Metabolic Potential of Lithifying Cyanobacteria-Dominated Thrombolitic Mats

Total Page:16

File Type:pdf, Size:1020Kb

Metabolic Potential of Lithifying Cyanobacteria-Dominated Thrombolitic Mats Photosynth Res DOI 10.1007/s11120-013-9890-6 REGULAR PAPER Metabolic potential of lithifying cyanobacteria-dominated thrombolitic mats Jennifer M. Mobberley • Christina L. M. Khodadad • Jamie S. Foster Received: 19 April 2013 / Accepted: 9 July 2013 Ó Springer Science+Business Media Dordrecht 2013 Abstract Thrombolites are unlaminated carbonate depos- Introduction its formed by the metabolic activities of microbial mats and can serve as potential models for understanding the molecular Microbialites are carbonate-depositing ecosystems that are mechanisms underlying the formation of lithifying commu- the products of multiple microbial metabolisms and com- nities. To assess the metabolic complexity of these ecosys- plex biogeochemical cycling. Microbialites have a long tems, high throughput DNA sequencing of a thrombolitic mat fossil record dating back billions of years and are generally metagenome was coupled with phenotypic microarray anal- thought to be one of the oldest known ecosystems on Earth ysis. Functional protein analysis of the thrombolite commu- (Grotzinger and Knoll 1999). Microbialites are distin- nity metagenome delineated several of the major metabolic guished by their carbonate macrostructure. Those micro- pathways that influence carbonate mineralization including bialites with a laminated macrostructure are referred to as cyanobacterial photosynthesis, sulfate reduction, sulfide stromatolites, whereas microbialites with unlaminated oxidation, and aerobic heterotrophy. Spatial profiling of clotted fabrics are known as thrombolites. The laminated metabolite utilization within the thrombolite-forming stromatolites are the result of iterative microbial growth microbial mats suggested that the top 5 mm contained a more that accrete through the precipitation of calcium carbonate metabolically diverse and active community than the deeper as well as the trapping and binding of inorganic sediment within the mat. This study provides evidence that despite the (Reid et al. 2000; Macintyre et al. 2000; Paerl et al. 2001; lack of mineral layering within the clotted thrombolite Andres et al. 2006). In contrast to the stromatolites, the structure there is a vertical gradient of metabolic activity thrombolites show a high degree of heterogeneity and within the thrombolitic mat community. This metagenomic variability in carbonate precipitation; however, the under- profiling also serves as a foundation for examining the active lying microbial processes that form these thrombolitic role individual functional groups of microbes play in coor- clotted structures are not well understood. dinating metabolisms that lead to mineralization. To explore this issue further, the thrombolites of High- borne Cay, an island located in the Exuma Sound, The Keywords Thrombolites Á Microbial mats Á Bahamas were targeted. At Highborne Cay, both stromat- Metagenome Á Photosynthesis Á Carbonate olites and thrombolites actively grow in the subtidal and mineralization Á Microbialites intertidal zones, respectively. The thrombolites of High- borne Cay form large, unlaminated carbonate structures ranging in size from a few centimeters to several meters Electronic supplementary material The online version of this wide (Fig. 1a). Overlaying these thrombolitic carbonate article (doi:10.1007/s11120-013-9890-6) contains supplementary material, which is available to authorized users. structures is a thick (*1 cm) microbial mat (Fig. 1b) comprised of a diverse microbial consortium, which is J. M. Mobberley Á C. L. M. Khodadad Á J. S. Foster (&) thought to drive the precipitation of extracellular carbonate Department of Microbiology and Cell Science, University of through their various metabolic activities (Planavsky et al. Florida, Space Life Sciences Lab, Kennedy Space Center, FL 32899, USA 2009; Myshrall et al. 2010; Mobberley et al. 2012). There e-mail: jfoster@ufl.edu have been several recent studies that have characterized the 123 Photosynth Res taphonomy of the thrombolite carbonate structures (Plan- The production of EPS material has been shown to be a avsky and Ginsburg 2009), the surrounding oolitic sand critical factor associate with carbonate precipitation in grains (Edgcomb et al. 2013), as well as the biogeochem- modern microbialites. The EPS matrix within microbial mats istry and microbial diversity of the thrombolite-forming not only serves as a structural support for the growing com- microbial mats, from here on referred to as thrombolitic munity (Decho 1990), but it can also chelate cations, such as mats (Desnues et al. 2008; Myshrall et al. 2010; Mobberley Ca2? and function as nucleation sites for calcium carbonate et al. 2012). These previous analyses have revealed several nucleation (Decho 2000; Dupraz and Visscher 2005). The key functional groups of organisms associated with the EPS associated with the adjacent stromatolites of Highborne mats and include: phototrophs, aerobic heterotrophic bac- Cay are predominantly generated by cyanobacteria and sul- teria, sulfate-reducing bacteria, sulfide-oxidizing bacteria, fate-reducing bacteria (Decho 2000; Braissant et al. 2007). and fermentative bacteria. All these guilds have been The cyanobacterial EPS material contains approximately shown to be critical for carbonate precipitation and/or 50 % carbohydrates, such as mannose, xylose and fucose, dissolution in other lithifying microbial mat ecosystems, whereas the remaining material is a mixture of amino acids, such as stromatolites (e.g., Dupraz and Visscher 2005; uronic acids, and glycans (Kawaguchi and Decho 2000). Visscher and Stolz 2005; Baumgartner et al. 2009). Through the heterotrophic degradation of the EPS material in Together, these groups of organisms generate steep vertical the stromatolites, the Ca2? binding capacity of the EPS can be chemical gradients within the thrombolites with large diel altered resulting in the release of Ca2? ions, which can fluctuations. For example, O2 levels throughout the diel increase the saturation index of the microenvironment and cycle can go from undetectable to several-fold supersatu- promote localized areas of carbonate precipitation within the rated in the top 1–5 mm of the lithifying mat surface mat community (Dupraz and Visscher 2005). (Myshrall et al. 2010). The dominant organisms responsi- Despite recent studies regarding the viral and microbial ble for this O2-rich layer are photosynthetic cyanobacteria, diversity, sedimentology, and biogeochemistry of the Ba- which have been shown to be a driving force in the bio- hamian thrombolitic mats (Desnues et al. 2008; Planavsky geochemical cycling in thrombolites (Myshrall et al. 2010). and Ginsburg 2009; Planavsky et al. 2009; Myshrall et al. In the thrombolitic mats of Highborne Cay, one of the 2010; and Mobberley et al. 2012; Edgcomb et al. 2013) prominent cyanobacteria that comprises the upper few there remains an overall lack of understanding of the millimeters of the thrombolitic mats are calcified filamen- molecular mechanisms that underlie and regulate the tous Dichothrix spp. (Fig. 1c; Planavsky et al. 2009; metabolisms associated with these communities. In this Mobberley et al. 2012), which are characterized by their study, we survey the metabolic potential of thrombolitic basal heterocysts and tapered apical ends (Planavsky et al. mats by sequencing the metagenome using massively 2009). These bundles of vertically orientated filaments parallel DNA sequencing. The metagenomic sequencing produce copious amounts of exopolymeric substances was coupled with phenotypic microarray analysis, which (EPS) and appear to be ‘‘hot spots’’ for carbonate precip- assessed vertical metabolite utilization patterns throughout itation in the thrombolitic mats. The carbonate deposition the thrombolitic mats, thereby generating a spatial profile is thought to be due to the elevated rates of photosynthesis, of metabolic activities. These two approaches help to which increases the pH and the carbonate saturation state increase our understanding of the underlying molecular within the mats and facilitates carbonate precipitation pathways and overall genomic complexity associated with (Dupraz and Visscher 2005). these unlaminated lithifying communities. abc 1 2 3 Fig. 1 Modern thrombolites of Highborne Cay, Bahamas. a Throm- contained the lower portion of the mat between 5 and 9 mm. bolitic build-ups along the intertidal zone. Bar = 30 cm. b Cross Bar = 1 cm. c Within the upper Zone 1 there is an increase in the section of thrombolitic microbial mat demarking three zones within relative abundance of the filamentous