Reducing the Genetic Code Induces Massive Rearrangement of the Proteome

Total Page:16

File Type:pdf, Size:1020Kb

Reducing the Genetic Code Induces Massive Rearrangement of the Proteome Reducing the genetic code induces massive rearrangement of the proteome Patrick O’Donoghuea,b, Laure Pratc, Martin Kucklickd, Johannes G. Schäferc, Katharina Riedele, Jesse Rinehartf,g, Dieter Söllc,h,1, and Ilka U. Heinemanna,1 Departments of aBiochemistry and bChemistry, The University of Western Ontario, London, ON N6A 5C1, Canada; Departments of cMolecular Biophysics and Biochemistry, fCellular and Molecular Physiology, and hChemistry, and gSystems Biology Institute, Yale University, New Haven, CT 06520; dDepartment of Microbiology, Technical University of Braunschweig, Braunschweig 38106, Germany; and eDivision of Microbial Physiology and Molecular Biology, University of Greifswald, Greifswald 17487, Germany Contributed by Dieter Söll, October 22, 2014 (sent for review September 29, 2014; reviewed by John A. Leigh) Expanding the genetic code is an important aim of synthetic Opening codons by reducing the genetic code is highly biology, but some organisms developed naturally expanded ge- promising, but it is unknown how removing 1 amino acid from netic codes long ago over the course of evolution. Less than 1% of the genetic code might impact the proteome or cellular viability. all sequenced genomes encode an operon that reassigns the stop Many genetic code variations are found in nature (15), including codon UAG to pyrrolysine (Pyl), a genetic code variant that results stop or sense codon reassignments, codon recoding, and natural from the biosynthesis of Pyl-tRNAPyl. To understand the selective code expansion (16). Pyrrolysine (Pyl) is a rare example of nat- advantage of genetically encoding more than 20 amino acids, we ural genetic code expansion. Evidence for genetically encoded constructed a markerless tRNAPyl deletion strain of Methanosarcina Pyl is found in <1% of all sequenced genomes (17). In these acetivorans (ΔpylT) that cannot decode UAG as Pyl or grow on organisms, Pyl is encoded by the UAG codon, which requires trimethylamine. Phenotypic defects in the ΔpylT strain were evi- tRNAPyl, pyrrolysyl-tRNA synthetase (PylRS), and the products dent in minimal medium containing methanol. Proteomic analyses of three genes (pylBCD) that synthesize Pyl from two molecules of wild type (WT) M. acetivorans and ΔpylT cells identified 841 of lysine (18). The PylRS enzyme was engineered to genetically proteins from >7,000 significant peptides detected by MS/MS. Pro- encode >100 ncAAs (19). The Pyl encoding system has already tein production from UAG-containing mRNAs was verified for 19 been used to expand the genetic codes of Escherichia coli (20– proteins. Translation of UAG codons was verified by MS/MS for 22), mammalian cells, and animals (23). eight proteins, including identification of a Pyl residue in PylB, Despite the use of Pyl in synthetic biology, little is known which catalyzes the first step of Pyl biosynthesis. Deletion of about the role of Pyl in its native environment or the evolu- tRNAPyl globally altered the proteome, leading to >300 differen- tionary pressures that sustain expanded genetic codes in nature. tially abundant proteins. Reduction of the genetic code from 21 The Pyl-decoding trait is found in methanogenic archaea of the to 20 amino acids led to significant down-regulation in translation orders Methanosarcinales and Methanomassiliicoccales (24) and initiation factors, amino acid metabolism, and methanogenesis certain anaerobic bacteria (17). In addition to producing 74% of from methanol, which was offset by a compensatory (100-fold) global methane emissions, methanogens are remarkable for their up-regulation in dimethyl sulfide metabolic enzymes. The data ability to survive with only the most basic carbon and energy show how a natural proteome adapts to genetic code reduction sources (25). Methanosarcina