtinuta in urma arderilor interne dintr-un motor de aviatie. Acest articol ofera o perspectiva generala referindu-se la caracteristicile motoarelor de aviatie produse de catre compania Volvo Aero. Prima parte cuprinde o scurta introducere in ceea ce inseamna aceasta companie si o mica parte din istoria sa. A doua parte consta in prezentarea generala a patru motoare de aviatie construite de catre Volvo Aero, fiind urmata de catre un tabel ce contine specificatiile fiecarui motor in parte. +. INTRODUCERE SI ISTORIE Volvo Aero a fost o companie specializata in motoare de aviatie, rachete si avioane. In urma cumpararii companiei de catre compania engleza GKN, numele companiei a devenit GKN Aerospace Engine Systems. Inițial a fost înființată ca Nohab Flygmotorfabriker AB în 1930 pentru a produce motoare aero. Firma a devenit parte din SAAB în 1937. Ulterior, Volvo a achiziționat o mare parte din stoc, astfel schimbandu-si numele in Svenska Flygmotor AB (SFA) iar mai târziu Volvo Flygmotor. A devenit principalul furnizor de motoare al Forțelor Aeriene Suedeze în perioada postbelică. În anii ’70, Volvo Flygmotor s-a încadrat în sectorul aerospațial comercial, oferind revizii și producție de subcomponente pentru mai mulți producători internaționali de motoare, precum și în sectorul spațial european. În anii 2000, Volvo Aero s-a concentrat pe activități de cooperare cu diverse companii partenere de pe glob. Ca urmare a Marii Recesiuni, Volvo Aero a cunoscut o scădere susținută a activității, rezultând în concedieri și contribuind la vânzarea firmei. Compania-mamă Volvo a decis să- și vândă diviziunea aerospațială pe fondul crizei economice; GKN a apărut printre mai mulți ofertanți în calitatea de avans, finalizând achiziția Volvo Aero în 2012. În anii '50, compania a pus bazele parteneriatelor cu producătorii străini de motoare, ajutând-o să dobândească experiență în motorul turbojet recent dezvoltat. A întreprins fabricarea autorizată a mai multor motoare, cum ar fi Rolls- Royce Avon (menționat în serviciul Air Force Suedez drept RM5 și RM6) și Pratt & Whitney JT8D (RM8). De-a lungul perioadei postbelice, compania a servit ca principalul furnizor de motoare al Forțelor Aeriene Suedeze. În anii '70, firma a decis să aplice experiența acumulată în ceea ce privește producția și serviciile motoarelor de avioane militare pentru sectorul aerospațial comercial. Primele servicii de revizuire oferite au fost pentru motorul JT8. Volvo Flygmotor și-a extins curând activitățile în fabricarea subcomponenților pentru mai mulți producători internaționali de motoare, inclusiv General Electric, Pratt & Whitney și Rolls-Royce Plc. 2 STEM Educational Lab Studiu despre Volvo Aero Company si motoarele sale În căutarea unei creșteri ulterioare a operațiunilor sale comerciale, Volvo Flygmotor a fost implicat în Programul Spațial European, producând o serie de componente pentru motoarele rachetă care alimentează Ariane de vehicule de lansare grele. Firma s-a extins cu succes în mod semnificativ dincolo de piața sa internă. Numele companiei trebuia recunoscut cu ușurință la nivel internațional, astfel schimbandu-si numele în Volvo Aero Corporation la începutul anilor 1990. Până la sfârșitul anilor 1990, gama de componente Volvo Aero a inclus cutii de ventilatoare, structuri de ventilatoare-compresoare, rotori de compresor, arbori, structuri de combustie, palete, cutii de turbină de joasă presiune (LPT), structuri de turbină, duze rachetă, camere de combustie și turbine cu motor rachetă atât în scopuri civile, cât și militare. Până în 2003, forța de muncă a firmei avea 3.600 de angajați, înregistrând și vânzări totale de 0,9 miliarde de euro în acel an. În prezent, Volvo Aero este partener în mai mult de zece programe de motoare comerciale și componentele produse de companie sunt instalate în peste 90% din toate motoarele mari de aeronave comerciale vândute. 