Isoprene Production from Municipal Wastewater Biosolids by Engineered Archaeon Methanosarcina Acetivorans

Total Page:16

File Type:pdf, Size:1020Kb

Isoprene Production from Municipal Wastewater Biosolids by Engineered Archaeon Methanosarcina Acetivorans applied sciences Communication Isoprene Production from Municipal Wastewater Biosolids by Engineered Archaeon Methanosarcina acetivorans Sean Carr, Jared Aldridge and Nicole R. Buan * Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0664, USA; [email protected] (S.C.); [email protected] (J.A.) * Correspondence: [email protected] Featured Application: Engineered Methanosarcina acetivorans can be introduced to municipal wastewater to produce renewable bioisoprene. Abstract: Wastewater biosolids are a promising feedstock for production of value-added renewable chemicals. Methane-producing archaea (methanogens) are already used to produce renewable biogas via the anaerobic treatment of wastewater. The ability of methanogens to efficiently convert dissolved organic carbon into methane makes them an appealing potential platform for biorefining using metabolic engineering. We have engineered a strain of the methanogen Methanosarcina acetivorans to produce the volatile hemiterpene isoprene in addition to methane. The engineered strain was adapted to grow in municipal wastewater through cultivation in a synthetic wastewater medium. When introduced to municipal wastewater the engineered methanogens were able to compete with the indigenous microorganisms and produce 0.97 mM of isoprene (65.9 ± 21.3 g per m3 of effluent). The production of isoprene in wastewater appears to be dependent on the quantity of available methanogenic substrate produced during upstream digestion by heterotrophic fermenters. This shows that with minimal adaptation it is possible to drop-in engineered methanogens to Citation: Carr, S.; Aldridge, J.; Buan, existing wastewater environments and attain value-added products in addition to the processing of N.R. Isoprene Production from wastewater. This shows the potential for utilizing methanogens as a platform for low-cost production Municipal Wastewater Biosolids by of renewable materials without expensive feedstocks or the need to build or adapt existing facilities. Engineered Archaeon Methanosarcina acetivorans. Appl. Sci. 2021, 11, 3342. Keywords: biorefining; isoprene; methanogen; archaea; Methanosarcina acetivorans; synthetic biology https://doi.org/10.3390/app11083342 Academic Editor: Faisal I. Hai 1. Introduction Received: 13 March 2021 Methane-producing archaea (methanogens) are obligate anaerobes which inhabit a Accepted: 5 April 2021 Published: 8 April 2021 keystone niche in the global carbon cycle, utilizing the endpoint degradation products of complex organic material and liberating otherwise inaccessible carbon [1–4]. Their Publisher’s Note: MDPI stays neutral unique metabolism and their potential to utilize a wide array of plentiful substrates make with regard to jurisdictional claims in methanogens a subject of particular interest in industrial applications such as wastewater published maps and institutional affil- treatment [5–7], and the production of value-added products (Figure1)[ 8,9]. Methanogens iations. are used worldwide to reduce dissolved organic carbon in effluent as part of the wastewater treatment process. Wastewater treatment is a multistage process which is highly variant depending on the substrate being treated, though the end goal is largely the same: The detoxification of water by degrading complex biomass and pollutants before reintroducing the effluent into the water cycle. For the purpose of this study, we focused on the anaerobic Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. digestion of municipal wastewater which primarily aims to remove dissolved carbon and This article is an open access article suspended solids from a city’s water supply. distributed under the terms and Municipal wastewater treatment generally occurs in three distinct stages based upon conditions of the Creative Commons the aerobicity of the wastewater and the activity of microorganisms involved in the mul- Attribution (CC BY) license (https:// tistage process. In the first stage, aerobic microorganisms breakdown complex biomass creativecommons.org/licenses/by/ into simpler organic material [10]. The deconvoluted material is further anaerobically di- 4.0/). gested by a second consortia of microbes into one- or two-carbon compounds and organic Appl. Sci. 2021, 11, 