Geological Field Trips

Società Geologica Italiana

2014 Vol. 6 (1.3) ISPRA Istituto Superiore per la Protezione e la Ricerca Ambientale

SERVIZIO GEOLOGICO D’ITALIA Organo Cartografico dello Stato (legge N°68 del 2-2-1960) Dipartimento Difesa del Suolo

ISSN: 2038-4947

Crust-mantle interactions during subduction of oceanic & continental crust 10th International Eclogite Conference - Courmayeur (Aosta, ), 2013

DOI: 10.3301/GFT.2014.03 Crust-mantle interactions during subduction of oceanic & continental crust D. Castelli - R. Compagnoni - B. Lombardo - S. Angiboust - G. Balestro - S. Ferrando - C. Groppo - T. Hirajima - F. Rolfo GFT - Geological Field Trips geological fieldtrips2014-6(1.3) Periodico semestrale del Servizio Geologico d'Italia - ISPRA e della Società Geologica Italiana Geol.F.Trips, Vol.6 No.1.3 (2014), 73 pp., 27 figs, 3 tabs. (DOI 10.3301/GFT.2014.03) Crust-mantle interactions during subduction of oceanic & continental crust 10th International Eclogite Conference, Courmayeur (Aosta, Italy) - Post-conference excursions: September 9-10, 2013

Daniele CASTELLI(1,2), Roberto COMPAGNONI(1), Bruno LOMBARDO(2), Samuel ANGIBOUST(3), Gianni BALESTRO(1), Simona FERRANDO(1), Chiara GROPPO(1), Takao HIRAJIMA(4), Franco ROLFO(1,2)

(1) Department of Earth Sciences, University of Torino, Via Valperga Caluso 35, 10125 Turin, Italy (2) IGG – CNR, Via Valperga Caluso 35, 10125, Torino, Italy (3) Helmholtz-Zentrum Potsdam, Deutsches GeoForschungsZentrum (GFZ), Germany (4) Department of Geology and Mineralogy, Faculty of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-502, Japan

Corresponding Author e-mail address: [email protected]

Responsible Director Claudio Campobasso (ISPRA-Roma) Editorial Board Editor in Chief M. Balini, G. Barrocu, C. Bartolini, 2 Gloria Ciarapica (SGI-Perugia) D. Bernoulli, F. Calamita, B. Capaccioni, Editorial Responsible W. Cavazza, F.L. Chiocci, Maria Letizia Pampaloni (ISPRA-Roma) R. Compagnoni, D. Cosentino, S. Critelli, G.V. Dal Piaz, C. D'Ambrogi, Technical Editor P. Di Stefano, C. Doglioni, E. Erba, publishing group Mauro Roma (ISPRA-Roma) R. Fantoni, P. Gianolla, L. Guerrieri, Editorial Manager M. Mellini, S. Milli, M. Pantaloni, Maria Luisa Vatovec (ISPRA-Roma) V. Pascucci, L. Passeri, A. Peccerillo, Convention Responsible L. Pomar, P. Ronchi, B.C. Schreiber, Anna Rosa Scalise (ISPRA-Roma) L. Simone, I. Spalla, L.H. Tanner, Alessandro Zuccari (SGI-Roma) C. Venturini, G. Zuffa. ISSN: 2038-4947 [online] http://www.isprambiente.gov.it/it/pubblicazioni/periodici-tecnici/geological-field-trips

The Geological Survey of Italy, the Società Geologica Italiana and the Editorial group are not responsible for the ideas, opinions and contents of the guides published; the Authors of each paper are responsible for the ideas, opinions and contents published. Il Servizio Geologico d’Italia, la Società Geologica Italiana e il Gruppo editoriale non sono responsabili delle opinioni espresse e delle affermazioni pubblicate nella guida; l’Autore/i è/sono il/i solo/i responsabile/i. DOI: 10.3301/GFT.2014.03 Manuscript received 08 October 2013; accepted 19 December 2013 Crust-mantle interactions during subduction of oceanic & continental crust D. Castelli - R. Compagnoni - B. Lombardo - S. Angiboust - G. Balestro - S. Ferrando - C. Groppo - T. Hirajima - F. Rolfo INDEX geological fieldtrips2014-6(1.3) Information Itinerary