cyanobacterium Dichothix spp. the mat. Zone 1 comprised the upper 3 mm of the mat, whereas Zone (arrows) which appear as hot spots of carbonate deposition within the 2 consisted of 3–5 mm beneath the surface of the mat, and Zone 3 thrombolitic mats. Bar = 0.5 mm 123 Photosynth Res Materials and methods sequencing data was deposited into GenBank NCBI short read archive SRP021141. Thrombolitic mat sample collection Analysis of thrombolitic mat metagenomes Thrombolitic mats were collected from the island of Highborne Cay, The Bahamas (76°490 W, 24°430N) in Each of the three metagenomic libraries (Thr-A, Thr-B, February 2010 from an intertidal thrombolite platform and Thr-C) was analyzed and annotated with the Me- located at Site 5 (Fig. 1a; Andres and Reid 2006). Based on taGenome Rapid Annotation using Subsystem Technology previous studies there are four known types of thrombolitic (MG-RAST) version 3.3 pipeline (Meyer et al. 2008) and mats (Myshrall et al. 2010;
Recommended publications
  • Lesson 4 Plant and Animal Classification and Identification
    LESSON 4 PLANT AND ANIMAL CLASSIFICATION AND IDENTIFICATION Aim Become familiar with the basic ways in which plants and animals can be classified and identified CLASSIFICATION OF ORGANISMS Living organisms that are relevant to the ecotourism tour guide are generally divided into two main groups of things: ANIMALS........and..........PLANTS The boundaries between these two groups are not always clear, and there is an increasing tendency to recognise as many as five or six kingdoms. However, for our purposes we will stick with the two kingdoms. Each of these main groups is divided up into a number of smaller groups called 'PHYLA' (or Phylum). Each phylum has certain broad characteristics which distinguish it from other groups of plants or animals. For example, all flowering plants are in the phyla 'Anthophyta' (if a plant has a flower it is a member of the phyla 'Anthophyta'). All animals which have a backbone are members of the phyla 'Vertebrate' (i.e. Vertebrates). Getting to know these major groups of plants and animals is the first step in learning the characteristics of, and learning to identify living things. You should try to gain an understanding of the order of the phyla - from the simplest to the most complex - in both the animal and plant kingdoms. Gaining this type of perspective will provide you with a framework which you can slot plants or animals into when trying to identify them in nature. Understanding the phyla is only the first step, however. Phyla are further divided into groups called 'classes'. Classes are divided and divided again and so on.
    [Show full text]
  • Methanospirillum Hungatei GP1 As an S Layer MAX FIRTEL,1 GORDON SOUTHAM,1 GEORGE HARAUZ,2 and TERRY J
    JOURNAL OF BACTERIOLOGY, Dec. 1993, p. 7550-7560 Vol. 175, No. 23 0021-9193/93/237550-11$02.00/0 Copyright © 1993, American Society for Microbiology Characterization of the Cell Wall of the Sheathed Methanogen Methanospirillum hungatei GP1 as an S Layer MAX FIRTEL,1 GORDON SOUTHAM,1 GEORGE HARAUZ,2 AND TERRY J. BEVERIDGE'* Department ofMicrobiology' and Department ofMolecular Biology and Genetics, 2 College of Biological Sciences, University of Guelph, Guelph, Ontario, Canada N1G 2W1 Received 16 June 1993/Accepted 27 September 1993 The cell wall of MethanospiriUum hungatei GP1 is a labile structure that has been difficult to isolate and Downloaded from characterize because the cells which it encases are contained within a sheath. Cell-sized fragments, 560 nm wide by several micrometers long, of cell wall were extracted by a novel method involving the gradual drying of the filaments in 2% (wtlvol) sodium dodecyl sulfate and 10%0 (wt/vol) sucrose in 50 mM N-2-hydroxyeth- ylpiperazine-N'-2-ethanesulfonic acid (HEPES) buffer containing 10 mM EDTA. The surface was a hexagonal array (a = b = 15.1 nm) possessing a helical superstructure with a ca. 2.50 pitch angle. In shadowed relief, the smooth outer face was punctuated with deep pits, whereas the inner face was relatively featureless. Computer-based two-dimensional reconstructed views of the negatively stained layer demonstrated 4.0- and 2.0-nm-wide electron-dense regions on opposite sides of the layer likely corresponding to the openings of funnel-shaped channels. The face featuring the larger openings best corresponds to the outer face of the layer.
