A Global Plastid Phylogeny of the Brake Fern Genus Pteris (Pteridaceae) and Related Genera in the Pteridoideae
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
"National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary."
Intro 1996 National List of Vascular Plant Species That Occur in Wetlands The Fish and Wildlife Service has prepared a National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary (1996 National List). The 1996 National List is a draft revision of the National List of Plant Species That Occur in Wetlands: 1988 National Summary (Reed 1988) (1988 National List). The 1996 National List is provided to encourage additional public review and comments on the draft regional wetland indicator assignments. The 1996 National List reflects a significant amount of new information that has become available since 1988 on the wetland affinity of vascular plants. This new information has resulted from the extensive use of the 1988 National List in the field by individuals involved in wetland and other resource inventories, wetland identification and delineation, and wetland research. Interim Regional Interagency Review Panel (Regional Panel) changes in indicator status as well as additions and deletions to the 1988 National List were documented in Regional supplements. The National List was originally developed as an appendix to the Classification of Wetlands and Deepwater Habitats of the United States (Cowardin et al.1979) to aid in the consistent application of this classification system for wetlands in the field.. The 1996 National List also was developed to aid in determining the presence of hydrophytic vegetation in the Clean Water Act Section 404 wetland regulatory program and in the implementation of the swampbuster provisions of the Food Security Act. While not required by law or regulation, the Fish and Wildlife Service is making the 1996 National List available for review and comment. -
Biodiversity Plan for the South East of South Australia 1999
SUMMARY Biodiversity Plan for the South East of South Australia 1999 rks & W Pa i Department for Environment ld l a l i f n e o i t Heritage and Aboriginal Affairs a N South Government of South Australia Australia AUTHORS Tim Croft (National Parks & Wildlife SA) Georgina House (QED) Alison Oppermann (National Parks & Wildlife SA) Ann Shaw Rungie (QED) Tatia Zubrinich (PPK Environment & Infrastructure Pty Ltd) CARTOGRAPHY AND DESIGN National Parks & Wildlife SA (Cover) Geographic Analysis and Research Unit, Planning SA Pierris Kahrimanis PPK Environment & Infrastructure Pty Ltd ACKNOWLEDGEMENTS The authors are grateful to Professor Hugh Possingham, the Nature Conservation Society, and the South Australian Farmers Federation in providing the stimulus for the Biodiversity Planning Program and for their ongoing support and involvement Dr Bob Inns and Professor Possingham have also contributed significantly towards the information and design of the South East Biodiversity Plan. We also thank members of the South East community who have provided direction and input into the plan through consultation and participation in workshops © Department for Environment, Heritage and Aboriginal Affairs, 1999 ISBN 0 7308 5863 4 Cover Photographs (top to bottom) Lowan phebalium (Phebalium lowanense) Photo: D.N. Kraehenbuehl Swamp Skink (Egernia coventryi) Photo: J. van Weenen Jaffray Swamp Photo: G. Carpenter Little Pygmy Possum (Cercartetus lepidus) Photo: P. Aitken Red-necked Wallaby (Macropus rufogriseus) Photo: P. Canty 2 diversity Plan for the South East of South Australia — Summary Foreword The conservation of our natural biodiversity is essential for the functioning of natural systems. Aside from the intrinsic importance of conserving the diversity of species many of South Australia's economic activities are based on the sustainable use, conservation and management of biodiversity. -