shows the greatest substrate range and indicate that the selective value of an expanded genetic code among methanogens and survives on acetate, carbon monoxide, is related to carbon source range and metabolic efficiency. methylamines, methanol, or dimethyl sulfide (DMS). Their broad substrate range depends, in part, on the presence of Pyl in the evolution | genetic code expansion | methanogenesis | pyrrolysine | active site of several methylamine methyltransferases (26). Hundreds tRNAPyl of Methanosracina genes contain in-frame TAG codons (27), but natural Pyl incorporation was only shown in methylamine methyl- ynthesizing whole genomes (1) and eliminating codons (2) transferases (17, 28) and tRNAHis guanylyltransferase (Thg1) (29). Sare novel methods for rewriting the genetic code that may dramatically alter the repertoire of genetically encoded amino Significance acids. Expansion of the genetic code has led to exciting tech- nologies, including site-directed protein labeling and production Expanding the genetic code is an important aim of synthetic of proteins with hardwired posttranslational modifications (3). biology, but some organisms developed naturally expanded The current approaches to cotranslationally insert noncanonical genetic codes over the course of evolution. To understand the amino acids (ncAAs) into proteins rely on the reassigning of one selective advantage of genetically encoding more than 20 of three stop codons (4). amino acids, we investigated the proteome-wide response to Although these approaches were highly successful in incor- reducing the genetic code of Methanosarcina acetivorans from porating over 100 ncAAs into proteins (3), they limit the ex- 21 to 20 amino acids. The data show how a natural proteome pansion of the code to no more than 2 additional amino acids at adapts to genetic code reduction and indicate that the selective a time and significantly challenge the cellular production host by value of an expanded genetic code is related to carbon source unnaturally extending proteins and reducing growth rate (5). Al- range and metabolic efficiency. ternate methods focus on quadruplet codons (6, 7) and recoding – (8) or reassigning sense codons (9 13). Attempts to reassign Author contributions: P.O., L.P., K.R., J.R., D.S., and I.U.H. designed research; P.O., M.K., a sense codon in Mycoplasma capricolum were defied by tRNA J.G.S., K.R., J.R., and I.U.H. performed research; P.O., D.S., and I.U.H. analyzed data; and misacylation by endogenous aminoacyl-tRNA synthetases (9). P.O., D.S., and I.U.H. wrote the paper. This result indicates that, although extensively rewriting the ge- Reviewers included: J.A.L., University of Washington. netic code may be possible, it comes with unexpected challenges The authors declare no conflict of interest. related to cellular fitness and translation fidelity. These consid- 1To whom correspondence may be addressed. Email: [email protected] or ilka. erations will impact efforts to engineer cells to synthesize proteins [email protected]. with multiple ncAAs or create biologically contained strains that This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. require an expanded code for survival (14). 1073/pnas.1420193111/-/DCSupplemental. 17206–17211 | PNAS | December 2, 2014 | vol. 111 | no. 48 www.pnas.org/cgi/doi/10.1073/pnas.1420193111 Downloaded by guest on September 24, 2021 Methanosarcina acetivorans provides an ideal model system to Table 1. Growth statistics for M. acetivorans strains identify Pyl-containing proteins and study the impact of genetic Strain Carbon source Doubling time (h) Maximum A Lag time (h) code reduction on the proteome and physiology of the cell. We 578 constructed a markerless tRNAPyl deletion (ΔpylT)strainof WT MeOH 5.9 ± 0.7 1.02 ± 0.01 39.9 ± 1.6 M. acetivorans C2A and used three independent mass spectrom- ΔpylT MeOH 7.9 ± 0.5 0.99 ± 0.02 45.2 ± 1.5 etry (MS) approaches to characterize soluble proteomes from WT TMA 7.5 ± 0.3 1.06 ± 0.40 52.4 ± 0.9 M. acetivorans grown on minimal medium containing trimethyl- amine (TMA) or methanol and ΔpylT cells grown on methanol. The data reveal previously unidentified biochemical roles for Pyl From 21 to 20—Proteome Adaptation to Genetic Code Reduction. To and Pyl-containing proteins and indicate that the expanded genetic better understand the nature of the selective value of Pyl, we code of Methanosarcina is intricately linked with cellular metabo- characterized the soluble proteomes of WT and ΔpylT strains. Of lism and the composition of the proteome. 