    [Show full text]
  • Platyhelminthes, Nemertea, and "Aschelminthes" - A
    BIOLOGICAL SCIENCE FUNDAMENTALS AND SYSTEMATICS – Vol. III - Platyhelminthes, Nemertea, and "Aschelminthes" - A. Schmidt-Rhaesa PLATYHELMINTHES, NEMERTEA, AND “ASCHELMINTHES” A. Schmidt-Rhaesa University of Bielefeld, Germany Keywords: Platyhelminthes, Nemertea, Gnathifera, Gnathostomulida, Micrognathozoa, Rotifera, Acanthocephala, Cycliophora, Nemathelminthes, Gastrotricha, Nematoda, Nematomorpha, Priapulida, Kinorhyncha, Loricifera Contents 1. Introduction 2. General Morphology 3. Platyhelminthes, the Flatworms 4. Nemertea (Nemertini), the Ribbon Worms 5. “Aschelminthes” 5.1. Gnathifera 5.1.1. Gnathostomulida 5.1.2. Micrognathozoa (Limnognathia maerski) 5.1.3. Rotifera 5.1.4. Acanthocephala 5.1.5. Cycliophora (Symbion pandora) 5.2. Nemathelminthes 5.2.1. Gastrotricha 5.2.2. Nematoda, the Roundworms 5.2.3. Nematomorpha, the Horsehair Worms 5.2.4. Priapulida 5.2.5. Kinorhyncha 5.2.6. Loricifera Acknowledgements Glossary Bibliography Biographical Sketch Summary UNESCO – EOLSS This chapter provides information on several basal bilaterian groups: flatworms, nemerteans, Gnathifera,SAMPLE and Nemathelminthes. CHAPTERS These include species-rich taxa such as Nematoda and Platyhelminthes, and as taxa with few or even only one species, such as Micrognathozoa (Limnognathia maerski) and Cycliophora (Symbion pandora). All Acanthocephala and subgroups of Platyhelminthes and Nematoda, are parasites that often exhibit complex life cycles. Most of the taxa described are marine, but some have also invaded freshwater or the terrestrial environment. “Aschelminthes” are not a natural group, instead, two taxa have been recognized that were earlier summarized under this name. Gnathifera include taxa with a conspicuous jaw apparatus such as Gnathostomulida, Micrognathozoa, and Rotifera. Although they do not possess a jaw apparatus, Acanthocephala also belong to Gnathifera due to their epidermal structure. ©Encyclopedia of Life Support Systems (EOLSS) BIOLOGICAL SCIENCE FUNDAMENTALS AND SYSTEMATICS – Vol.
    [Show full text]
  • Systematics , Zoogeography , Andecologyofthepriapu
    SYSTEMATICS, ZOOGEOGRAPHY, AND ECOLOGY OF THE PRIAPULIDA by J. VAN DER LAND (Rijksmuseum van Natuurlijke Historie, Leiden) With 89 text-figures and five plates CONTENTS Ι Introduction 4 1.1 Plan 4 1.2 Material and methods 5 1.3 Acknowledgements 6 2 Systematics 8 2.1 Historical introduction 8 2.2 Phylum Priapulida 9 2.2.1 Diagnosis 10 2.2.2 Classification 10 2.2.3 Definition of terms 12 2.2.4 Basic adaptive features 13 2.2.5 General features 13 2.2.6 Systematic notes 2 5 2.3 Key to the taxa 20 2.4 Survey of the taxa 29 Priapulidae 2 9 Priapulopsis 30 Priapulus 51 Acanthopriapulus 60 Halicryptus 02 Tubiluchidae 7° Tubiluchus 73 3 Zoogeography and ecology 84 3.1 Distribution 84 3.1.1 Faunistics 90 3.1.2 Expeditions 93 3.2 Ecology 96 3.2.1 Substratum 96 3.2.2 Depth 97 3.2.3 Temperature 97 3.24 Salinity 98 3.2.5 Oxygen 98 3.2.6 Food 99 3.2.7 Predators 100 3.2.8 Communities 102 3.3 Theoretical zoogeography 102 3.3.1 Bipolarity 102 3.3.2 Relict distribution 103 3.3.3 Concluding remarks 104 References 105 4 ZOOLOGISCHE VERHANDELINGEN 112 (1970) 1 INTRODUCTION The phylum Priapulida is only a very small group of marine worms but, since these animals apparently represent the last remnants of a once un- doubtedly much more important animal type, they are certainly of great scientific interest. Therefore, it is to be regretted that a comprehensive review of our present knowledge of the group does not exist, which does not only cause the faulty way in which the Priapulida are treated usually in textbooks and works on phylogeny, but also hampers further studies.