Morfología Y Distribución Del Complejo Pteris Cretica L
MEP Candollea 66(1) COMPLET_Mise en page 1 26.07.11 11:03 Page159 Morfología y distribución del complejo Pteris cretica L. (Pteridaceae) para el continente americano Olga Gladys Martínez Abstract Résumé MARTÍNEZ, O. G. (2011). Morphology and distribution of the complex MARTÍNEZ, O. G. (2011). Morphologie et distribution du complexe Pteris Pteris cretica L. (Pteridaceace) for the American continent. Candollea 66: cretica L. (Pteridaceace) pour le continent américain. Candollea 66: 159-180. 159-180. In Spanish, English and French abstracts. En espagnol, résumés anglais et français. The Pteris cretica L. (Pteridaceae) taxonomical complex is Le complexe taxonomique Pteris cretica L. (Pteridaceae) revised for the American continent. It is composed by seven est présenté pour le continent américain. Cette entité est species: Pteris ciliaris D. C. Eaton, Pteris cretica L., Pteris constituée de sept espèces: Pteris ciliaris D. C. Eaton, denticulata Sw., Pteris ensiformis Burm. f., Pteris multifida Pteris cretica L., Pteris denticulata Sw., Pteris ensiformis Poir., Pteris mutilata L. and Pteris tristicula Raddi. Morpho- Burm. f., Pteris multifida Poir., Pteris mutilata L. et Pteris logical characters have been identified in order to distinguish tristicula Raddi. Des caractères morphologiques ont été défi- the members of the group. An identification key is proposed nis afin de distinguer les différents membres de ce complexe. and a diagnostic description, distribution and illustrations are Une clé d’identification est proposée, et pour chaque espèce provided for each species. une description, une carte de distribution et des illustrations sont inclues. Key-words PTERIDACEAE – Pteris – Taxonomy – Morphology – America Dirección del autor: IBIGEO. Herbario MCNS. Facultad de Ciencias Naturales. -
Pteris ×Caridadiae (Pteridaceae), a New Hybrid Fern from Costa Rica
Pteris ×caridadiae (Pteridaceae), a new hybrid fern from Costa Rica 1 2 3 2 WESTON L. TESTO ,JAMES E. WATKINS ,JARMILA PITTERMANN , AND REHMAN MOMIN 1 Pringle Herbarium, Plant Biology Department, University of Vermont, 27 Colchester Avenue, Burlington, VT 05405, USA; e-mail: [email protected] 2 Biology Department, Colgate University, 13 Oak Drive, Hamilton, NY 13346, USA; e-mail: [email protected] 3 Department of Ecology and Evolutionary Biology, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA; e-mail: [email protected] Abstract. Pteris ×caridadiae, a new hybrid fern from Costa Rica, is described and its relationships to its parents and other Pteris species are discussed. This is the first hybrid reported among a taxonomically complicated group of large, tripartite-leaved neotropical Pteris species. Key Words: Fern, hybrid, Pteridaceae, Pteris, systematics, taxonomy. The cosmopolitan fern genus Pteris L. com- upper montane forest adjacent to a small stream. prises approximately 250 species and is most The forest understory at the site was dominated by diverse in low- to mid-elevation forests in the large terrestrial fern taxa, including Diplazium tropics (Chao et al., 2014; Zhang et al., 2014). diplazioides (Klotzsch & H. Karst.) Alston, The group has received limited attention from Dicksonia sellowiana Hook., Thelypteris thomsonii taxonomists, and despite the contributions of re- (Jenman) Proctor, Pteris livida Mett. (Testo 633, cent phylogenetic studies (e.g., Bouma et al., VT), and Pteris podophylla Sw. (Testo 634, MO, 2010;Chaoetal.,2012; Jaruwattanaphan et al., VT). The two Pteris species were particularly abun- 2013; Chao et al., 2014; Zhang et al., 2014), the dant at the site, with numerous large (to 2 m tall) delineation of many species complexes remains sporophytes and sizeable populations of gameto- problematic. -