Safety ...... 4 Day 1: The Monviso meta-ophiolite complex: HP Hospitals ...... 4 metamorphism of oceanic crust & interactions with Accomodation ...... 4 ultramafics Other useful addresses ...... 4 STOP 1.1: General view of the Monviso Meta-ophiolite Riassunto ...... 7 complex and serpentinite of the basal serpentinite unit ...... 37 Abstract ...... 8 STOP 1.2: Serpentinite of the basal serpentinite unit ...... 38 Program summary ...... 10 STOP 1.3: Calcschists and micaschists (basal serpentinite unit); Cr-rich magnesiochloritoidbearing eclogite loose Excursion notes blocks (Lago Superiore unit) ...... 39 STOP 1.4: Serpentinite with tectonic inclusions of 1. Introduction...... 10 eclogitic rocks (basal serpentinite unit) ...... 40 1.1 Tectonic outline of the Western ...... 10 STOP 1.5: Smaragdite metagabbro with transposed dykes of 1.2 High to ultra-high pressure metamorphic rocks in metabasalt (Lago Superiore unit) ...... 42 the ...... 12 STOP 1.6: Layered eclogitic sequence (Lago Superiore unit) ..44 3 2. The Monviso meta-ophiolite complex ...... 14 STOP 1.7: Prasinite ( Unit) ...... 45 2.1 Tectonometamorphic andtectonostratigraphic units ..14 STOP 1.8: FeTi-oxide metagabbro boudins and eclogite-facies 2.2 Igneous features of the Monviso Meta-ophiolite shear zones and veins (Lago Superiore unit) ...... 46 complex ...... 19 2.3 The Alpine polyphase metamorphic evolution ...... 20 Day 2: Metasomatism from & to ultramafics: the UHP 2.4 Comparison with other Alpine Meta-ophiolites ...... 23 continental -Isasca Unit 3. The UHP contintal Brossasco-Isasca Unit STOP 2.1: Metagranite recrystallized under UHP conditions (Dora-Maira Massif) ...... 24 with greenschistfacies shear zone ...... 50 3.1 Geological setting of the southern Dora-Maira Massif ..24 STOP 2.2: Metagranites with xenoliths of paraschists and 3.2 The coesite-bearing Brossasco-Isasca Unit ...... 26 metabasics: relict intrusive contact between Permian

3.2.1 The monometamorphic complex ...... 27 granitoids and the country metamorphic basement ...... 54 index 3.2.2 The polymetamorphic complex ...... 28 STOP 2.3: Typical whiteschist with pyrope megablasts ...... 57 3.3 The P-T evolution of the Brossasco-Isasca Unit ...... 32 3.4 The age of the Alpine UHP metamorphism ...... 34 References ...... 66

DOI: 10.3301/GFT.2014.03 geological field trips 2014 - 6(1.3)

4 information Accomodation Hotel Excalibur Piazza Cesare Battisti n.2 (CN) - 12036 Revello +39 349 1693945 / 348 0189937 Tel. Agriturismo “El Cavalier” Revello (CN) 4 - loc. San Firmino 12036 Revello Via Roncaglia, +39Tel: 348 7147007 / +39 347 0962865 Bar-Ristornate Natale - 13Via Roma, (CN) - 12034 Paesana +39 0175 94125 Tel.: La Locanda del Sale Via Segheria, 2 - 12030 (CN) +39 349 7922428 Tel. Other useful addresses Museo del Piropo (CN) n. 25 - Martiniana Via Roma +39 0175 46505 Tel. Museo Naturalistico del Fiume Po Cuneese del Po Parco (CN) Piazza Denina n. 5 - Revello +39 0175 46505 Tel. Crust-mantle interactions during subduction of oceanic & continental crust D. Castelli - R. Compagnoni - B. Lombardo - S. Angiboust - G. Balestro - S. Ferrando - C. Groppo - T. Hirajima - F. Rolfo Rolfo - F. Hirajima - C. Groppo T. Ferrando Angiboust - G. Balestro S. Lombardo - S. Castelli - R. Compagnoni B. D. : ca. 500 m along an easy : less than 100 m : 2000-2500 m a.s.l. : 400-1000 m a.s.l. 2 DOI: 10.3301/GFT.2014.03 Safety Mountain boots, sun glasses, and sun-tan lotion are and water strongly recommended, as well warm, windproof clothes, since weather can change rapidly in Alpine settings. 1 Day Altitude Altitude Hospital Ospedale Civile di Saluzzo Via Spielberg, 58 – (CN) 12037 Saluzzo +39 0175 215111 Tel. Savigliano Annunziata Ospedale SS. Via Ospedali, 14 - (CN) 12038 Savigliano +39 0172 719111 Tel. Elevation gain (on foot) path Day Elevation gain (on foot) geological field trips 2014 - 6(1.3)