2.MOTOARELE VOLVO Volvo Aero furnizează componente ale motorului, în principal structuri complexe ale motorului, cum ar fi carcasele de evacuare ale turbinei, cadrele medii ale turbinei, carcasele LPT, carcasele compresorului, arbori LPT, palete și părți rotative mari. Cateva dintre motoarele pentru care Volvo Aero a furnizat componente sunt: 1. Volvo RM12 2. Volvo RM8 3. de Havilland Ghost(Volvo RM2) 4. Rolls-Royce Avon(Volvo RM5) 2.1.Volvo RM12 Produs de Volvo Aero (acum GKN Aerospace Engine Systems), RM12 este un derivat al General Electric F404-400. Modificările de la standardul F404 includ o fiabilitate mai mare pentru operațiunile cu un singur motor, și adoptarea unui sistem FADEC (control digital complet al autorității). Mai multe 3 STEM Educational Lab Studiu despre Volvo Aero Company si motoarele sale elemente au fost, de asemenea, reproiectate pentru a reduce cerințele de întreținere . Intrarile de aer ale motorului au fost proiectate pentru a minimiza reflectarea radarului de la ventilatorul de compresie, reducând secțiunea transversală a radarului aeronavei. Unitatea de control a motorului analog F404 a fost înlocuită cu Controlul motorului digital - dezvoltat în comun de Volvo și GE - care comunică cu cabina de pilotaj prin autobuzele de date digitale și, ca redundanță, un back-up hidromecanic. Back-ul hidromecanic rămâne în noul control al motorului digital al autorității complete (FADEC) pe care Volvo a început să îl dezvolte în 1996. General Electric produce 50% din motor. Elemente precum discurile și carcasa ventilatorului / compresorului, bobina compresorului, butucurile, garniturile și arzătorul sunt fabricate în Suedia, asamblarea finală având loc acolo. 2.2.Volvo RM8 Volvo RM8 este un motor cu jet de turbofan cu combustie redusă, derulat pentru luptătorul Saab 37 Viggen. În 1962, motorul Pratt & Whitney JT8D-1 a fost ales pentru a alimenta Viggen în absența unui motor adecvat și disponibil, proiectat pentru uz militar. Practic, o versiune JT8D construită cu licență, puternic modificată pentru viteze supersonice, cu un afterburner proiectat în Suedia, RM8 a fost produs de Svenska Flygmotor (ulterior cunoscut sub numele de Volvo Aero). Motorul a fost produs in 2 variante: RM8A Întrucât motorul inițial a fost construit pentru viteze subsonice, cea mai mare parte a motorului a trebuit să fie redimensionată pentru turațiile Mach mai mari dintr-o aeronavă militară. Ventilatoarele și turbina au fost modificate, o nouă cameră de ardere proiectată și un sistem complet nou de control al combustibilului atât pentru motor, cât și pentru combustibil. RM8B 4 STEM Educational Lab Studiu despre Volvo Aero Company si motoarele sale Anvelopa de zbor pentru versiunea de luptă a cerut atât mai multă putere, cât și o marjă mai bună a blocului compresorului. Acest lucru a dus la o nouă etapă a ventilatorului (așa-numitul „stadiu 0”) a fost introdus, ceea ce a făcut motorul mai lung. Acest lucru a dus la o reproiectare totală a ventilatoarelor, compresorului de joasă presiune și a camerelor de ardere. 2.3. de Havilland Ghost(Volvo RM2) De Havilland Ghost (inițial Halford H-2) a fost cel de-al doilea proiect turboet al companiei de Havilland Engine Company care a intrat în producție și primul motor de turbină pe gaz din lume care a intrat în serviciul liniei aeriene (BOAC). O dezvoltare extinsă a Goblinului, Ghostul a alimentat de Havilland Venom, de Havilland Comet și SAAB 29 Tunnan. La 23 martie 1948, John Cunningham, care zbura un Vampire Mk I modificat, care a fost furnizat cu vârfuri de aripi extinse, acționate de un motor Ghost, a obținut un nou record mondial de altitudine, atingând o altitudine maximă de 18.119 m. Ghost-ul își are originea atunci când de Havilland a început să lucreze la ceea ce urma să devină Cometa în 1943. Primul design al lui Frank Halford, H-1, tocmai intra în producție și a reușit să îndeplinească cerințele de putere ale Cometei prin extinderea H- 1. H- 2 rezultat a utilizat zece camere de combustie mai mari în locul celor șaisprezece mai mici ale lui Goblin, folosind „prize admise” bifurcate care au fost alimentate de fiecare canal difuzor. În timp ce prototipul era construit, de Havilland a cumpărat firma lui Halford și a reformat-o ca companie de Havilland Engine Company, redenumind H-1 și H-2 drept Goblin și respectiv Ghost. Ghostul era functional în 1944 și zbura în 1945. Cu mult înainte ca Cometa sau Venom să fie gata de zbor. În acest moment, Ghostul a fost selectat pentru proiectul de luptă suedez "JxR", care s-a transformat în cele din urmă în Tunnan. În timpul proiectării tunelului, Suedia a primit date germane cu privire la proiectele de aripi măturate prin Elveția și a reproiectat avionul pentru a încorpora această plană. Tunnanul a zburat pentru prima dată sub această formă în 1948. Pentru versiunile de producție ale Tunnanului, Ghostul a fost construit sub licență de Svenska Flygmotor (ulterior pentru a deveni Volvo Aero) ca RM2. 