4,721 potential protein coding genes in M. acetivorans, 841 pro- teins were identified, including ∼300 proteins identified by gel- Results based methods; the liquid chromatography (LC) -MS/MS M. acetivorans with a Reduced Genetic Code. There are 267 ORFs approach identified 583 proteins. Proteins were considered iden- in the M. acetivorans genome with one or multiple in-frame tified if two or more significant peptides (peptide score > 35) were UAG codon(s) (Figs. S1 and S2 and Table S1). Except for Thg1 detected and verified by MS/MS spectra. All peptides identified by and the methylamine methyltransferase (mtxB), it is unknown if LC-MS/MS are listed in Dataset S1. these ORFs are expressed or the resulting protein contains Pyl. The ΔpylT strain has a globally altered proteome (Fig. 2). We To uncover more Pyl-containing proteins and investigate the role identified 347 differentially regulated proteins showing more of Pyl in the M. acetivorans proteome, we constructed and than twofold change (Tables S2 and S3), most of which are Pyl characterized a tRNA deletion strain of M. acetivorans C2A proteins that do not contain Pyl. The most affected pathways (Fig. 1). We monitored the growth rate of three independently include stress response, methanogenesis, methylsulfide metabo- Pyl obtained markerless tRNA deletion mutants and compared lism, translation, and amino acid metabolism (Table 2, Figs. S3 these cells with wild type (WT) cells grown on minimal medium and S4, and Tables S2 and S3). In ΔpylT, proteins involved in containing TMA or methanol (Fig. 1 and Table 1). As expected heat shock (Hsp60 and GroEL/GroES) and oxidative stress re- Pyl (26), the tRNA deletion strain cannot use TMA as a growth sponse pathways were significantly up-regulated (approximately substrate. In rich medium containing yeast extract, previous fivefold).
Recommended publications
  • Phylogenetics of Archaeal Lipids Amy Kelly 9/27/2006 Outline
    Phylogenetics of Archaeal Lipids Amy Kelly 9/27/2006 Outline • Phlogenetics of Archaea • Phlogenetics of archaeal lipids • Papers Phyla • Two? main phyla – Euryarchaeota • Methanogens • Extreme halophiles • Extreme thermophiles • Sulfate-reducing – Crenarchaeota • Extreme thermophiles – Korarchaeota? • Hyperthermophiles • indicated only by environmental DNA sequences – Nanoarchaeum? • N. equitans a fast evolving euryarchaeal lineage, not novel, early diverging archaeal phylum – Ancient archael group? • In deepest brances of Crenarchaea? Euryarchaea? Archaeal Lipids • Methanogens – Di- and tetra-ethers of glycerol and isoprenoid alcohols – Core mostly archaeol or caldarchaeol – Core sometimes sn-2- or Images removed due to sn-3-hydroxyarchaeol or copyright considerations. macrocyclic archaeol –PMI • Halophiles – Similar to methanogens – Exclusively synthesize bacterioruberin • Marine Crenarchaea Depositional Archaeal Lipids Biological Origin Environment Crocetane methanotrophs? methane seeps? methanogens, PMI (2,6,10,15,19-pentamethylicosane) methanotrophs hypersaline, anoxic Squalane hypersaline? C31-C40 head-to-head isoprenoids Smit & Mushegian • “Lost” enzymes of MVA pathway must exist – Phosphomevalonate kinase (PMK) – Diphosphomevalonate decarboxylase – Isopentenyl diphosphate isomerase (IPPI) Kaneda et al. 2001 Rohdich et al. 2001 Boucher et al. • Isoprenoid biosynthesis of archaea evolved through a combination of processes – Co-option of ancestral enzymes – Modification of enzymatic specificity – Orthologous and non-orthologous gene