3342. https://doi.org/10.3390/app11083342 https://www.mdpi.com/journal/applsci Appl. Sci. 2021, 11, 3342 2 of 9 acids. These one- and two-carbon compounds are utilized by methanogens to complete the decomposition process [6,11]. In addition to removing polluting organic carbon from the water, anaerobic digestion has the added benefit of producing methane which is often captured as renewable biogas [11–14]. Due to the low energetic potential of methanogenic feedstocks, methanogens utilize a highly efficient central metabolism which greatly favors the production of methane over biomass and heat. Anaerobic treatment of wastewater results in 95% conversion of the initial substrate into available biogas with 5% being utilized Appl. Sci. 2021, 11, x FOR PEER REVIEWfor microbial biomass [15,16]. We hypothesized that the highly efficient metabolism of 2 of 9 methanogens may have potential to produce high yields of other value-added products in addition to methane. FigureFigure 1. 1.Schematic Schematic representation representation of anaerobic of anaerobic digestion digest of wasteion biomass of waste at thebiomass Theresa at Street the Theresa Street WaterWater Resource Resource Recovery Recovery facility facility in Lincoln, in Lincoln, NE. After NE. aerobic After incubation, aerobic waste incubation, biomass waste is anaer- biomass is obicallyanaerobically digested digested in a two-step in a process.two-step First, process. the complex First, the biomolecules complex arebiomolecules degraded through are degraded through heterotrophicheterotrophic fermentation fermentation to less to complex less complex substrates subs for methanogenictrates for methanogenic growth in the second growth stage. in the second In the methanogenic bioreactor dissolved organic carbon is converted to biogas that can be recouped stage. In the methanogenic bioreactor dissolved organic carbon is converted to biogas that can be as a biofuel. Introduction of isoprene-synthesizing methanogens (e.g., strain NB 394 in which plasmid recouped as a biofuel. Introduction of isoprene-synthesizing methanogens (e.g., strain NB 394 in pJA2 expressing isoprene synthase is integrated onto the chromosome) to the second stage digester haswhich potential plasmid to produce pJA2 renewable expressing isoprene isoprene in the synthase captured biogas. is integrated onto the chromosome) to the second stage digester has potential to produce renewable isoprene in the captured biogas. Isoprene (2-methyl-1,3-butadiene) is the primary component of natural rubber and an importantMunicipal chemical wastewater precursor utilized treatment in the productiongenerally ofoccurs synthetic in rubber three as distinct well as stages based adhesives, flavorings, cosmetics, and pharmaceuticals. Traditionally, isoprene is harvested fromupon natural the aerobicity rubber from of tree the sap wastewater or produced and industrially the activity through of themicroorganisms thermal cracking involved in the ofmultistage petroleum. process. By producing In the renewable first isoprenestage, aerobic via engineered microorganisms microbes, itcould breakdown be complex possiblebiomass to reduceinto simpler the need toorganic rely on thematerial harvesting [10] of. plantThe biomass deconvoluted or the mining material of is further fossilanaerobically fuels. Recently digested our laboratory by a demonstratedsecond consortia that the of methanogen microbesMethanosarcina into one- or two-carbon acetivoranscompoundscan beand engineered organic to acids. efficiently These produce one- bioisoprene and two-carbon as a methane compounds coproduct are utilized by under laboratory conditions [9]. The gene for isoprene synthase, ispS, was stably inserted intomethanogens the chromosome to complete of M. acetivorans the decomposition(att::ispS) and the productionprocess [6,11]. of isoprene In addition as well to removing aspolluting methane wasorganic confirmed carbon via gasfrom chromatography. the water, anaerobic The production digestion of isoprene has showedthe added benefit of noproducing detrimental methane effect on which growth is rate often or metaboliccaptured efficiency as renewable of the engineeredbiogas [11– strains14]. Due to the low comparedenergetic with potential a vector-only of methanogenic control. We surmised feedstoc thatks, without methanogens an obvious decreaseutilize a in highly efficient fitness it may be possible to drop-in these engineered methanogens into an existing anaero- biccentral wastewater metabolism