5 information Crust-mantle interactions during subduction of oceanic & continental crust D. Castelli - R. Compagnoni - B. Lombardo - S. Angiboust - G. Balestro - S. Ferrando - C. Groppo - T. Hirajima - F. Rolfo Rolfo - F. Hirajima - C. Groppo T. Ferrando Angiboust - G. Balestro S. Lombardo - S. Castelli - R. Compagnoni B. D. DOI: 10.3301/GFT.2014.03 geological field trips 2014 - 6(1.3)

6 information Crust-mantle interactions during subduction of oceanic & continental crust D. Castelli - R. Compagnoni - B. Lombardo - S. Angiboust - G. Balestro - S. Ferrando - C. Groppo - T. Hirajima - F. Rolfo Rolfo - F. Hirajima - C. Groppo T. Ferrando Angiboust - G. Balestro S. Lombardo - S. Castelli - R. Compagnoni B. D. di escursione propone un itinerario “petrografico” nel cuore della famosa unità Brossasco- “petrografico” di escursione propone un itinerario di escursione è dedicato alla visita delle sequenze tettono-metamorfiche del Massiccio di escursione è dedicato alla visita delle sequenze : Alpi Occidentali, Massiccio Ofiolitico del Monviso, Massiccio Dora-Maira, Unità Brossasco-Isasca, Massiccio Dora-Maira, : Alpi Occidentali, Massiccio Ofiolitico del Monviso, primo giorno secondo giorno DOI: 10.3301/GFT.2014.03 Riassunto tettono-metamorfiche le sequenze Questa escursione di due giorni in un settore delle Alpi Cozie vuole illustrare la subduzione alpina in durante con le ultramafiti di crosta oceanica e continentale le loro interazioni condizioni di alta e altissima pressione. Il ofiolitico del Monviso. Il Massiccio del Monviso è uno dei relitti di crosta oceanica meglio preservati nelle Alpi è uno dei relitti di crosta oceanica meglio preservati Il Massiccio del Monviso ofiolitico del Monviso. e che ha subito condizioni nel Mesozoico della Tetide l’apertura Occidentali, che si è formato durante proposta la subduzione alpina. L’escursione durante metamorfiche di alta pressione in facies eclogitica a quarzo tipicamente porzioni dell’antico oceano lungo un itineraio le diverse offre la possibilità quasi unica di osservare eclogiti, metabasiti, e Fe-Ti, serpentiniti, metagabbri Mg-Al osservare litotipi si potranno i vari Tra alpino. in un contesto di alta montagna, proprio si svolge metasedimenti e minori corpi di metaperidotiti. L’itinerario inizia alle sorgenti (3841 m), che è il simbolo delle Alpi Cozie. L’escursione del Monviso di fronte alla piramide tre spettacolari laghi di montagna (Lago Fiorenza, Lago Chiaretto e e raggiunge a Pian del Re del Po un paesaggio tipicamente glaciale. Superiore) attraversando Il Isasca di ultra-alta pressione (Massiccio Dora-Maira meridionale), e permette di osservare le evidenze più le evidenze meridionale), e permette di osservare pressione (Massiccio Dora-Maira Isasca di ultra-alta ed Alpina di questa unità tettono-metamorfica. Si potrà metamorfica pre-Alpina spettacolari dell’evoluzione fu scoperta dove (a sud di Case Parigi), di scisti bianchi a piropo Case Ramello visitare il famoso affioramento le che preserva la coesite in rocce di crosta continentale, uno spettacolare metagranito per la prima volta eccezionalmente pre-Alpino coronitiche di altissima pressione e un relitto contatto intrusivo paragenesi di basamento all’interno dei metagranitoidi). (xenoliti preservato Parole chiave pressione, eclogiti, coesite, scisti bianchi. crosta oceanica e continentale, metamorfismo di alta- ultra-alta geological field trips 2014 - 6(1.3)