5 STEM Educational Lab Studiu despre Volvo Aero Company si motoarele sale 2.4.Rolls-Royce Avon(Volvo RM5) Rolls-Royce Avon a fost primul motor cu jet de flux axial proiectat și produs de Rolls-Royce. Prezentat în 1950, motorul a continuat să devină unul dintre cele mai de succes proiecte ale acestora după cel de- al Doilea Război Mondial. A fost utilizat într-o mare varietate de aeronave, atât militare, cât și civile, precum și versiuni pentru puterea staționară și maritimă. Un English Electric Canberra alimentat de doi Avons a făcut primul zbor transatlantic non-stop alimentat de un jet, iar un BOAC de Havilland Comet 4 alimentat de patru Avons a făcut prima trecere transatlantică programată de către un avion de avion.
Recommended publications
  • Technical Supplements
    Technical Supplements S1 The IG JAS Investment In this Technical Supplement the JAS 39 Gripen product concept is outlined, the procurement process documented, the Industry Group IG JAS presented and the critical role of the competent public procurement agency, the FMV, highlighted. S1.1 The Procurement of the JAS 39 Gripen Aircraft with Swing-Role Capabilities The JAS 39 Gripen multirole combat aircraft (J stands for fighter, A for Attack and S for Surveillance/reconnaissance) is a fourth generation aircraft that entered operational service in 1997. It replaced the Viggen, the last of which was taken out of service in 2006. JAS 39 Gripen is a combat aircraft with swing-role capabilities that can change mission in flight. This swing-role capability was unique when Gripen was launched but has later been introduced on the French Rafale and the Eurofighter. Other competing multirole aircraft first have to land to reconfigure its information, guidance, and weapons systems for a new role. Gripen was the first “unstable” aircraft in the world which meant that in order for the aircraft to be stable at all speeds and in all maneuvers many more navigation surfaces are needed than the pilot can possibly control himself to minimize air friction at each moment. He needs incredibly sophisticated computer systems support to maneuver the aircraft effectively and safely. Competing fourth generation combat aircraft are F-35/JSF (the USA, not yet (2009) delivered to market), the Eurofighter Typhoon (the UK, etc.) and Rafale (Dassault, France). JAS 39 Gripen also competes with upgraded versions of the third generation aircraft of Lockheed Martin F-16 (the USA, first delivered in 1978), Boeing F/A18 Hornet (the USA, first delivered in 1983), Dassault Mirage 2000 (France, first delivered in 1983), and Mig-29 (the former Soviet Union, first delivered in 1977).
    [Show full text]
  • Durham E-Theses
    Durham E-Theses The Application of Non-Axisymmetric Endwall Contouring in a 1 Stage, Rotating Turbine SNEDDEN, GLEN,CAMPBELL How to cite: SNEDDEN, GLEN,CAMPBELL (2011) The Application of Non-Axisymmetric Endwall Contouring in a 1 Stage, Rotating Turbine, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/3343/ Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in Durham E-Theses • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders. Please consult the full Durham E-Theses policy for further details. Academic Support Oce, Durham University, University Oce, Old Elvet, Durham DH1 3HP e-mail: [email protected] Tel: +44 0191 334 6107 http://etheses.dur.ac.uk 2 The Application of Non-Axisymmetric Endwall Contouring in a 1½ Stage, Rotating Turbine Glen Campbell Snedden A thesis presented for the degree of Doctor of Philosophy School of Engineering Durham University England 2011 ii The Application of Non-Axisymmetric Endwall Contouring in a 1½ Stage, Rotating Turbine Glen Campbell Snedden Submitted for the degree of Doctor of Philosophy 2011 Abstract Today gas turbines are a crucial part of the global power generation and aviation industries.