treatment which consortium greatly to produce favors bioisoprene.the production However, of anymethane inoculated over biomass and methanogensheat. Anaerobic would treatment have to compete of wastewater for substrate result withs wild in 95% methanogens conversion in the of mixed the initial substrate microbialinto available community biogas of the anaerobicwith 5% digester. beingM. acetivoransutilizedhas for the largestmicrobial genome biomass of any [15,16]. We characterizedhypothesized methanogen that the ashighly well as efficient the widest metabo range oflism substrate of methanogens utilization, allowing may for have potential to growthproduce from high methanol, yields methyl-amines, of other value-a carbondded monoxide, products and in acetate
Recommended publications
  • Phylogenetics of Archaeal Lipids Amy Kelly 9/27/2006 Outline
    Phylogenetics of Archaeal Lipids Amy Kelly 9/27/2006 Outline • Phlogenetics of Archaea • Phlogenetics of archaeal lipids • Papers Phyla • Two? main phyla – Euryarchaeota • Methanogens • Extreme halophiles • Extreme thermophiles • Sulfate-reducing – Crenarchaeota • Extreme thermophiles – Korarchaeota? • Hyperthermophiles • indicated only by environmental DNA sequences – Nanoarchaeum? • N. equitans a fast evolving euryarchaeal lineage, not novel, early diverging archaeal phylum – Ancient archael group? • In deepest brances of Crenarchaea? Euryarchaea? Archaeal Lipids • Methanogens – Di- and tetra-ethers of glycerol and isoprenoid alcohols – Core mostly archaeol or caldarchaeol – Core sometimes sn-2- or Images removed due to sn-3-hydroxyarchaeol or copyright considerations. macrocyclic archaeol –PMI • Halophiles – Similar to methanogens – Exclusively synthesize bacterioruberin • Marine Crenarchaea Depositional Archaeal Lipids Biological Origin Environment Crocetane methanotrophs? methane seeps? methanogens, PMI (2,6,10,15,19-pentamethylicosane) methanotrophs hypersaline, anoxic Squalane hypersaline? C31-C40 head-to-head isoprenoids Smit & Mushegian • “Lost” enzymes of MVA pathway must exist – Phosphomevalonate kinase (PMK) – Diphosphomevalonate decarboxylase – Isopentenyl diphosphate isomerase (IPPI) Kaneda et al. 2001 Rohdich et al. 2001 Boucher et al. • Isoprenoid biosynthesis of archaea evolved through a combination of processes – Co-option of ancestral enzymes – Modification of enzymatic specificity – Orthologous and non-orthologous gene
    [Show full text]
  • A Late Methanogen Origin for Molybdenum-Dependent Nitrogenase E
    Geobiology (2011), 9, 221–232 DOI: 10.1111/j.1472-4669.2011.00278.x A late methanogen origin for molybdenum-dependent nitrogenase E. S. BOYD,1 A. D. ANBAR,2 S. MILLER,3 T. L. HAMILTON,1 M. LAVIN4 ANDJ.W.PETERS1 1Department of Chemistry and Biochemistry and the Astrobiology Biogeocatalysis Research Center, Montana State University, Bozeman, MT, USA 2School of Earth and Space Exploration and Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ, USA 3Department of Biological Sciences, University of Montana, Missoula, MT, USA 4Department of Plant Sciences, Montana State University, Bozeman, MT, USA ABSTRACT Mounting evidence indicates the presence of a near complete biological nitrogen cycle in redox-stratified oceans during the late Archean to early Proterozoic (c. 2.5–2.0 Ga). It has been suggested that the iron (Fe)- or vana- dium (V)-dependent nitrogenase rather than molybdenum (Mo)-dependent form was responsible for dinitrogen fixation during this time because oceans were depleted in Mo and rich in Fe. We evaluated this hypothesis by examining the phylogenetic relationships of proteins that are required for the biosynthesis of the active site cofactor of Mo-nitrogenase in relation to structural proteins required for Fe-, V- and Mo-nitrogenase. The results are highly suggestive that among extant nitrogen-fixing organisms for which genomic information exists, Mo-nitrogenase is unlikely to have been associated with the Last Universal Common Ancestor. Rather, the origin of Mo-nitrogenase can be traced to an ancestor of the anaerobic and hydrogenotrophic methanogens with acquisition in the bacterial domain via lateral gene transfer involving an anaerobic member of the Firmicutes.A comparison of substitution rates estimated for proteins required for the biosynthesis of the nitrogenase active site cofactor and for a set of paralogous proteins required for the biosynthesis of bacteriochlorophyll suggests that Nif emerged from a nitrogenase-like ancestor approximately 1.5–2.2 Ga.