7 information Crust-mantle interactions during subduction of oceanic & continental crust D. Castelli - R. Compagnoni - B. Lombardo - S. Angiboust - G. Balestro - S. Ferrando - C. Groppo - T. Hirajima - F. Rolfo Rolfo - F. Hirajima - C. Groppo T. Ferrando Angiboust - G. Balestro S. Lombardo - S. Castelli - R. Compagnoni B. D. excursion proposes a “petrographic” itinerary in the core of world-famous UHP Brossasco- itinerary proposes a “petrographic” excursion is dedicated to the visit of the tectonometamorphic sequences of the Monviso meta-ophiolitic is dedicated to the visit of tectonometamorphic sequences Monviso : Western Alps, Monviso meta-ophiolitic Massif, Alps, Monviso : Western Unit, oceanic Brossasco-Isasca Massif, Dora-Maira first day second day DOI: 10.3301/GFT.2014.03 Isasca Unit (Dora-Maira Massif), and Isasca Unit (Dora-Maira the most spectacular evidence of both its pre-Alpine allowing to observe will visit the famous pyrope-bearing whiteschist outcrop of Case Ramello We Alpine metamorphic evolution. with in continental crust, a spectacular metagranite first discovered where coesite was (south of Case Parigi) igneous intrusive relict of pre-Alpine well preserved assemblage and an exceptionally UHP coronitic mineral within metagranitoids). contact (basement xenoliths Key-words metamorphism, eclogite, coesite, whiteschist. and continental crust, high- ultra-high-pressure massif. The Monviso Massif is one of the best preserved relics of oceanic crust in the western Alps that formed Massif is one of the best preserved The Monviso massif. and that underwent HP metamorphism during Alpine western Alpine Tethys during opening of the Mesozoic the almost unique chance to see and appreciate different portions of ancient subduction. This fieldtrip gives and Fe-Ti lithologies, we will see serpentinite, Mg-Al Among the various ocean floor along a mountain trail. eclogite, metabasite, metasediments and minor metaperidotite. metagabbro, (3841 m), of Monviso is located in a high mountain landscape front of the pyramid The fieldtrip itinerary and at Pian del Re river starts from the spring of Po which is the symbol of . The excursion (Lago Fiorenza, Lago Chiaretto and Superiore), through a reaches three spectacular mountain lakes typical glacial landscape. The Abstract oceanic and continental tectonometamorphic sequences their is aimed at illustrating This excursion during Alpine subduction at (U)HP conditions. with ultramafics interactions The geological field trips 2014 - 6(1.3)

8 information excursion can be reached after a 45 minutes drive from can be reached after a 45 minutes drive excursion Crust-mantle interactions during subduction of oceanic & continental crust first day D. Castelli - R. Compagnoni - B. Lombardo - S. Angiboust - G. Balestro - S. Ferrando - C. Groppo - T. Hirajima - F. Rolfo Rolfo - F. Hirajima - C. Groppo T. Ferrando Angiboust - G. Balestro S. Lombardo - S. Castelli - R. Compagnoni B. D. excursion consists of three stops that are located on the right side southernmost Val excursion second day DOI: 10.3301/GFT.2014.03 Program summary of the The starting point (Pian del Re) Saluzzo or Revello through the Po Valley up to and then to Pian del Re (Fig. 1). The field trip follows up to Crissolo and then Pian del Re Valley through the Po or Revello Saluzzo a circular path which rises from 2000 m up to about 2400 a.s.l. and consists of eight stops. Consider ca. 4- the whole itinerary. 5 hours to walk The Varaita (Stop 2.1), on the left side of Vallone di Gilba (Stop 2.2), and on the right side of Po Valley (Stop 2.3), Valley di Gilba (Stop 2.2), and on the right side of Po (Stop 2.1), on the left side of Vallone Varaita from Saluzzo- (Fig. 1). Stop 2.1 (Brossasco bridge) can be reached after a 30-45 minutes drive respectively which is a along the Gilba Valley, from Stop 2.1 to 2.2 requires a 30 minutes drive The transfer Revello. tributary of the main Varaita To to the outcrop. uphill to Case Bastoneri and then a 20 minute walk Valley, and then to and Revello back to Saluzzo reach Stop 2.3 from 2.2, consider at least one hour drive and uphill to Case Ramello. geological field trips 2014 - 6(1.3)