    [Show full text]
  • Global Economy
    INNOVATIONS IN MATERIALS TECHNOLOGY GLOBAL ECONOMY Stainless steel saves weight, reduces emissions in autos BRIEFS Stainless steel in automotive construction can save weight and thus conserve resources without Alcan has inaugurated a compromising safety standards, according to the “Next Generation Vehicle” project, an alliance of technologically advanced leading stainless steel producers and automotive OEMs. horizontal furnace at its The project was launched at the end of 2004 with the aim of identifying potential for stainless Sierre facility in Switzerland. Its power steel in auto structures. The automotive OEMs participating in the project were Audi, BMW, Chrysler, consumption is four times Fiat, General Motors/Saab, and Ford/Volvo. The stainless steel producers involved were Thyssen lower than older furnaces, Krupp Nirosta (Germany), Outokumpu (Finland), and ArcelorMittal Stainless (France). and its closed circulation The goal was to draw up processing guidelines for stainless steels as a prerequisite for their appli- system limits its water cation. For example, this was done with reference to B-pillars, which were tested in crash simulations. consumption. The results were verified in collaboration with leading suppliers of simulation programs for metal www.alcan.com forming. The project’s findings have been summarized in design and processing guidelines. A cost model was developed in collaboration with the Massachusetts Institute of Technology. ArcelorMittal plans to invest $1.3 billion annu- This program allows different production methods and materials to be compared directly and ally in its European the optimum stainless steel solution determined. flat-bar steel production For more information: Erik Walner, ThyssenKrupp Stainless AG, Germany; tel: 49 203 52 45130; plants until 2012.
    [Show full text]
  • Beläggningsanalys Av Motorprovningen Vid Volvo Aero
    Examensarbete LITH-ITN-KTS-EX--05/003--SE Beläggningsanalys av motorprovningen vid Volvo Aero Corporation Fredrik Bark 2005-01-28 Department of Science and Technology Institutionen för teknik och naturvetenskap Linköpings Universitet Linköpings Universitet SE-601 74 Norrköping, Sweden 601 74 Norrköping LITH-ITN-KTS-EX--05/003--SE Beläggningsanalys av motorprovningen vid Volvo Aero Corporation Examensarbete utfört i kommunikation- och transportsystem vid Linköpings Tekniska Högskola, Campus Norrköping Fredrik Bark Handledare Tomas Mars Examinator Martin Rudberg Norrköping 2005-01-28 Datum Avdelning, Institution Date Division, Department Institutionen för teknik och naturvetenskap 2005-01-28 Department of Science and Technology Språk Rapporttyp ISBN Language Report category _____________________________________________________ x Svenska/Swedish Examensarbete ISRN LITH-ITN-KTS-EX--05/003--SE Engelska/English B-uppsats _________________________________________________________________ C-uppsats Serietitel och serienummer ISSN x D-uppsats Title of series, numbering ___________________________________ _ ________________ _ ________________ URL för elektronisk version http://www.ep.liu.se/exjobb/itn/2005/kts/003/ Titel Title Beläggningsanalys av motorprovningen vid Volvo Aero Corporation Författare Author Fredrik Bark Sammanfattning Abstract Detta är resultatet av en studie som har utförts vid motorprovningen på Volvo Aero Corporation i Trollhättan. Motorprovningen provar flygplansmotorer, komponenter till dessa och rymddetaljer samt utför underhåll och utveckling av Volvo Aeros testceller, TC. Till dessa testceller kommer ett antal olika motormodeller för prov snarast möjligt. Motorprovningen står nu inför vissa större beslut om att eventuellt lägga ner en av testcellerna och överföra dess motorer till en annan testcell. Motorprovningen har idag inget verktyg för att mäta hur stor kapacitet de olika testcellerna har, och om denna nerläggning då är möjlig.