    [Show full text]
  • Archaeology of Eukaryotic DNA Replication
    Downloaded from http://cshperspectives.cshlp.org/ on September 25, 2021 - Published by Cold Spring Harbor Laboratory Press Archaeology of Eukaryotic DNA Replication Kira S. Makarova and Eugene V. Koonin National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894 Correspondence: [email protected] Recent advances in the characterization of the archaeal DNA replication system together with comparative genomic analysis have led to the identification of several previously un- characterized archaeal proteins involved in replication and currently reveal a nearly com- plete correspondence between the components of the archaeal and eukaryotic replication machineries. It can be inferred that the archaeal ancestor of eukaryotes and even the last common ancestor of all extant archaea possessed replication machineries that were compa- rable in complexity to the eukaryotic replication system. The eukaryotic replication system encompasses multiple paralogs of ancestral components such that heteromeric complexes in eukaryotes replace archaeal homomeric complexes, apparently along with subfunctionali- zation of the eukaryotic complex subunits. In the archaea, parallel, lineage-specific dupli- cations of many genes encoding replication machinery components are detectable as well; most of these archaeal paralogs remain to be functionally characterized. The archaeal rep- lication system shows remarkable plasticity whereby even some essential components such as DNA polymerase and single-stranded DNA-binding protein are displaced by unrelated proteins with analogous activities in some lineages. ouble-stranded DNA is the molecule that Okazaki fragments (Kornberg and Baker 2005; Dcarries genetic information in all cellular Barry and Bell 2006; Hamdan and Richardson life-forms; thus, replication of this genetic ma- 2009; Hamdan and van Oijen 2010).
    [Show full text]
  • Methanogens Diversity During Anaerobic Sewage Sludge Stabilization and the Effect of Temperature
    processes Article Methanogens Diversity during Anaerobic Sewage Sludge Stabilization and the Effect of Temperature Tomáš Vítˇez 1,2, David Novák 3, Jan Lochman 3,* and Monika Vítˇezová 1,* 1 Department of Experimental Biology, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic; [email protected] 2 Department of Agricultural, Food and Environmental Engineering, Faculty of AgriSciences, Mendel University, 61300 Brno, Czech Republic 3 Department of Biochemistry, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic; [email protected] * Correspondence: [email protected] (J.L.); [email protected] (M.V.); Tel.: +420-549-495-602 (J.L.); Tel.: +420-549-497-177 (M.V.) Received: 29 June 2020; Accepted: 10 July 2020; Published: 12 July 2020 Abstract: Anaerobic sludge stabilization is a commonly used technology. Most fermenters are operated at a mesophilic temperature regime. Modern trends in waste management aim to minimize waste generation. One of the strategies can be achieved by anaerobically stabilizing the sludge by raising the temperature. Higher temperatures will allow faster decomposition of organic matter, shortening the retention time, and increasing biogas production. This work is focused on the description of changes in the community of methanogenic microorganisms at different temperatures during the sludge stabilization. At higher temperatures, biogas contained a higher percentage of methane, however, there was an undesirable accumulation of ammonia in the fermenter. Representatives of the hydrogenotrophic genus Methanoliea were described at all temperatures tested. At temperatures up to 50 ◦C, a significant proportion of methanogens were also formed by acetoclastic representatives of Methanosaeta sp. and acetoclastic representatives of the order Methanosarcinales.