Insights on Reticulate Evolution in Ferns, with Special Emphasis on the Genus Ceratopteris
Utah State University DigitalCommons@USU All Graduate Theses and Dissertations Graduate Studies 8-2021 Insights on Reticulate Evolution in Ferns, with Special Emphasis on the Genus Ceratopteris Sylvia P. Kinosian Utah State University Follow this and additional works at: https://digitalcommons.usu.edu/etd Part of the Ecology and Evolutionary Biology Commons Recommended Citation Kinosian, Sylvia P., "Insights on Reticulate Evolution in Ferns, with Special Emphasis on the Genus Ceratopteris" (2021). All Graduate Theses and Dissertations. 8159. https://digitalcommons.usu.edu/etd/8159 This Dissertation is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Theses and Dissertations by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. INSIGHTS ON RETICULATE EVOLUTION IN FERNS, WITH SPECIAL EMPHASIS ON THE GENUS CERATOPTERIS by Sylvia P. Kinosian A dissertation submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in Ecology Approved: Zachariah Gompert, Ph.D. Paul G. Wolf, Ph.D. Major Professor Committee Member William D. Pearse, Ph.D. Karen Mock, Ph.D Committee Member Committee Member Karen Kaphiem, Ph.D Michael Sundue, Ph.D. Committee Member Committee Member D. Richard Cutler, Ph.D. Interim Vice Provost of Graduate Studies UTAH STATE UNIVERSITY Logan, Utah 2021 ii Copyright © Sylvia P. Kinosian 2021 All Rights Reserved iii ABSTRACT Insights on reticulate evolution in ferns, with special emphasis on the genus Ceratopteris by Sylvia P. Kinosian, Doctor of Philosophy Utah State University, 2021 Major Professor: Zachariah Gompert, Ph.D. -
A Journal on Taxonomic Botany, Plant Sociology and Ecology Reinwardtia
A JOURNAL ON TAXONOMIC BOTANY, PLANT SOCIOLOGY AND ECOLOGY REINWARDTIA A JOURNAL ON TAXONOMIC BOTANY, PLANT SOCIOLOGY AND ECOLOGY Vol. 13(4): 317 —389, December 20, 2012 Chief Editor Kartini Kramadibrata (Herbarium Bogoriense, Indonesia) Editors Dedy Darnaedi (Herbarium Bogoriense, Indonesia) Tukirin Partomihardjo (Herbarium Bogoriense, Indonesia) Joeni Setijo Rahajoe (Herbarium Bogoriense, Indonesia) Teguh Triono (Herbarium Bogoriense, Indonesia) Marlina Ardiyani (Herbarium Bogoriense, Indonesia) Eizi Suzuki (Kagoshima University, Japan) Jun Wen (Smithsonian Natural History Museum, USA) Managing editor Himmah Rustiami (Herbarium Bogoriense, Indonesia) Secretary Endang Tri Utami Lay out editor Deden Sumirat Hidayat Illustrators Subari Wahyudi Santoso Anne Kusumawaty Reviewers Ed de Vogel (Netherlands), Henk van der Werff (USA), Irawati (Indonesia), Jan F. Veldkamp (Netherlands), Jens G. Rohwer (Denmark), Lauren M. Gardiner (UK), Masahiro Kato (Japan), Marshall D. Sunberg (USA), Martin Callmander (USA), Rugayah (Indonesia), Paul Forster (Australia), Peter Hovenkamp (Netherlands), Ulrich Meve (Germany). Correspondence on editorial matters and subscriptions for Reinwardtia should be addressed to: HERBARIUM BOGORIENSE, BOTANY DIVISION, RESEARCH CENTER FOR BIOLOGY-LIPI, CIBINONG 16911, INDONESIA E-mail: [email protected] REINWARDTIA Vol 13, No 4, pp: 367 - 377 THE NEW PTERIDOPHYTE CLASSIFICATION AND SEQUENCE EM- PLOYED IN THE HERBARIUM BOGORIENSE (BO) FOR MALESIAN FERNS Received July 19, 2012; accepted September 11, 2012 WITA WARDANI, ARIEF HIDAYAT, DEDY DARNAEDI Herbarium Bogoriense, Botany Division, Research Center for Biology-LIPI, Cibinong Science Center, Jl. Raya Jakarta -Bogor Km. 46, Cibinong 16911, Indonesia. E-mail: [email protected] ABSTRACT. WARD AM, W., HIDAYAT, A. & DARNAEDI D. 2012. The new pteridophyte classification and sequence employed in the Herbarium Bogoriense (BO) for Malesian ferns. -