    [Show full text]
  • Archaeology of Eukaryotic DNA Replication
    Downloaded from http://cshperspectives.cshlp.org/ on September 25, 2021 - Published by Cold Spring Harbor Laboratory Press Archaeology of Eukaryotic DNA Replication Kira S. Makarova and Eugene V. Koonin National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894 Correspondence: [email protected] Recent advances in the characterization of the archaeal DNA replication system together with comparative genomic analysis have led to the identification of several previously un- characterized archaeal proteins involved in replication and currently reveal a nearly com- plete correspondence between the components of the archaeal and eukaryotic replication machineries. It can be inferred that the archaeal ancestor of eukaryotes and even the last common ancestor of all extant archaea possessed replication machineries that were compa- rable in complexity to the eukaryotic replication system. The eukaryotic replication system encompasses multiple paralogs of ancestral components such that heteromeric complexes in eukaryotes replace archaeal homomeric complexes, apparently along with subfunctionali- zation of the eukaryotic complex subunits. In the archaea, parallel, lineage-specific dupli- cations of many genes encoding replication machinery components are detectable as well; most of these archaeal paralogs remain to be functionally characterized. The archaeal rep- lication system shows remarkable plasticity whereby even some essential components such as DNA polymerase and single-stranded DNA-binding protein are displaced by unrelated proteins with analogous activities in some lineages. ouble-stranded DNA is the molecule that Okazaki fragments (Kornberg and Baker 2005; Dcarries genetic information in all cellular Barry and Bell 2006; Hamdan and Richardson life-forms; thus, replication of this genetic ma- 2009; Hamdan and van Oijen 2010).
    [Show full text]
  • METHANOGENS AS MODELS for LIFE on MARS. R. L. Mickol1, W. H. Waddell2, and T
    Eighth International Conference on Mars (2014) 1005.pdf METHANOGENS AS MODELS FOR LIFE ON MARS. R. L. Mickol1, W. H. Waddell2, and T. A. Kral1,3, 1Arkansas Center for Space and Planetary Sciences, 202 Old Museum Building, University of Arkansas, Fayetteville, Arkansas, 72701, USA, [[email protected]], 2Dept. of Health, Human Performance, and Recreation, HPER 308, University of Arkansas, Fayetteville, Arkansas, 72701, USA, 3Dept. of Biological Sciences, SCEN 632, University of Arkansas, Fayetteville, Arkansas, 72701, USA. Introduction: The discovery of methane in the Sciences, University of Arkansas, Fayetteville, Arkan- martian atmosphere [1-4] has fueled the study of meth- sas. All four methanogen species were tested in these anogens as ideal candidates for life on Mars. Methano- experiments. Methanogens were grown in their respec- gens are chemoautotrophs from the domain Archaea. tive anaerobic growth media and placed into the cham- These microorganisms utilize hydrogen as an energy ber with a palladium catalyst box to remove residual source and carbon dioxide as a carbon source to pro- oxygen. The chamber was evacuated to a pre- duce methane. Methanogens can be considered ideal determined pressure and filled with 80:20 H2:CO2 gas. candidates for life on Mars because they are anaerobic, This procedure was repeated three times to ensure re- they do not require organic nutrients and are non- moval of the atmosphere. The chamber was then main- photosynthetic, indicating they could exist in sub- tained at the desired pressure (133-143 mbar, 67-72 surface environments. mbar, 33-38 mbar, 6-10 mbar, 7-20 mbar) for the dura- Our lab has studied methanogens as models for life tion of the experiments.
    [Show full text]
  • Methanogenic Burst in the End-Permian Carbon Cycle
    Methanogenic burst in the end-Permian carbon cycle Daniel H. Rothmana,b,1, Gregory P. Fournierc, Katherine L. Frenchb, Eric J. Almc, Edward A. Boyleb, Changqun Caod, and Roger E. Summonsb aLorenz Center, bDepartment of Earth, Atmospheric, and Planetary Sciences, and cDepartment of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139; and dState Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China Edited by John M. Hayes, Woods Hole Oceanographic Institution, Woods Hole, MA, and approved February 4, 2014 (received for review September 27, 2013) The end-Permian extinction is associated with a mysterious disrup- and its perturbation to the carbon cycle but also to amplify the tion to Earth’s carbon cycle. Here we identify causal mechanisms via development of marine anoxia. Taken as a whole, these results three observations. First, we show that geochemical signals indicate reconcile an array of apparently disparate observations about the superexponential growth of the marine inorganic carbon reservoir, end-Permian event. coincident with the extinction and consistent with the expansion of a new microbial metabolic pathway. Second, we show that the effi- Growth of the Marine Carbon Reservoir cient acetoclastic pathway in Methanosarcina emerged at a time sta- Fig. 1A displays the carbon-isotopic record in Meishan, China tistically indistinguishable from the extinction. Finally, we show that (5). Immediately preceding the extinction event, the isotopic com- nickel concentrations in South China sediments increased sharply at position δ1 of carbonate carbon declines by about 7‰ during the extinction, probably as a consequence of massive Siberian volca- a period of about 100 thousand years (Kyr), first slowly, and sub- nism, enabling a methanogenic expansion by removal of nickel lim- sequently rapidly.