    [Show full text]
  • Genome-Resolved Meta-Analysis of the Microbiome in Oil Reservoirs Worldwide
    microorganisms Article Genome-Resolved Meta-Analysis of the Microbiome in Oil Reservoirs Worldwide Kelly J. Hidalgo 1,2,* , Isabel N. Sierra-Garcia 3 , German Zafra 4 and Valéria M. de Oliveira 1 1 Microbial Resources Division, Research Center for Chemistry, Biology and Agriculture (CPQBA), University of Campinas–UNICAMP, Av. Alexandre Cazellato 999, 13148-218 Paulínia, Brazil; [email protected] 2 Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato 255, Cidade Universitária, 13083-862 Campinas, Brazil 3 Biology Department & CESAM, University of Aveiro, Aveiro, Portugal, Campus de Santiago, Avenida João Jacinto de Magalhães, 3810-193 Aveiro, Portugal; [email protected] 4 Grupo de Investigación en Bioquímica y Microbiología (GIBIM), Escuela de Microbiología, Universidad Industrial de Santander, Cra 27 calle 9, 680002 Bucaramanga, Colombia; [email protected] * Correspondence: [email protected]; Tel.: +55-19981721510 Abstract: Microorganisms inhabiting subsurface petroleum reservoirs are key players in biochemical transformations. The interactions of microbial communities in these environments are highly complex and still poorly understood. This work aimed to assess publicly available metagenomes from oil reservoirs and implement a robust pipeline of genome-resolved metagenomics to decipher metabolic and taxonomic profiles of petroleum reservoirs worldwide. Analysis of 301.2 Gb of metagenomic information derived from heavily flooded petroleum reservoirs in China and Alaska to non-flooded petroleum reservoirs in Brazil enabled us to reconstruct 148 metagenome-assembled genomes (MAGs) of high and medium quality. At the phylum level, 74% of MAGs belonged to bacteria and 26% to archaea. The profiles of these MAGs were related to the physicochemical parameters and recovery management applied.
    [Show full text]
  • Phylogenetics of Archaeal Lipids Amy Kelly 9/27/2006 Outline
    Phylogenetics of Archaeal Lipids Amy Kelly 9/27/2006 Outline • Phlogenetics of Archaea • Phlogenetics of archaeal lipids • Papers Phyla • Two? main phyla – Euryarchaeota • Methanogens • Extreme halophiles • Extreme thermophiles • Sulfate-reducing – Crenarchaeota • Extreme thermophiles – Korarchaeota? • Hyperthermophiles • indicated only by environmental DNA sequences – Nanoarchaeum? • N. equitans a fast evolving euryarchaeal lineage, not novel, early diverging archaeal phylum – Ancient archael group? • In deepest brances of Crenarchaea? Euryarchaea? Archaeal Lipids • Methanogens – Di- and tetra-ethers of glycerol and isoprenoid alcohols – Core mostly archaeol or caldarchaeol – Core sometimes sn-2- or Images removed due to sn-3-hydroxyarchaeol or copyright considerations. macrocyclic archaeol –PMI • Halophiles – Similar to methanogens – Exclusively synthesize bacterioruberin • Marine Crenarchaea Depositional Archaeal Lipids Biological Origin Environment Crocetane methanotrophs? methane seeps? methanogens, PMI (2,6,10,15,19-pentamethylicosane) methanotrophs hypersaline, anoxic Squalane hypersaline? C31-C40 head-to-head isoprenoids Smit & Mushegian • “Lost” enzymes of MVA pathway must exist – Phosphomevalonate kinase (PMK) – Diphosphomevalonate decarboxylase – Isopentenyl diphosphate isomerase (IPPI) Kaneda et al. 2001 Rohdich et al. 2001 Boucher et al. • Isoprenoid biosynthesis of archaea evolved through a combination of processes – Co-option of ancestral enzymes – Modification of enzymatic specificity – Orthologous and non-orthologous gene
    [Show full text]
  • A Dicarboxylate/4-Hydroxybutyrate Autotrophic Carbon Assimilation Cycle in the Hyperthermophilic Archaeum Ignicoccus Hospitalis