    [Show full text]
  • Volvo Aero to Partner with Pratt & Whitney on Geared Turbofan™ Engine
    Press Information Volvo Aero to Partner with Pratt & Whitney on Geared Turbofan™ Engine Volvo Aero has entered into an agreement with aircraft engine manufacturer Pratt & Whitney to join P&W’s Geared Turbofan™ engine program. Under this arrangement, Volvo Aero will be responsible for three major components for both the Mitsubishi Regional Jet (MRJ) and the Bombardier CSeries aircraft engines. The Geared Turbofan engine will be a product unique in the aircraft industry, bringing double-digit reductions in fuel burn, environmental emissions, engine noise and operating costs. For Volvo Aero, the agreement is expected to result in sales of SEK 50 billion during 40 years, the largest involvement in a commercial engine program ever. Two years ago, Volvo Aero and Pratt & Whitney signed an agreement to demonstrate new technology for the new Geared Turbofan engine. Since then, Volvo Aero has worked to develop advanced light weight technologies for the new engine concept. Volvo Aero brings expertise in turbine exhaust case technology to development of the Geared Turbofan engine. According to the agreement, Volvo Aero will participate as a partner in design, development, production and aftermarket in this engine project, with overall responsibility for the Intermediate Case and Turbine Exhaust Case as well as Low Pressure Turbine Shaft production responsibility. “We are delighted to have reached this agreement with Pratt & Whitney, not least because we know that this engine will contribute to improving the environment by reducing fuel consumption, emissions and noise,” says Olof Persson, President of Volvo Aero. “Participating in an engine concept that has excellent prospects for enhancing our current program portfolio in this thrust region of the engine market is also an important sign of success for Volvo Aero.
    [Show full text]
  • Numerical Simulations of Unsteady, Multi-Phase Flows in Aero-Engine Like Combustors
    XX International Symposium on Air Breathing Engines 2011 (ISABE 2011) Gothenburg, Sweden 12-16 September 2011 Volume 1 of 3 ISBN: 978-1-61839-180-3 Printed from e-media with permission by: Curran Associates, Inc. 57 Morehouse Lane Red Hook, NY 12571 Some format issues inherent in the e-media version may also appear in this print version. The contents of this work are copyrighted and additional reproduction in whole or in part are expressly prohibited without the prior written permission of the Publisher or copyright holder. The resale of the entire proceeding as received from CURRAN is permitted. For reprint permission, please contact AIAA’s Business Manager, Technical Papers. Contact by phone at 703-264-7500; fax at 703-264-7551 or by mail at 1801 Alexander Bell Drive, Reston, VA 20191, USA. TABLE OF CONTENTS Volume 1 Numerical Simulations of Unsteady, Multi-Phase Flows in Aero-Engine like Combustors ............................................1 Massimiliano Di Domenico, Patrick Le Clercq, Michael Rachner Effect of Internal Two-Phase Flow on Effervescent Sprays............................................................................................. 11 Hrishikesh Gadgil, B. N. Raghunandan Effect of Combustor Geometry on the Performance of an Airblast Atomizer under Sub-Atmospheric Conditions ............................................................................................................................................................................ 19 Ahad Mehdi, Vassilios Pachidis, Riti Singh, Pavlos Zachos, N. Grech
    [Show full text]
  • To Volvo Aero Corporation for R &Amp
    17.11.2009 EN Official Journal of the European Union L 301/41 COMMISSION DECISION of 17 June 2009 on the State aid C 33/08 (ex N 732/07) to Volvo Aero Corporation for R & D, which Sweden intends to implement (notified under document C(2009) 4542) (Only the Swedish version is authentic) (Text with EEA relevance) (2009/838/EC) THE COMMISSION OF THE EUROPEAN COMMUNITIES mail between managers of the beneficiary. This supple­ mentary information was submitted on 19 June 2008. Having regard to the Treaty establishing the European Community, and in particular the first subparagraph of (3) By letter of 16 July 2008 the Commission notified to Article 88(2) thereof, Sweden its decision to initiate proceedings pursuant to Article 88(2) of the EC Treaty on the above mentioned measure. The decision of the Commission to initiate proceedings has been published in the Official Journal of Having regard to the Agreement on the European Economic the European Union ( 2). The Commission invited interested Area, and in particular Article 62(1)(a) thereof, parties to submit their observations on the measure. Sweden submitted observations on 17 October 2008. Having called on interested parties to submit their comments 1 pursuant to those provisions ( ), (4) By fax dated 28 October 2008, Fred Bodin, the former President and CEO of Volvo Aero, submitted obser­ vations. By letter of 31 October 2008, GE Aviation submitted observations. By e-mail dated 3 November Having regard to those comments, 2008, the IF Metalworkers union of Volvo Aero submitted observations. Whereas: (5) By letter of 3 November 2008 the Commission has forwarded these observations to the Swedish authorities, which submitted comments on 12 December 2008.