    [Show full text]
  • Characterization of Methanosarcina Mazei JL01 Isolated from Holocene
    Proceedings Characterization of Methanosarcina mazei JL01 Isolated from Holocene Arctic Permafrost and Study of the Archaeon Cooperation with Bacterium Sphaerochaeta associata GLS2T † Viktoriia Oshurkova 1,*, Olga Troshina 1, Vladimir Trubitsyn 1, Yana Ryzhmanova 1, Olga Bochkareva 2 and Viktoria Shcherbakova 1 1 Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center Pushchino Center for Biological Research of the Russian Academy of Sciences, prospect Nauki 5, Pushchino, 142290 Moscow, Russia; [email protected] (O.T.); [email protected] (V.T.); [email protected] (Y.R.); [email protected] (V.S.) 2 Institute of Science and Technology (IST Austria), Am Campus 1, 3400 Klosterneuburg, Austria; [email protected] * Correspondence: [email protected] † Presented at the 1st International Electronic Conference on Microbiology, 2–30 November 2020; Available online: https://ecm2020.sciforum.net/. Published: 18 December 2020 Abstract: A mesophilic methanogenic culture, designated JL01, was isolated from Holocene permafrost in the Russian Arctic. After long-term extensive cultivation at 15 °C, it turned out to be a tied binary culture of archaeal (JL01) and bacterial (Sphaerochaeta associata GLS2) strains. Strain JL01 was a strict anaerobe and grew on methanol, acetate, and methylamines as energy and carbon sources. Cells were irregular coccoid, non-motile, non-spore-forming, and Gram-stain-positive. Optimum conditions for growth were 24–28 °C, pH 6.8–7.3, and 0.075–0.1 M NaCl. Phylogenetic tree reconstructions based on 16S rRNA and concatenated alignment of broadly conserved protein- coding genes revealed 16S rRNA’s close relation to Methanosarcina mazei S-6T (similarity 99.5%).
    [Show full text]
  • Extracellular Electron Uptake in Methanosarcinales Is Independent of Multiheme C-Type Cytochromes
    University of Southern Denmark Extracellular electron uptake in Methanosarcinales is independent of multiheme c-type cytochromes Yee, Mon Oo; Rotaru, Amelia-Elena Published in: Scientific Reports DOI: 10.1038/s41598-019-57206-z Publication date: 2020 Document version: Final published version Document license: CC BY Citation for pulished version (APA): Yee, M. O., & Rotaru, A-E. (2020). Extracellular electron uptake in Methanosarcinales is independent of multiheme c-type cytochromes. Scientific Reports, 10(1), [372]. https://doi.org/10.1038/s41598-019-57206-z Go to publication entry in University of Southern Denmark's Research Portal Terms of use This work is brought to you by the University of Southern Denmark. Unless otherwise specified it has been shared according to the terms for self-archiving. If no other license is stated, these terms apply: • You may download this work for personal use only. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying this open access version If you believe that this document breaches copyright please contact us providing details and we will investigate your claim. Please direct all enquiries to [email protected] Download date: 10. Oct. 2021 www.nature.com/scientificreports OPEN Extracellular electron uptake in Methanosarcinales is independent of multiheme c-type cytochromes Mon Oo Yee & Amelia-Elena Rotaru* The co-occurrence of Geobacter and Methanosarcinales is often used as a proxy for the manifestation of direct interspecies electron transfer (DIET) in the environment. Here we tested eleven new co- culture combinations between methanogens and electrogens.
    [Show full text]
  • Methanogenic Archaea: Emerging Partners in the Field of Allergic Diseases
    Clinical Reviews in Allergy & Immunology (2019) 57:456–466 https://doi.org/10.1007/s12016-019-08766-5 Methanogenic Archaea: Emerging Partners in the Field of Allergic Diseases Youssouf Sereme1,2 & Soraya Mezouar1,2 & Ghiles Grine1,2 & Jean Louis Mege1,2,3 & Michel Drancourt1,2 & Pierre Corbeau4,5,6 & Joana Vitte1,2,3 Published online: 14 September 2019 # Springer Science+Business Media, LLC, part of Springer Nature 2019 Abstract Archaea, which form one of four domains of life alongside Eukarya, Bacteria, and giant viruses, have long been neglected as components of the human microbiota and potential opportunistic infectious pathogens. In this review, we focus on methanogenic Archaea, which rely on hydrogen for their metabolism and growth. On one hand, methanogenic Archaea in the gut are functional associates of the fermentative digestion of dietary fibers, favoring the production of beneficial short-chain fatty acids and likely contributing to the weaning reaction during the neonatal window of opportunity. On the other hand, methanogenic Archaea trigger the activation of innate and adaptive responses and the generation of specific T and B cells in animals and humans. In mouse models, lung hypersensitivity reactions can be induced by inhaled methanogenic Archaea mimicking human professional exposure to organic dust. Changes in methanogenic Archaea of the microbiota are detected in an array of dysimmune conditions comprising inflammatory bowel disease, obesity, malnutrition, anorexia, colorectal cancer, and diverticulosis. At the subcellular level, methanogenic Archaea are activators of the TLR8-dependent NLRP3 inflammasome, modulate the release of antimicrobial peptides and drive the production of proinflammatory, Th-1, Th-2, and Th-17 cytokines.