    A dicarboxylate/4-hydroxybutyrate autotrophic carbon assimilation cycle in the hyperthermophilic Archaeum Ignicoccus hospitalis Harald Huber*†, Martin Gallenberger*, Ulrike Jahn*, Eva Eylert‡, Ivan A. Berg§, Daniel Kockelkorn§, Wolfgang Eisenreich‡, and Georg Fuchs§ *Lehrstuhl fu¨r Mikrobiologie und Archaeenzentrum, Universita¨t Regensburg, Universitaetsstrasse 31, D-93053 Regensburg, Germany; ‡Lehrstuhl fu¨r Biochemie, Department Chemie, Technische Universita¨t Mu¨ nchen, Lichtenbergstrasse 4, D-85748 Garching, Germany; and §Lehrstuhl fu¨r Mikrobiologie, Universita¨t Freiburg, Scha¨nzlestrasse 1, D-79104 Freiburg, Germany Edited by Dieter So¨ll, Yale University, New Haven, CT, and approved April 1, 2008 (received for review February 1, 2008) Ignicoccus hospitalis is an anaerobic, autotrophic, hyperthermophilic starting from acetyl-CoA (4). On the basis of these data, pyruvate Archaeum that serves as a host for the symbiotic/parasitic Archaeum synthase and phosphoenolpyruvate (PEP) carboxylase were pos- Nanoarchaeum equitans. It uses a yet unsolved autotrophic CO2 tulated as CO2 fixing enzymes, with PEP carboxylase serving as the fixation pathway that starts from acetyl-CoA (CoA), which is reduc- only enzyme used for oxaloacetate synthesis. In addition, the tively carboxylated to pyruvate. Pyruvate is converted to phosphoe- operation of an incomplete ‘‘horseshoe-type’’ citric acid cycle, in nol-pyruvate (PEP), from which glucogenesis as well as oxaloacetate which 2-oxoglutarate oxidation does not take place, was demon- formation branch off. Here, we present the complete metabolic cycle strated. Enzyme and labeling data indicated a conventional glu- by which the primary CO2 acceptor molecule acetyl-CoA is regener- coneogenesis, but with some enzymes unrelated to those of the ated. Oxaloacetate is reduced to succinyl-CoA by an incomplete classical pathway.
    [Show full text]
  • Archaeoglobus Profundus Type Strain (AV18T)
    Standards in Genomic Sciences (2010) 2:327-346 DOI:10.4056/sigs.942153 Complete genome sequence of Archaeoglobus profundus type strain (AV18T) Mathias von Jan1, Alla Lapidus2, Tijana Glavina Del Rio2, Alex Copeland2, Hope Tice2, Jan-Fang Cheng2, Susan Lucas2, Feng Chen2, Matt Nolan2, Lynne Goodwin2,3, Cliff Han2,3, Sam Pitluck2, Konstantinos Liolios2, Natalia Ivanova2, Konstantinos Mavromatis2, Galina Ovchinnikova2, Olga Chertkov2, Amrita Pati2, Amy Chen4, Krishna Palaniappan4, Miriam Land2,5, Loren Hauser2,5, Yun-Juan Chang2,5, Cynthia D. Jeffries2,5, Elizabeth Saunders2, Thomas Brettin2,3, John C. Detter2,3, Patrick Chain2,4, Konrad Eichinger6, Harald Huber6, Ste- fan Spring1, Manfred Rohde7, Markus Göker1, Reinhard Wirth6, Tanja Woyke2, Jim Bristow2, Jonathan A. Eisen2,8, Victor Markowitz4, Philip Hugenholtz2, Nikos C Kyrpides2, and Hans-Peter Klenk1* 1 DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany 2 DOE Joint Genome Institute, Walnut Creek, California, USA 3 Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA 4 Biological Data Management and Technology Center, Lawrence Berkeley National Laboratory, Berkeley, California, USA 5 Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA 6 University of Regensburg, Microbiology – Archaeenzentrum, Regensburg, Germany 7 HZI – Helmholtz Centre for Infection Research, Braunschweig, Germany 8 University of California Davis Genome Center, Davis, California, USA *Corresponding author: Hans-Peter Klenk Keywords: hyperthermophilic, marine, strictly anaerobic, sulfate respiration, hydrogen utili- zation, hydrothermal systems, Archaeoglobaceae, GEBA Archaeoglobus profundus (Burggraf et al. 1990) is a hyperthermophilic archaeon in the eu- ryarchaeal class Archaeoglobi, which is currently represented by the single family Archaeog- lobaceae, containing six validly named species and two strains ascribed to the genus 'Geoglobus' which is taxonomically challenged as the corresponding type species has no va- lidly published name.