    [Show full text]
  • Supplementary Information
    Retroconversion of estrogens into androgens by bacteria via a cobalamin-mediated methylation Po-Hsiang Wang, Yi-Lung Chen, Sean Ting-Shyang Wei, Kan Wu, Tzong-Huei Lee, Tien-Yu Wu, and Yin-Ru Chiang Supplementary Information Table of Contents Dataset Dataset S1. Genome annotation of strain DHT3 and transcriptomic analysis (RNA-Seq) of bacterial cells grown anaerobically with testosterone or estradiol. SI Tables Table S1. Oligonucleotides used in this study. Table S2. Selection of housekeeping genes of strain DHT3 used for constructing the linear regression line in the global gene expression profiles (RNA-Seq). Table S3. Selection of the cobalamin-dependent methyltransferases used for the un-rooted maximum likelihood tree construction. Table S4. UPLC–APCI–HRMS data of the intermediates involved in anaerobic estrone catabolism by strain DHT3. Table S5. 1H- (600 MHz) and 13C-NMR (150 MHz) spectral data of the HPLC-purified metabolite (AND2) and the authentic standard 5-androstan-3,17-diol Table S6. Selection of the bacteria used for comparative analysis of the gene organization for HIP degradation. SI Figures Fig. S1 Scanning electron micrographs of strain DHT3 cells. Fig. S2 Cobalamin as an essential vitamin during the anaerobic growth of strain DHT3 on estradiol. Fig. S3 Arrangement and expression analysis of the emt genes in strain DHT3. Fig. S4 The anaerobic growth of the wild type (A) and the emtA-disrupted mutant (B) of strain DHT3 with testosterone and estradiol. Fig. S5 APCI–HRMS spectrum of the HIP produced by estrone-fed strain DHT3. 1 Fig. S6 UPLC–APCI–HRMS spectra of two TLC-purified androgen metabolites, 17β-hydroxyandrostan-3-one (A) and 3β,17β-dihydroxyandrostane (B).
    [Show full text]
  • Methanogens Diversity During Anaerobic Sewage Sludge Stabilization and the Effect of Temperature
    processes Article Methanogens Diversity during Anaerobic Sewage Sludge Stabilization and the Effect of Temperature Tomáš Vítˇez 1,2, David Novák 3, Jan Lochman 3,* and Monika Vítˇezová 1,* 1 Department of Experimental Biology, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic; [email protected] 2 Department of Agricultural, Food and Environmental Engineering, Faculty of AgriSciences, Mendel University, 61300 Brno, Czech Republic 3 Department of Biochemistry, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic; [email protected] * Correspondence: [email protected] (J.L.); [email protected] (M.V.); Tel.: +420-549-495-602 (J.L.); Tel.: +420-549-497-177 (M.V.) Received: 29 June 2020; Accepted: 10 July 2020; Published: 12 July 2020 Abstract: Anaerobic sludge stabilization is a commonly used technology. Most fermenters are operated at a mesophilic temperature regime. Modern trends in waste management aim to minimize waste generation. One of the strategies can be achieved by anaerobically stabilizing the sludge by raising the temperature. Higher temperatures will allow faster decomposition of organic matter, shortening the retention time, and increasing biogas production. This work is focused on the description of changes in the community of methanogenic microorganisms at different temperatures during the sludge stabilization. At higher temperatures, biogas contained a higher percentage of methane, however, there was an undesirable accumulation of ammonia in the fermenter. Representatives of the hydrogenotrophic genus Methanoliea were described at all temperatures tested. At temperatures up to 50 ◦C, a significant proportion of methanogens were also formed by acetoclastic representatives of Methanosaeta sp. and acetoclastic representatives of the order Methanosarcinales.