    [Show full text]
  • Variations in the Two Last Steps of the Purine Biosynthetic Pathway in Prokaryotes
    GBE Different Ways of Doing the Same: Variations in the Two Last Steps of the Purine Biosynthetic Pathway in Prokaryotes Dennifier Costa Brandao~ Cruz1, Lenon Lima Santana1, Alexandre Siqueira Guedes2, Jorge Teodoro de Souza3,*, and Phellippe Arthur Santos Marbach1,* 1CCAAB, Biological Sciences, Recoˆ ncavo da Bahia Federal University, Cruz das Almas, Bahia, Brazil 2Agronomy School, Federal University of Goias, Goiania,^ Goias, Brazil 3 Department of Phytopathology, Federal University of Lavras, Minas Gerais, Brazil Downloaded from https://academic.oup.com/gbe/article/11/4/1235/5345563 by guest on 27 September 2021 *Corresponding authors: E-mails: [email protected]fla.br; [email protected]. Accepted: February 16, 2019 Abstract The last two steps of the purine biosynthetic pathway may be catalyzed by different enzymes in prokaryotes. The genes that encode these enzymes include homologs of purH, purP, purO and those encoding the AICARFT and IMPCH domains of PurH, here named purV and purJ, respectively. In Bacteria, these reactions are mainly catalyzed by the domains AICARFT and IMPCH of PurH. In Archaea, these reactions may be carried out by PurH and also by PurP and PurO, both considered signatures of this domain and analogous to the AICARFT and IMPCH domains of PurH, respectively. These genes were searched for in 1,403 completely sequenced prokaryotic genomes publicly available. Our analyses revealed taxonomic patterns for the distribution of these genes and anticorrelations in their occurrence. The analyses of bacterial genomes revealed the existence of genes coding for PurV, PurJ, and PurO, which may no longer be considered signatures of the domain Archaea. Although highly divergent, the PurOs of Archaea and Bacteria show a high level of conservation in the amino acids of the active sites of the protein, allowing us to infer that these enzymes are analogs.
    [Show full text]
  • Methanosarcina Barkeri CM1 Suzanne C
    Lambie et al. Standards in Genomic Sciences (2015) 10:57 DOI 10.1186/s40793-015-0038-5 SHORT GENOME REPORT Open Access The complete genome sequence of the rumen methanogen Methanosarcina barkeri CM1 Suzanne C. Lambie1, William J. Kelly1, Sinead C. Leahy1,2*, Dong Li1, Kerri Reilly1, Tim A. McAllister4, Edith R. Valle4, Graeme T. Attwood1,2 and Eric Altermann1,3* Abstract Methanosarcina species are the most metabolically versatile of the methanogenic Archaea and can obtain energy for growth by producing methane via the hydrogenotrophic, acetoclastic or methylotrophic pathways. Methanosarcina barkeri CM1 was isolated from the rumen of a New Zealand Friesian cow grazing a ryegrass/clover pasture, and its genome has been sequenced to provide information on the phylogenetic diversity of rumen methanogens with a view to developing technologies for methane mitigation. The 4.5 Mb chromosome has an average G + C content of 39 %, and encodes 3523 protein-coding genes, but has no plasmid or prophage sequences. The gene content is very similar to that of M. barkeri Fusaro which was isolated from freshwater sediment. CM1 has a full complement of genes for all three methanogenesis pathways, but its genome shows many differences from those of other sequenced rumen methanogens. Consequently strategies to mitigate ruminant methane need to include information on the different methanogens that occur in the rumen. Keywords: Methanogen, Methane, Ruminant, Methanosarcina barkeri Introduction methylamines, and acetoclastic methanogens (Methano- Ruminants are foregut fermenters and have evolved sarcina) which can utilise acetate to produce CH4 in an efficient digestive system in which microbes ferment addition to the hydrogenotrophic and methylotrophic plant fibre and provide fermentation end-products and pathways.