Ariane Andreola Relação Entre a Presença De Samambaias E Licófitas E O Teor De Elementos-Traço Em Áreas Degradadas Pela Mi
ARIANE ANDREOLA RELAÇÃO ENTRE A PRESENÇA DE SAMAMBAIAS E LICÓFITAS E O TEOR DE ELEMENTOS-TRAÇO EM ÁREAS DEGRADADAS PELA MINERAÇÃO DE CARVÃO EM SANTA CATARINA, SUL DO BRASIL Tese apresentada ao Programa de Pós-graduação em Ciências Agrárias da Universidade do Estado de Santa Catarina, como requisito parcial para obtenção do grau de Doutor em Ciência do Solo. Orientador: Dra. Mari Lucia Campos LAGES, SC 2015 A559r Andreola, Ariane Relação entre a presença de samambaias e licófitas e o teor de elementos-traço em áreas degradadas pela mineração de carvão em Santa Catarina, sul do Brasil / Ariane Andreola. – Lages, 2015. 158 p. : il. ; 21 cm Orientadora: Mari Lucia Campos Inclui bibliografia. Tese (doutorado) – Universidade do Estado de Santa Catarina, Centro de Ciências Agroveteinárias, Programa de Pós-Graduação em Ciência do Solo, Lages, 2015. 1. Depósitos de rejeito e estéreis. 2. Drenagem ácida de mina. 3. Degradação ambiental. 4. Levantamento de espécies vasculares. I. Adreola, Ariane. II. Campos, Mari Lucia. III. Universidade do Estado de Santa Catarina. Programa de Pós-Graduação em Ciência do Solo. IV. Título Ficha catalográfica elaborada pela BibliotecaCDD: 363.739 Setorial – 20.ed. do CAV/ UDESC Lages, Santa Catarina, 16 de abril de 2015. ARIANE ANDREOLA RELAÇÃO ENTRE A PRESENÇA DE SAMAMBAIAS E LICÓFITAS E O TEOR DE ELEMENTOS-TRAÇO EM ÁREAS DEGRADADAS PELA MINERAÇÃO DE CARVÃO EM SANTA CATARINA, SUL DO BRASIL Tese apresentada ao Programa de Pós-graduação em Ciências Agrárias da Universidade do Estado de Santa Catarina, como requisito parcial para obtenção do grau de Doutor em Ciência do Solo. Banca Examinadora Orientador/Presidente: Dra. -
The Island Rule and Its Application to Multiple Plant Traits
The island rule and its application to multiple plant traits Annemieke Lona Hedi Hendriks A thesis submitted to the Victoria University of Wellington in partial fulfilment of the requirements for the degree of Master of Science in Ecology and Biodiversity Victoria University of Wellington, New Zealand 2019 ii “The larger the island of knowledge, the longer the shoreline of wonder” Ralph W. Sockman. iii iv General Abstract Aim The Island Rule refers to a continuum of body size changes where large mainland species evolve to become smaller and small species evolve to become larger on islands. Previous work focuses almost solely on animals, with virtually no previous tests of its predictions on plants. I tested for (1) reduced floral size diversity on islands, a logical corollary of the island rule and (2) evidence of the Island Rule in plant stature, leaf size and petiole length. Location Small islands surrounding New Zealand; Antipodes, Auckland, Bounty, Campbell, Chatham, Kermadec, Lord Howe, Macquarie, Norfolk, Snares, Stewart and the Three Kings. Methods I compared the morphology of 65 island endemics and their closest ‘mainland’ relative. Species pairs were identified. Differences between archipelagos located at various latitudes were also assessed. Results Floral sizes were reduced on islands relative to the ‘mainland’, consistent with predictions of the Island Rule. Plant stature, leaf size and petiole length conformed to the Island Rule, with smaller plants increasing in size, and larger plants decreasing in size. Main conclusions Results indicate that the conceptual umbrella of the Island Rule can be expanded to plants, accelerating understanding of how plant traits evolve on isolated islands. -
Feussom Et Al. 2020 Version Ac