    [Show full text]
  • Volvo Aero Norway to Be Supplier to the General Electric Engine for the Joint Strike Fighter (JSF)
    Press Information Volvo Aero Norway to be supplier to the General Electric engine for the Joint Strike Fighter (JSF) Volvo Aero Norway has signed an agreement with General Electric to produce two key components for the F136 engine in the US F-35 Joint Strike Fighter (JSF) aircraft. The agreement covers the development phase and that Volvo Aero Norway will be the exclusive supplier of these components. The components for the F136 engine that Volvo Aero Norway will supply are the aft compressor case and the forward compressor case. “We are very satisfied with Volvo Aero Norway’s continued involvement in the F136 engine program,” says Jean Ludon-Rodgers, General Electric FET. “Its expertise within component manufacturing is a valuable addition to the group of renowned international aircraft engine companies that will participate in developing this engine in world class.” “Volvo Aero Norway is highly pleased that General Electric selected us as the supplier of the compressor cases for the F136. The agreement is an important milestone for Volvo Aero Norway,” says Reidar Lyse, President of Volvo Aero Norway. “It strengthens the company’s position in one of the most important military programs in many years. The components also fit well in the company’s strategic product portfolio.” The first components will be delivered during 2007. The Joint Strike Fighter is expected to be the predominant fighter aircraft in the decades immediately ahead. The estimated sales volume is more than 5000 aircraft. The aircraft will be certified with two engines, the F135 from Pratt & Whitney and the F136 from General Electric.
    [Show full text]
  • Turbine Geometry
    Durham E-Theses The Application of Non-Axisymmetric Endwall Contouring in a 1 Stage, Rotating Turbine SNEDDEN, GLEN,CAMPBELL How to cite: SNEDDEN, GLEN,CAMPBELL (2011) The Application of Non-Axisymmetric Endwall Contouring in a 1 Stage, Rotating Turbine, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/3343/ Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in Durham E-Theses • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders. Please consult the full Durham E-Theses policy for further details. Academic Support Oce, Durham University, University Oce, Old Elvet, Durham DH1 3HP e-mail: [email protected] Tel: +44 0191 334 6107 http://etheses.dur.ac.uk 2 The Application of Non-Axisymmetric Endwall Contouring in a 1½ Stage, Rotating Turbine Glen Campbell Snedden A thesis presented for the degree of Doctor of Philosophy School of Engineering Durham University England 2011 ii The Application of Non-Axisymmetric Endwall Contouring in a 1½ Stage, Rotating Turbine Glen Campbell Snedden Submitted for the degree of Doctor of Philosophy 2011 Abstract Today gas turbines are a crucial part of the global power generation and aviation industries.
    [Show full text]
  • DISTRIBUTED PROPULSION and TURBOFAN SCALE EFFECTS Anders Lundbladh Volvo Aero Corporation S-46181 Trollhättan, Sweden [email protected]
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Chalmers Publication Library 1 ISABE-2005-1122 DISTRIBUTED PROPULSION AND TURBOFAN SCALE EFFECTS Anders Lundbladh Volvo Aero Corporation S-46181 Trollhättan, Sweden [email protected] Tomas Grönstedt Chalmers University Sweden ABSTRACT ps Propulsion System, i.e. exclusive of airframe drag effect on intake pressure recovery A coupled aircraft and engine model is used to evaluate the fuel consumption and mission weight of distributed propulsion aircraft. The engine cycle is INTRODUCTION optimized for the installation to show the ultimate performance of each propulsion alternative. The A conventional subsonic transport aircraft is effect of higher specific fuel consumption for smaller equipped with two to four turbofan engines. The engines is weighed against the potentially lower trend from the fifties until now has favored the twin installation weight and higher integration efficiency underwing engine configuration. An alternative is to of distributed propulsion. use a large number of engines. This concept can broadly be described as distributed propulsion. Nomenclature More than four engines have been used in the past for reasons of reliability and unavailability of V Velocity relative to the aircraft sufficiently large engines (compare e.g. the “Spruce T Total propulsive thrust Goose” and the B-52). Reliability concerns also led P Propulsive power to the requirement that an ocean crossing aircraft D Drag must have at least three engines, although the number FHV Fuel Heating Value of routes affected by this has decreased due to W Mass flow ETOPS qualification of twin engine aircraft.