    [Show full text]
  • Archaeology of Eukaryotic DNA Replication
    Downloaded from http://cshperspectives.cshlp.org/ on September 25, 2021 - Published by Cold Spring Harbor Laboratory Press Archaeology of Eukaryotic DNA Replication Kira S. Makarova and Eugene V. Koonin National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894 Correspondence: [email protected] Recent advances in the characterization of the archaeal DNA replication system together with comparative genomic analysis have led to the identification of several previously un- characterized archaeal proteins involved in replication and currently reveal a nearly com- plete correspondence between the components of the archaeal and eukaryotic replication machineries. It can be inferred that the archaeal ancestor of eukaryotes and even the last common ancestor of all extant archaea possessed replication machineries that were compa- rable in complexity to the eukaryotic replication system. The eukaryotic replication system encompasses multiple paralogs of ancestral components such that heteromeric complexes in eukaryotes replace archaeal homomeric complexes, apparently along with subfunctionali- zation of the eukaryotic complex subunits. In the archaea, parallel, lineage-specific dupli- cations of many genes encoding replication machinery components are detectable as well; most of these archaeal paralogs remain to be functionally characterized. The archaeal rep- lication system shows remarkable plasticity whereby even some essential components such as DNA polymerase and single-stranded DNA-binding protein are displaced by unrelated proteins with analogous activities in some lineages. ouble-stranded DNA is the molecule that Okazaki fragments (Kornberg and Baker 2005; Dcarries genetic information in all cellular Barry and Bell 2006; Hamdan and Richardson life-forms; thus, replication of this genetic ma- 2009; Hamdan and van Oijen 2010).
    [Show full text]
  • Table S4. Phylogenetic Distribution of Bacterial and Archaea Genomes in Groups A, B, C, D, and X
    Table S4. Phylogenetic distribution of bacterial and archaea genomes in groups A, B, C, D, and X. Group A a: Total number of genomes in the taxon b: Number of group A genomes in the taxon c: Percentage of group A genomes in the taxon a b c cellular organisms 5007 2974 59.4 |__ Bacteria 4769 2935 61.5 | |__ Proteobacteria 1854 1570 84.7 | | |__ Gammaproteobacteria 711 631 88.7 | | | |__ Enterobacterales 112 97 86.6 | | | | |__ Enterobacteriaceae 41 32 78.0 | | | | | |__ unclassified Enterobacteriaceae 13 7 53.8 | | | | |__ Erwiniaceae 30 28 93.3 | | | | | |__ Erwinia 10 10 100.0 | | | | | |__ Buchnera 8 8 100.0 | | | | | | |__ Buchnera aphidicola 8 8 100.0 | | | | | |__ Pantoea 8 8 100.0 | | | | |__ Yersiniaceae 14 14 100.0 | | | | | |__ Serratia 8 8 100.0 | | | | |__ Morganellaceae 13 10 76.9 | | | | |__ Pectobacteriaceae 8 8 100.0 | | | |__ Alteromonadales 94 94 100.0 | | | | |__ Alteromonadaceae 34 34 100.0 | | | | | |__ Marinobacter 12 12 100.0 | | | | |__ Shewanellaceae 17 17 100.0 | | | | | |__ Shewanella 17 17 100.0 | | | | |__ Pseudoalteromonadaceae 16 16 100.0 | | | | | |__ Pseudoalteromonas 15 15 100.0 | | | | |__ Idiomarinaceae 9 9 100.0 | | | | | |__ Idiomarina 9 9 100.0 | | | | |__ Colwelliaceae 6 6 100.0 | | | |__ Pseudomonadales 81 81 100.0 | | | | |__ Moraxellaceae 41 41 100.0 | | | | | |__ Acinetobacter 25 25 100.0 | | | | | |__ Psychrobacter 8 8 100.0 | | | | | |__ Moraxella 6 6 100.0 | | | | |__ Pseudomonadaceae 40 40 100.0 | | | | | |__ Pseudomonas 38 38 100.0 | | | |__ Oceanospirillales 73 72 98.6 | | | | |__ Oceanospirillaceae