Depositional environments and landscapes of the upper Miocene Ipururo Formation at Shumanza, Subandean Zone, northern Peru Augustin Feussom Tcheumeleua,b, Séverine Fauquettea, Angélica Aliaga Castilloc,d, Camila Martinezc,e, Federico Morenoc,f, Rosa E. Navarreteg, Francisco Parrag,h, Frank P. Wesselinghi, Rodolfo Salas-Gismondid, Rafael Varas-Malcad, Martin Roddazg,j, Pierre-Olivier Antoinea* a Institut des Sciences de l’Evolution de Montpellier (ISEM), CNRS, Université de Montpellier, IRD, EPHE, Montpellier, France b Laboratoire de Paléoécologie, Département de Géographie, Université de Montréal, Chemin-de-la-Côte-Ste- Catherine, Montréal QC H2V 2B8, Canada c Smithsonian Tropical Research Institute, Unit 0948, APO AA 34002, Balboa, Ancon, 0843-03092, Panama d Departamento de Paleontología de Vertebrados, Museo de Historia Natural - Universidad Nacional Mayor de San Marcos, Lima, Peru e L.H. Bailey Hortorium, Plant Biology Section, School of Integrative Plant Sciences, Cornell University, Ithaca, New York 14853, USA f Earth & Environmental Sciences, University of Rochester, 227 Hutchison Hall, University of Rochester, Rochester, NY, 14627, USA. g Paleosedes E.U. Tv 27 n°57-49 Campin, Bogotá, Colombia h Géosciences-Environnement Toulouse, Université de Toulouse; UPS (SVT-OMP); CNRS; IRD; 14 Avenue Édouard Belin, F-31400 Toulouse, France i Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, Netherlands l Laboratório de Geocronologia, Instituto de Geociências, Universidade de Brasília, Brasília, DF 70910-000, Brazil * corresponding author Abstract During the late Miocene, the Andean–Amazonian region experienced drastic climatic and environmental changes, notably due to a major phase in the Andean uplift. The fossil record is virtually undocumented for this period in the Subandean Zone, where very few palaeoenvironmental and palaeontological investigations have been undertaken. -
Arsenic Tolerance, Accumulation and Elemental Distribution in Twelve Ferns: a Screening Study
AUSTRALASIAN JOURNAL OF ECOTOXICOLOGY Vol. 11, pp. 101-110, 2005 Arsenic tolerance and accumulation in ferns Sridokchan et al ARSENIC TOLERANCE, ACCUMULATION AND ELEMENTAL DISTRIBUTION IN TWELVE FERNS: A SCREENING STUDY Weeraphan Sridokchan1, Scott Markich2 and Pornsawan Visoottiviseth1* 1Department of Biology, Mahidol University, Bangkok 10400, Thailand. 2Aquatic Solutions International, PO Box 3125 Telopea, NSW 2117, Australia. Manuscript received, 15/11/2004; resubmitted, 22/12/2004; accepted, 24/12/2005. ABSTRACT Twelve species of ferns were screened for their ability to tolerate and hyperaccumulate arsenic (As). Ferns were exposed to 50 or 100 mg As L-1 for 7 and 14 days using hydroponic (soil free) experiments. The fronds and roots were analysed for As, selected macronutrients (K, Ca, Mg, P and S) and micronutrients (Al, Fe, Cu and Zn). Five fern species (Asplenium aethiopicum, Asplenium australasicum, Asplenium bulbiferum, Doodia heterophylla and Microlepia strigosa) were found to be sensitive to As. However, only A. australasicum and A. bulbiferum could hyperaccumulate arsenic up to 1240 and 2630 µg As g-1 dry weight (dw), respectively, in their fronds after 7 days at 100 mg As L-1. This is the first known report of ferns that are sensitive to As, yet are As hyperaccumulators. All As tolerant ferns (Adiantum capillus-veneris, Pteris cretica var. albolineata, Pteris cretica var. wimsetti and Pteris umbrosa) were from the Pteridaceae family. P. cretica and P. umbrosa accumulated the majority of As in their fronds (up to 3090 µg As g-1 dw) compared to the roots (up to 760 µg As g-1 dw). In contrast, A. -
Vegetation of Basket Swamp National Park, Northern Tablelands, New South Wales