    [Show full text]
  • Genes in Hydrothermal Sediments of the Guaymas Basin Ashita Dhillon,1 Mark Lever,2 Karen G
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, Aug. 2005, p. 4592–4601 Vol. 71, No. 8 0099-2240/05/$08.00ϩ0 doi:10.1128/AEM.71.8.4592–4601.2005 Copyright © 2005, American Society for Microbiology. All Rights Reserved. Methanogen Diversity Evidenced by Molecular Characterization of Methyl Coenzyme M Reductase A (mcrA) Genes in Hydrothermal Sediments of the Guaymas Basin Ashita Dhillon,1 Mark Lever,2 Karen G. Lloyd,2 Daniel B. Albert,2 Mitchell L. Sogin,1 and Andreas Teske2* Marine Biological Laboratory, The Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Woods Hole, Massachusetts,1 and Department of Marine Sciences, University of North Carolina, Chapel Hill, North Carolina2 Received 19 July 2004/Accepted 4 March 2005 The methanogenic community in hydrothermally active sediments of Guaymas Basin (Gulf of California, Mexico) was analyzed by PCR amplification, cloning, and sequencing of methyl coenzyme M reductase (mcrA) and 16S rRNA genes. Members of the Methanomicrobiales and Methanosarcinales dominated the mcrA and 16S rRNA clone libraries from the upper 15 cm of the sediments. Within the H2/CO2- and formate-utilizing family Methanomicrobiales, two mcrA and 16S rRNA lineages were closely affiliated with cultured species of the genera Methanoculleus and Methanocorpusculum. The most frequently recovered mcrA PCR amplicons within the Methanomicrobiales did not branch with any cultured genera. Within the nutritionally versatile family Meth- anosarcinales, one 16S rRNA amplicon and most of the mcrA PCR amplicons were affiliated with the obligately acetate utilizing species Methanosaeta concilii. The mcrA clone libraries also included phylotypes related to the methyl-disproportionating genus Methanococcoides. However, two mcrA and two 16S rRNA lineages within the Methanosarcinales were unrelated to any cultured genus.
    [Show full text]
  • The Electron Transport of Acetate-Grown
    i The Pennsylvania State University The Graduate School Eberly College of Science THE ELECTRON TRANSPORT OF ACETATE-GROWN METHANOSARCINA ACETIVORANS A Dissertation in Biochemistry, Microbiology, and Molecular Biology by Mingyu Wang 2010 Mingyu Wang Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy December 2010 i The dissertation of Mingyu Wang was reviewed and approved* by the following: James G. Ferry Stanley Person Professor and Director, Center for Microbial Structural Biology Dissertation Advisor Chair of Committee Sarah E. Ades Associate Professor of Biochemistry and Molecular Biology Donald A. Bryant Ernest C. Pollard Professor of Biotechnology and Professor of Biochemistry and Molecular Biology Christopher H. House Associate Professor of Geosciences Ming Tien Professor of Biochemistry Scott B. Selleck Professor and Head, Department of Biochemistry and Molecular Biology *Signatures are on file in the Graduate School iii ABSTRACT The electron transport of marine acetate-utilizing methanogen Methanosarcina acetivorans was investigated, leading to the first identification and partial characterization of two novel ferredoxin: CoM-S-S-CoB electron transport chains. The study of an Rnf-dependent membrane-bound pathway of aceticlastic M. acetivorans that doesn’t reduce CO2 with H2 characterized members both unique to Rnf-dependent pathway and also in common with Ech-dependent ferredoxin: CoM-S-S-CoB electron transport chain in CO2 utilizing aceticlastic methanogens. These include the Rnf complex, cytochrome c, ferredoxin, Cdh, methanophenazine, heterodisulfide reductase and CoM-S-S-CoB. The purification and phylogenetic analysis of ferredoxin suggested an aceticlastic-specific ferredoxin clade among methanogens. This Rnf-dependent electron transport pathway, shared with non-CO2 utilizing Methanosarcina thermophila is analogous to Ech-dependent electron transport pathway in its location and terminal electron partners but differs from the later in that it lacks the use of hydrogenases and H2.