    [Show full text]
  • Abundance and Microbial Diversity from Surface to Deep Water Layers Over the Rio 2 Grande Rise, South Atlantic 3 4 Juliana Correa Neiva Ferreira*, Natascha M
    bioRxiv preprint doi: https://doi.org/10.1101/2021.04.22.441028; this version posted April 23, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Abundance and Microbial Diversity from Surface to Deep Water Layers Over the Rio 2 Grande Rise, South Atlantic 3 4 Juliana Correa Neiva Ferreira*, Natascha M. Bergo*, Pedro M. Tura, Mateus Gustavo Chuqui, 5 Frederico P. Brandini, Luigi Jovane, Vivian H. Pellizari 6 7 Affiliations 8 Instituto Oceanográfico, Universidade de São Paulo, São Paulo, Brazil 9 10 Corresponding author 11 Correspondence to Dra Natascha Menezes Bergo, [email protected] 12 *These authors contributed equally to this work 13 14 ORCID number 15 0000-0002-5367-0257 - Juliana Correa Neiva Ferreira 16 0000-0002-8236-9412 - Natascha Menezes Bergo 17 0000-0003-2880-7028 - Pedro M. Tura 18 0000-0002-4167-0030 - Mateus Gustavo Chuqui 19 0000-0002-3177-4274 - Frederico Pereira Brandini 20 0000-0003-4348-4714 - Luigi Jovane 21 0000-0003-2757-6352 - Vivian Helena Pellizari 22 23 Highlights 24 • Rio Grande Rise pelagic microbiome 25 • Picoplankton carbon biomass partitioning through pelagic zones 26 • Unique SAR11 Clade I oligotype in the shallowest Tropical Water 27 • Higher number of shared oligotypes between deepest water masses 28 • Nitrogen, carbon and sulfur may be important contributors for the pelagic microbiome 29 30 Abstract 31 Marine microbes control the flux of matter and energy essential for life in the oceans.
    [Show full text]
  • Methanogens Diversity During Anaerobic Sewage Sludge Stabilization and the Effect of Temperature
    processes Article Methanogens Diversity during Anaerobic Sewage Sludge Stabilization and the Effect of Temperature Tomáš Vítˇez 1,2, David Novák 3, Jan Lochman 3,* and Monika Vítˇezová 1,* 1 Department of Experimental Biology, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic; [email protected] 2 Department of Agricultural, Food and Environmental Engineering, Faculty of AgriSciences, Mendel University, 61300 Brno, Czech Republic 3 Department of Biochemistry, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic; [email protected] * Correspondence: [email protected] (J.L.); [email protected] (M.V.); Tel.: +420-549-495-602 (J.L.); Tel.: +420-549-497-177 (M.V.) Received: 29 June 2020; Accepted: 10 July 2020; Published: 12 July 2020 Abstract: Anaerobic sludge stabilization is a commonly used technology. Most fermenters are operated at a mesophilic temperature regime. Modern trends in waste management aim to minimize waste generation. One of the strategies can be achieved by anaerobically stabilizing the sludge by raising the temperature. Higher temperatures will allow faster decomposition of organic matter, shortening the retention time, and increasing biogas production. This work is focused on the description of changes in the community of methanogenic microorganisms at different temperatures during the sludge stabilization. At higher temperatures, biogas contained a higher percentage of methane, however, there was an undesirable accumulation of ammonia in the fermenter. Representatives of the hydrogenotrophic genus Methanoliea were described at all temperatures tested. At temperatures up to 50 ◦C, a significant proportion of methanogens were also formed by acetoclastic representatives of Methanosaeta sp. and acetoclastic representatives of the order Methanosarcinales.
    [Show full text]