I GRADUATION PROJECT JULY, 2020 COMPUTATION of DESING
Total Page:16
File Type:pdf, Size:1020Kb
ISTANBUL TECHNICAL UNIVERSITY FACULTY OF AERONAUTICS AND ASTRONAUTICS COMPUTATION OF DESING LOADS ASSOCIATED WITH ENGİNE SURGE FOR A SUPERSONIC AIRCRAFT GRADUATION PROJECT Elif YILDIRIM Department of Aeronautical Engineering ThesisAnabilim Advisor Dalı: Prof. : He Dr.rhangi Melike Mühendislik, NİKBAY Bilim Programı : Herhangi Program JULY, 2020 i ISTANBUL TECHNICAL UNIVERSITY FACULTY OF AERONAUTICS AND ASTRONAUTICS COMPUTATION OF DESING LOADS ASSOCIATED WITH ENGİNE SURGE FOR A SUPERSONIC AIRCRAFT GRADUATION PROJECT Elif YILDIRIM (110170601) Department of Aeronautıcal Engineering Thesis Advisor: Prof. Dr. Melike NİKBAY Anabilim Dalı : Herhangi Mühendislik, Bilim Programı : Herhangi Program JULY, 2020 ii Elif Yıldırım, student of ITU Faculty of Aeronautics and Astronautics student ID 110170601, successfully defended the graduation entitled COMPUTATION OF DESING LOADS ASSOCIATED WITH ENGİNE SURGE FOR A SUPERSONIC AIRCRAFT”, which she prepared after fulfilling the requirements specified in the associated legislations, before the jury whose signatures are below. Thesis Advisor : Prof. Dr. Melike NİKBAY .............................. İstanbul Technical University jury Members : Doç. Dr. Ayşe Gül GÜNGÖR ............................. İstanbul Technical University Doç. Öğr. Üyesi Kemal Bülent YÜCEİL .............................. İstanbul Technical University Date of Submission : 13 July 2020 Date of Defense : 23 July 2020 iii To my family, iv FOREWORD I would like to thank my advisor Prof. Dr. Melike NİKBAY for her support and kindness during the preparation process of this thesis. I would also like to thank my advisor in TUSAŞ, Ali Han YILDIRIM, who did not withhold his help and patiently answered every question I asked during my internship and preparation of my project. Special thanks for my dear friends Kübra TEZCAN and Gamze ÖZEN for their wonderful frienship and support throughout my university life. Finally, I owe my gratitude to my family, who helped me come to these days by raising and educating me and never withhold their support. Without the support of the above writing this thesis would not have been as interesting as it was. JULY 2020 Elif YILDIRIM v vi TABLE OF CONTENTS Page TABLE OF CONTENTS ......................................................................................... vii ABBREVIATIONS ................................................................................................... ix SUMMARY ............................................................................................................. xiv 1. INTRODUCTION ............................................................................................ 15 1.1 Purpose of Thesis ............................................................................................. 15 2. LITERATURE REVIEW ................................................................................ 16 2.1 Conditions That Can Cause Engine Surge ....................................................... 17 2.2 Technical Terms Investigation ................................................................... 17 2.2.1 Defining Technical Terms...................................................................... 17 2.2.2 Experimental Methods to Create Engine Stall ....................................... 20 2.3 Parameters in Hammershock That Affect Each Other ............................... 21 2.3.1 Hammershock Propagation and Strength ............................................... 21 2.3.2 Hammershock Pressure Ratio/ Overpressure ......................................... 22 2.3.3 Bypass Ratio Effect ................................................................................ 22 2.3.4 Temperature Effect................................................................................. 23 2.3.5 Rise Time Effect .................................................................................... 23 2.3.6 Inlet Geometry and Area Ratio Effect ................................................... 25 2.3.7 Effect of Volume Change....................................................................... 27 2.3.8 Effect of Duct Length............................................................................. 28 2.3.9 Effect of Angle of Attack on Maximum Pressure Recovery ................. 28 2.3.10 Effect of Flow Reduction Ratio ......................................................... 29 2.3.11 To Avoid Surge Condition and Minimize Its Detrimental Effects .... 30 2.4 Test Case Review ....................................................................................... 31 2.4.1 Pratt & Whitney F119-Pw-100 Turbofan Engine .................................. 31 2.4.2 General Electric J85-13 Turbojet Engine ............................................... 