    [Show full text]
  • Activity Report from the Division of Combustion Physics 2009-2011
    Activity Report from the Division of Combustion Physics 2009-2011 Lund University Lund, Sweden Editor: Zhongshan Li LRCP-156 Lund Reports on Combustion Physics 2012 Lund Reports on Combustion Physics, LRCP-156 Division of Combustion Physics Lund University Box 118 SE-221 00 Lund Sweden Telephone + 46 (0) 46 222 1422 Fax + 46 (0) 46 222 4542 WWW http://www.forbrf.lth.se Printed at Media-Tryck, Lund, Sweden 2012 Cover illustration: Simultaneous visualization of four species, OH, CH, CH2O and toluene, in a jet flame by PLIF technique. Left: OH (red) and CH (green); middle: CH2O (red) and CH (green); right: CH2O (red) and toluene (green). TABLE OF CONTENTS 1 INTRODUCTION .................................................................................................................................. 1 2 GENERAL INFORMATION................................................................................................................ 3 2.1 STAFF ........................................................................................................................................................ 3 2.2 VISITORS ................................................................................................................................................... 4 2.3 ACADEMIC DEGREES DURING 2009-2011 ................................................................................................. 4 2.4 SEMINARS ................................................................................................................................................
    [Show full text]
  • I GRADUATION PROJECT JULY, 2020 COMPUTATION of DESING
    ISTANBUL TECHNICAL UNIVERSITY FACULTY OF AERONAUTICS AND ASTRONAUTICS COMPUTATION OF DESING LOADS ASSOCIATED WITH ENGİNE SURGE FOR A SUPERSONIC AIRCRAFT GRADUATION PROJECT Elif YILDIRIM Department of Aeronautical Engineering ThesisAnabilim Advisor Dalı: Prof. : He Dr.rhangi Melike Mühendislik, NİKBAY Bilim Programı : Herhangi Program JULY, 2020 i ISTANBUL TECHNICAL UNIVERSITY FACULTY OF AERONAUTICS AND ASTRONAUTICS COMPUTATION OF DESING LOADS ASSOCIATED WITH ENGİNE SURGE FOR A SUPERSONIC AIRCRAFT GRADUATION PROJECT Elif YILDIRIM (110170601) Department of Aeronautıcal Engineering Thesis Advisor: Prof. Dr. Melike NİKBAY Anabilim Dalı : Herhangi Mühendislik, Bilim Programı : Herhangi Program JULY, 2020 ii Elif Yıldırım, student of ITU Faculty of Aeronautics and Astronautics student ID 110170601, successfully defended the graduation entitled COMPUTATION OF DESING LOADS ASSOCIATED WITH ENGİNE SURGE FOR A SUPERSONIC AIRCRAFT”, which she prepared after fulfilling the requirements specified in the associated legislations, before the jury whose signatures are below. Thesis Advisor : Prof. Dr. Melike NİKBAY .............................. İstanbul Technical University jury Members : Doç. Dr. Ayşe Gül GÜNGÖR ............................. İstanbul Technical University Doç. Öğr. Üyesi Kemal Bülent YÜCEİL .............................. İstanbul Technical University Date of Submission : 13 July 2020 Date of Defense : 23 July 2020 iii To my family, iv FOREWORD I would like to thank my advisor Prof. Dr. Melike NİKBAY for her support and kindness during the preparation process of this thesis. I would also like to thank my advisor in TUSAŞ, Ali Han YILDIRIM, who did not withhold his help and patiently answered every question I asked during my internship and preparation of my project. Special thanks for my dear friends Kübra TEZCAN and Gamze ÖZEN for their wonderful frienship and support throughout my university life.
    [Show full text]