Cunninghamia 8(4): 2004 Hunter, Vegetation of Basket Swamp National Park 453 Vegetation of Basket Swamp National Park, Northern Tablelands, New South Wales John T. Hunter School of Human & Environmental Studies, University of New England NSW 2351, AUSTRALIA Email: [email protected] Abstract: The vegetation of Basket Swamp National Park (2820 ha), 30 km north east of Tenterfield (28°54’S, 152°09’E) in the Tenterfield Shire, in the Northern Tablelands Bioregion NSW, is described. Seven vegetation communities are mapped based on survey of plots, subsequent ground-truthing, air photo interpretation and substrate. Communities described are: (1) Eucalyptus campanulata (Blackbutt) – Eucalyptus cameronii (Diehard Stringybark) Open Forests, (2) Eucalyptus campanulata (Blackbutt) – Eucalyptus cameronii (Diehard Stringybark) Grassy Open Forests, (3) Leptospermum trinervium (Tea-tree) – Leptospermum polygalifolium subsp. transmontanum (Creek Tea-tree) Riparian Scrub, (4) Leptospermum trinervium (Tea-tree) – Kunzea obovata (Pink Kunzea) – Leptospermum novae-angliae (New England Tea-tree) Heaths & Shrublands, (5) Ceratopetalum apetalum (Coachwood) – Lophostemon confertus (Brush Box) Closed Forest, (6) Eucalyptus obliqua (Messmate) – Eucalyptus campanulata (Blackbutt) Tall Open Forests, and (7) Baeckea omissa (Baeckea) – Baloskion stenocoleum (Sedge) Heathy Sedgelands. All but two communities (3 & 7) were considered adequately reserved locally, no listed endangered or vulnerable commu- nities were found. Thirty-six taxa were considered to be of conservation significance of which two are listed as vulnerable on Schedule 2 of the NSW TSC Act. A further nine have been reported under the RoTAP criteria. Cunninghamia (2004) 8(4): 453–466 Introduction Basket Swamp National Park is located approximately 30 km north east of Tenterfield and 10 km west of the Mount Lindsay Highway (28°54’S, 152°09’E) (Fig. -
Fern Classification
16 Fern classification ALAN R. SMITH, KATHLEEN M. PRYER, ERIC SCHUETTPELZ, PETRA KORALL, HARALD SCHNEIDER, AND PAUL G. WOLF 16.1 Introduction and historical summary / Over the past 70 years, many fern classifications, nearly all based on morphology, most explicitly or implicitly phylogenetic, have been proposed. The most complete and commonly used classifications, some intended primar• ily as herbarium (filing) schemes, are summarized in Table 16.1, and include: Christensen (1938), Copeland (1947), Holttum (1947, 1949), Nayar (1970), Bierhorst (1971), Crabbe et al. (1975), Pichi Sermolli (1977), Ching (1978), Tryon and Tryon (1982), Kramer (in Kubitzki, 1990), Hennipman (1996), and Stevenson and Loconte (1996). Other classifications or trees implying relationships, some with a regional focus, include Bower (1926), Ching (1940), Dickason (1946), Wagner (1969), Tagawa and Iwatsuki (1972), Holttum (1973), and Mickel (1974). Tryon (1952) and Pichi Sermolli (1973) reviewed and reproduced many of these and still earlier classifica• tions, and Pichi Sermolli (1970, 1981, 1982, 1986) also summarized information on family names of ferns. Smith (1996) provided a summary and discussion of recent classifications. With the advent of cladistic methods and molecular sequencing techniques, there has been an increased interest in classifications reflecting evolutionary relationships. Phylogenetic studies robustly support a basal dichotomy within vascular plants, separating the lycophytes (less than 1 % of extant vascular plants) from the euphyllophytes (Figure 16.l; Raubeson and Jansen, 1992, Kenrick and Crane, 1997; Pryer et al., 2001a, 2004a, 2004b; Qiu et al., 2006). Living euphyl• lophytes, in turn, comprise two major clades: spermatophytes (seed plants), which are in excess of 260 000 species (Thorne, 2002; Scotland and Wortley, Biology and Evolution of Ferns and Lycopliytes, ed.