    [Show full text]
  • A Genomic Timescale of Prokaryote Evolution: Insights Into the Origin of Methanogenesis, Phototrophy, and the Colonization of Land
    BMC Evolutionary Biology BioMed Central Research article Open Access A genomic timescale of prokaryote evolution: insights into the origin of methanogenesis, phototrophy, and the colonization of land Fabia U Battistuzzi1, Andreia Feijao2 and S Blair Hedges*1 Address: 1NASA Astrobiology Institute and Department of Biology, 208 Mueller Laboratory, The Pennsylvania State University, University Park, PA 16802, USA and 2European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany Email: Fabia U Battistuzzi - [email protected]; Andreia Feijao - [email protected]; S Blair Hedges* - [email protected] * Corresponding author Published: 09 November 2004 Received: 07 August 2004 Accepted: 09 November 2004 BMC Evolutionary Biology 2004, 4:44 doi:10.1186/1471-2148-4-44 This article is available from: http://www.biomedcentral.com/1471-2148/4/44 © 2004 Battistuzzi et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: The timescale of prokaryote evolution has been difficult to reconstruct because of a limited fossil record and complexities associated with molecular clocks and deep divergences. However, the relatively large number of genome sequences currently available has provided a better opportunity to control for potential biases such as horizontal gene transfer and rate differences among lineages. We assembled a data set of sequences from 32 proteins (~7600 amino acids) common to 72 species and estimated phylogenetic relationships and divergence times with a local clock method. Results: Our phylogenetic results support most of the currently recognized higher-level groupings of prokaryotes.
    [Show full text]
  • The Role of Stress Proteins in Haloarchaea and Their Adaptive Response to Environmental Shifts
    biomolecules Review The Role of Stress Proteins in Haloarchaea and Their Adaptive Response to Environmental Shifts Laura Matarredona ,Mónica Camacho, Basilio Zafrilla , María-José Bonete and Julia Esclapez * Agrochemistry and Biochemistry Department, Biochemistry and Molecular Biology Area, Faculty of Science, University of Alicante, Ap 99, 03080 Alicante, Spain; [email protected] (L.M.); [email protected] (M.C.); [email protected] (B.Z.); [email protected] (M.-J.B.) * Correspondence: [email protected]; Tel.: +34-965-903-880 Received: 31 July 2020; Accepted: 24 September 2020; Published: 29 September 2020 Abstract: Over the years, in order to survive in their natural environment, microbial communities have acquired adaptations to nonoptimal growth conditions. These shifts are usually related to stress conditions such as low/high solar radiation, extreme temperatures, oxidative stress, pH variations, changes in salinity, or a high concentration of heavy metals. In addition, climate change is resulting in these stress conditions becoming more significant due to the frequency and intensity of extreme weather events. The most relevant damaging effect of these stressors is protein denaturation. To cope with this effect, organisms have developed different mechanisms, wherein the stress genes play an important role in deciding which of them survive. Each organism has different responses that involve the activation of many genes and molecules as well as downregulation of other genes and pathways. Focused on salinity stress, the archaeal domain encompasses the most significant extremophiles living in high-salinity environments. To have the capacity to withstand this high salinity without losing protein structure and function, the microorganisms have distinct adaptations.
    [Show full text]
  • Reducing the Genetic Code Induces Massive Rearrangement of the Proteome
    Reducing the genetic code induces massive rearrangement of the proteome Patrick O’Donoghuea,b, Laure Pratc, Martin Kucklickd, Johannes G. Schäferc, Katharina Riedele, Jesse Rinehartf,g, Dieter Söllc,h,1, and Ilka U. Heinemanna,1 Departments of aBiochemistry and bChemistry, The University of Western Ontario, London, ON N6A 5C1, Canada; Departments of cMolecular Biophysics and Biochemistry, fCellular and Molecular Physiology, and hChemistry, and gSystems Biology Institute, Yale University, New Haven, CT 06520; dDepartment of Microbiology, Technical University of Braunschweig, Braunschweig 38106, Germany; and eDivision of Microbial Physiology and Molecular Biology, University of Greifswald, Greifswald 17487, Germany Contributed by Dieter Söll, October 22, 2014 (sent for review September 29, 2014; reviewed by John A. Leigh) Expanding the genetic code is an important aim of synthetic Opening codons by reducing the genetic code is highly biology, but some organisms developed naturally expanded ge- promising, but it is unknown how removing 1 amino acid from netic codes long ago over the course of evolution. Less than 1% of the genetic code might impact the proteome or cellular viability. all sequenced genomes encode an operon that reassigns the stop Many genetic code variations are found in nature (15), including codon UAG to pyrrolysine (Pyl), a genetic code variant that results stop or sense codon reassignments, codon recoding, and natural from the biosynthesis of Pyl-tRNAPyl. To understand the selective code expansion (16). Pyrrolysine (Pyl) is a rare example of nat- advantage of genetically encoding more than 20 amino acids, we ural genetic code expansion. Evidence for genetically encoded constructed a markerless tRNAPyl deletion strain of Methanosarcina Pyl is found in <1% of all sequenced genomes (17).