    [Show full text]
  • Methylotrophic Methanogenesis in Hydraulically Fractured Shales
    Methylotrophic Methanogenesis in Hydraulically Fractured Shales Master’s Thesis Presented in Partial Fulfillment of the Requirements for the Degree Master of Science in the Graduate School of The Ohio State University By: Daniel Nimmer Marcus, B.S. Graduate Program in Microbiology The Ohio State University 2016 Thesis Committee: Kelly Wrighton PhD, Advisor Joseph Krzycki PhD Charles Daniels PhD Matthew Sullivan PhD Copyright by Daniel Nimmer Marcus 2016 ABSTRACT Over the last decade shale gas obtained from hydraulic fracturing of deep shale formations has become a sizeable component of the US energy portfolio. There is a growing body of evidence indicating that methanogenic archaea are both present and active in hydraulically fractured shales. However, little is known about the genomic architecture of shale derived methanogens. Here we leveraged natural gas extraction activities in the Appalachian region to gain access to fluid samples from two geographically and geologically distinct shale formations. Samples were collected over a time series from both shales for a period of greater than eleven months. Using assembly based metagenomics, two methanogen genomes from the genus Methanohalophilus were recovered and estimated to be near complete (97.1 and 100%) by 104 archaeal single copy genes. Additionally, a Methanohalophilus isolate was obtained which yielded a genome estimated to be 100% complete by the same metric. Based on metabolic reconstruction, it is inferred that these organisms utilize C-1 methyl substrates for methanogenesis. The ability to utilize monomethylamine, dimethylamine and methanol was experimentally confirmed with the Methanohalophilus isolate. In situ concentrations of C-1 methyl substrates, osmoprotectants, and Cl- were measured in parallel with estimates of community membership.
    [Show full text]
  • Phylogenetic and Functional Analysis of Metagenome Sequence from High-Temperature Archaeal Habitats Demonstrate Linkages Between Metabolic Potential and Geochemistry
    ORIGINAL RESEARCH ARTICLE published: 15 May 2013 doi: 10.3389/fmicb.2013.00095 Phylogenetic and functional analysis of metagenome sequence from high-temperature archaeal habitats demonstrate linkages between metabolic potential and geochemistry William P.Inskeep 1,2*, Zackary J. Jay 1, Markus J. Herrgard 3, Mark A. Kozubal 1, Douglas B. Rusch4, Susannah G.Tringe 5, Richard E. Macur 1, Ryan deM. Jennings 1, Eric S. Boyd 2,6, John R. Spear 7 and Francisco F. Roberto8 1 Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, MT, USA 2 Thermal Biology Institute, Montana State University, Bozeman, MT, USA 3 Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark 4 Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN, USA 5 Department of Energy, Joint Genome Institute, Walnut Creek, CA, USA 6 Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, USA 7 Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, USA 8 Newmont Mining Corporation, Englewood, CO, USA Edited by: Geothermal habitats in Yellowstone National Park (YNP) provide an unparalleled opportu- Martin G. Klotz, University of North nity to understand the environmental factors that control the distribution of archaea in Carolina at Charlotte, USA thermal habitats. Here we describe, analyze, and synthesize metagenomic and geochem- Reviewed by: Ivan Berg, Albert-Ludwigs-Universität ical data collected from seven high-temperature
    [Show full text]