33 2.4.3 Pratt & Whitney TF30-P-1/3 Turbofan Engine ..................................... 34 2.4.4 General Electric GE 1/10 Turbofan Engine ........................................... 35 2.4.5 F101 Turbofan Engine ........................................................................... 36 2.4.6 Volvo RM12 Turbofan Engine .............................................................. 36 2.4.7 Rolls-Royce Olympus 593 Turbojet Engine .......................................... 38 2.4.8 General Electric GE-4 turbojet Engine .................................................. 39 2.4.9 Pratt & Whitney F100-PW-200 Turbofan Engine ................................. 39 2.4.10 General Electric YJ93Turbojet Engine .............................................. 40 2.4.11 Unnamed Submerged S-Duct CFD Study of Hammershock ............. 40 2.4.12 RAE M-2129 Intake Model ............................................................... 43 2.5 Selection of Hammershock Test Case .............................................................. 44 3. BOUNDARY CONDITION DETERMINATION ........................................ 47 3.1 Isentropic Relationships ............................................................................. 47 3.2 Supersonic-Compressible Flow Features ................................................... 49 3.3 Numerical Formulations............................................................................. 52 vii 3.3.1 Engine Face Boundary Conditions ......................................................... 53 3.4 Unsteady Theory Review ........................................................................... 55 4. RAE M2129 S-SHAPED DUCT GENERAL PROPERTIES ...................... 56 4.1 Geometry Drawing ..................................................................................... 56 4.2 Boundary Conditions ........................................................................................ 56 4.3 Grid Generation Process ............................................................................. 57 4.4 Post Process ...................................................................................................... 58 5. STEADY STATE SUPERSONIC ANALYSIS ............................................. 59 5.1 Literature Experimental Study Results of Steady State Analysis .............. 60 5.2 Literature Computational Study Results of Steady State Analysis ............ 63 6. UNSTEADY SUPERSONIC ANALYSIS ...................................................... 67 6.1 Literature Experimental Study Results of Unsteady Analysis ................... 67 6.2 Literature Computational Study Results of Unsteady Analysis ................. 69 6.3 Hammeshock Rise Time Effect Study of RAE M2129 ............................. 82 7. UNSTAEDY CFD METHODOLOGY DEVELOPMENT .......................... 84 7.1 Parameters that Effect Transient Analysis Convergency ................................. 85 7.1.1 Time Step Size and Inner Iteration ......................................................... 85 7.1.2 Courant Number ..................................................................................... 86 7.1.3 Under- Relaxation Factors ..................................................................... 86 7.2 Hammershock Transient Analysis Problem Challenges ............................ 88 7.2.1 Solution Limits Consideration ............................................................... 88 7.2.2 Fast and Effective Transient CFD Post Process ........................................ 89 7.2.3 Non-Uniform Boundary Condition Definition with Profile Application 90 7.2.4 Other CFD Program Failures during Hammershock Convergence ....... 91 REFERENCES ......................................................................................................... 92 viii ABBREVIATIONS AGARD : Advisory Group on Aerospace Research and Development AIP : Aerodynamic Interface Plane CFD : Computional Fluid Dynamics CFR : Capture Flow Ratio CPU : Central Processing Unit DC : Distortion Paramater OPR : Overpressure Ratio MFP : Mass Flow Parameter NAL : National Aerospace Laboratory NASA : National Aeronautics and Space Administration IDDES : Improved Delayed Detach-Eddy Simulation RAE : Royal Aircraft Establishment DDES : Delayed Detached Eddy Simulation DES : Detached Eddy Simulation RANS : Reynolds Average Navier Stokes LMFR : Low Mass Flow Rate HMFR : High Mass Flow Rate S-A : Spalart-Allmaras (turbulence model) URANS : Unsteady Reynolds Averaged Navier Stokes PR : Pressure Recovery VIGVs : Inlet Guide Vanes ix x LIST OF TABLES Page Table 2.4.6.1 : Hammershock Propagation of Jas 39 GRIPEN A) Close to the Duct Exit, B) In the Middle of the Duct, C) Close to The Entrance of Duct, D) In front of the Duct Entrance, Young & Beaulieu (1975)………………………...37 Table 2.4.11.1