    [Show full text]
  • Characterization of Methanosarcina Mazei JL01 Isolated from Holocene
    Proceedings Characterization of Methanosarcina mazei JL01 Isolated from Holocene Arctic Permafrost and Study of the Archaeon Cooperation with Bacterium Sphaerochaeta associata GLS2T † Viktoriia Oshurkova 1,*, Olga Troshina 1, Vladimir Trubitsyn 1, Yana Ryzhmanova 1, Olga Bochkareva 2 and Viktoria Shcherbakova 1 1 Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center Pushchino Center for Biological Research of the Russian Academy of Sciences, prospect Nauki 5, Pushchino, 142290 Moscow, Russia; [email protected] (O.T.); [email protected] (V.T.); [email protected] (Y.R.); [email protected] (V.S.) 2 Institute of Science and Technology (IST Austria), Am Campus 1, 3400 Klosterneuburg, Austria; [email protected] * Correspondence: [email protected] † Presented at the 1st International Electronic Conference on Microbiology, 2–30 November 2020; Available online: https://ecm2020.sciforum.net/. Published: 18 December 2020 Abstract: A mesophilic methanogenic culture, designated JL01, was isolated from Holocene permafrost in the Russian Arctic. After long-term extensive cultivation at 15 °C, it turned out to be a tied binary culture of archaeal (JL01) and bacterial (Sphaerochaeta associata GLS2) strains. Strain JL01 was a strict anaerobe and grew on methanol, acetate, and methylamines as energy and carbon sources. Cells were irregular coccoid, non-motile, non-spore-forming, and Gram-stain-positive. Optimum conditions for growth were 24–28 °C, pH 6.8–7.3, and 0.075–0.1 M NaCl. Phylogenetic tree reconstructions based on 16S rRNA and concatenated alignment of broadly conserved protein- coding genes revealed 16S rRNA’s close relation to Methanosarcina mazei S-6T (similarity 99.5%).
    [Show full text]
  • Improving Methanosarcina Genome-Scale Models for Strain Design by Incorporating Cofactor Specificity and Free Energy Constraints
    IMPROVING METHANOSARCINA GENOME-SCALE MODELS FOR STRAIN DESIGN BY INCORPORATING COFACTOR SPECIFICITY AND FREE ENERGY CONSTRAINTS BY MATTHEW AARON RICHARDS THESIS Submitted in partial fulfillment of the requirements for the degree of Master of Science in Chemical Engineering in the Graduate College of the University of Illinois at Urbana-Champaign, 2013 Urbana, Illinois Adviser: Associate Professor Nathan D. Price ABSTRACT Genome-scale metabolic models have the potential to revolutionize synthetic biology by informing the development of modified organism strains with enhanced production of desired compounds. A major caveat to this dogma is the lack of extensive experimental data for validating the models of less-studied organisms, relegating the confidence in the capabilities of these models to a much lower level than could potentially be attained with more comprehensive knowledge of organism metabolism. The process of enhancing the predictive capabilities of such models requires an iterative process of ongoing improvement to better reflect established knowledge of organism-specific biology. This work reports modifications to models of the metabolic networks of two methane-producing Methanosarcina, the iMB745 model of M.acetivorans, and the iMG746 model of M.barkeri. With these modifications, I integrated new experimental data and resolved cofactor specificity for reactions that utilize NAD and NADP. I also developed a new method for adding additional to these models by including free energy data for exchange reactions, thus allowing use of experimental data to restrict model predictions to flux distributions that satisfy the second law of thermodynamics. The updated models are each a more extensively curated body of data than the original models that more accurately reflect wet lab observations than previous iterations.
    [Show full text]