9 information Crust-mantle interactions during subduction of oceanic & continental crust D. Castelli - R. Compagnoni - B. Lombardo - S. Angiboust - G. Balestro - S. Ferrando - C. Groppo - T. Hirajima - F. Rolfo Rolfo - F. Hirajima - C. Groppo T. Ferrando Angiboust - G. Balestro S. Lombardo - S. Castelli - R. Compagnoni B. D. Fig. 1 – Geographical location of the field trip areas and Stops. Fig. 1 – Geographical DOI: 10.3301/GFT.2014.03 geological field trips 2014 - 6(1.3) excursion notes 10 the (ii) the Helvetic-Dauphinois domain, the Helvetic-Dauphinois (i) the Southalpine domain or Southern Alps (Fig. 2). (iv) Crust-mantle interactions during subduction of oceanic & continental crust D. Castelli - R. Compagnoni - B. Lombardo - S. Angiboust - G. Balestro - S. Ferrando - C. Groppo - T. Hirajima - F. Rolfo Rolfo - F. Hirajima - C. Groppo T. Ferrando Angiboust - G. Balestro S. Lombardo - S. Castelli - R. Compagnoni B. D. , which is subdivided in a series of nappes, consists of a Variscan (or older) , which is subdivided in a series of nappes, consists Variscan the Austroalpine domain, and is a composite realm, which includes both continent- and ocean-derived units (Fig. 2). and ocean-derived is a composite realm, which includes both continent- (iii) The continental Briançonnais - Grand Saint Bernard zone consists of a Variscan crystalline basement, a consists of a Variscan Saint Bernard zone The continental Briançonnais - Grand amphibolite- They mainly consist of a Variscan The ICM are tectonic windows within the Piemonte zone. of Calcschists with meta-ophiolites” includes also known as “Zone Piemonte Zone, The ocean-derived DOI: 10.3301/GFT.2014.03 Unlike these domains, where both basement and cover rocks are exposed, the Jura chain (separated from the chain (separated rocks are exposed, the Jura these domains, where both basement and cover Unlike sequences (Fig. 2). molasse basin) only consists of deformed cover main Alpine chain by the Swiss and eastern Alps it is hidden exposed, while in central domain is extensively In the western Alps, Penninic by the nappes of Austroalpine domain and reappears only in two tectonic windows Engadine Hohe Tauern. domain The Helvetic-Dauphinois Penninic domain, Penninic crystalline basement and a post-Variscan, mainly Mesozoic sedimentary cover (Fig. 2). The crystalline sedimentary cover mainly Mesozoic crystalline basement and a post-Variscan, (ca. mainly Permian metamorphics intruded by post-Variscan or older, basement, which consists of Variscan, which are (from N to S): is exposed in the so called “External Crystalline Massifs”, 270 to 300 Ma) granitoids, and Argentera. Belledonne, Pelvoux Rouges, Mont Blanc-Aiguilles domain The Penninic 1. Introduction 1.1 Tectonic outline of the Western Alps domains of the Alps are: The main tectonic and palaeogeographic The continental units are the external Briançonnais Zone (or Grand Saint Bernard composite nappe), and the (or Grand The continental units are the external Briançonnais Zone The ICM are and Valosio. Dora-Maira Paradiso, Gran “Internal Crystalline Massifs” (ICM) of Monte Rosa, units of the Piemonte Zone. by the ocean-derived overlain (i) to Eocene cover. sequence and a Mesozoic Permo-Carboniferous (ii) to augen-gneisses by the converted granitoids, porphyritic facies metamorphic basement, intruded by Permian Alpine tectonics and metamorphisms. (iii) sedimentary cover, Ligurian-Piemontese oceanic lithosphere and its Mesozoic of both the Mesozoic fragments 1992; Dal Piaz, consisting of “calcescisti” (calcschists, or “schistes lustrés” in French) (see e.g.: Deville et al., 1999). geological field trips 2014 - 6(1.3) excursion notes 11 Crust-mantle interactions during subduction of oceanic & continental crust D. Castelli - R. Compagnoni - B. Lombardo - S. Angiboust - G. Balestro - S. Ferrando - C. Groppo - T. Hirajima - F. Rolfo Rolfo - F. Hirajima - C. Groppo T. Ferrando Angiboust - G. Balestro S. Lombardo - S. Castelli - R. Compagnoni B. D. Fig. 2 – Simplified structural sketch map of the western Alps with location tectonic maps reported in Figs. 3 and 8. sketch Fig. 2 – Simplified structural DOI: 10.3301/GFT.2014.03 geological field trips 2014 - 6(1.3) excursion notes 12 is exposed (Fig. 2), which was not involved in the Alpine not involved is exposed (Fig. 2), which was Sesia Zone and Dent Blanche nappe system, which includes Sesia Zone Crust-mantle interactions during subduction of oceanic & continental crust D. Castelli - R. Compagnoni - B. Lombardo - S. Angiboust - G. Balestro - S. Ferrando - C. Groppo - T. Hirajima - F. Rolfo Rolfo - F. Hirajima - C. Groppo T. Ferrando Angiboust - G. Balestro S. Lombardo - S. Castelli - R. Compagnoni B. D. DOI: 10.3301/GFT.2014.03 orogeny. It includes the Ivrea Zone, characterized by pre-Alpine granulite- to amphibolite-facies granulite- by pre-Alpine characterized It includes the Ivrea Zone, orogeny. metamorphics, and the Serie dei Laghi, which is composed of an amphibolite-facies basement, intruded by by Permian dei Laghi”) and overlain (“Graniti granites Permian sedimentary cover. and a Mesozoic rhyolites by the Austroalpine is overlain The Piemonte Zone To SE of the Canavese line, the Southalpine Domain SE of the Canavese To the main thrust sheets of Dent Blanche s.s., Mont Mary, Monte Emilius and several minor outliers. Monte Emilius and several Mont Mary, the main thrust sheets of Dent Blanche s.s., to the Southern Alps through Dent tectonic cross-section from the Pre-Alps From a simplified NW-SE it is evident that the orogenic wedge Blanche Nappe (with the top of Matternhorn) and Sesia Zone, the Alpine Line and, consequently, to the Canavese going from the Jura thicker becomes progressively is increasing from the external to internal side of western Alps. metamorphic grade domain west of Saluzzo to show part of a cross-section within the Penninic is devoted excursion This two-day (Fig. 2). 1.2 High to ultra-high pressure metamorphic rocks in the western Alps than the latter. the former being much rarer and Alpine eclogites occur, In the western Alps, both pre-Alpine eclogites were reported from the polymetamorphic basement of External Crystalline Massifs The pre-Alpine Saint Bernard Zone, from the Briançonnais/Grand Belledonne and Argentera, of Mont Blanc, Aiguilles Rouges, eclogites in the ascertained if the lack of pre-Alpine conclusively and from the Serie dei Laghi. It is not yet massifs is a primary feature or if it the and Dora-Maira Paradiso Gran Monte Rosa, internal Penninic Alpine polyphase recrystallization. The last interpretation could be consequence of the intense and pervasive Compagnoni Paradiso: in the Gran supported by the local occurrence in polymetamorphic basement (e.g., Alpine 1974) of meta-basics, where the presence rounded aggregates small euhedral & Lombardo, age. garnet of pre-Alpine eclogitic garnets suggest recrystallization after coarser-grained and Austroalpine domains of the the Penninic all over were recognized main Alpine metamorphic events Two low pressure (LP) UHP) metamorphism and a younger (HP, western Alps: an older high- to ultrahigh-pressure the older one. obliterates and extensively metamorphism, which overprints of the HP to UHP metamorphism is difficult define at large scale, because it The areal extent and zoning during subduction, long before the final nappe emplacement. Therefore, once considered developed geological field trips 2014 - 6(1.3) excursion notes 13 rocks are extensively exposed in the external Piemonte rocks are extensively Crust-mantle interactions during subduction of oceanic & continental crust D. Castelli - R. Compagnoni - B. Lombardo - S. Angiboust - G. Balestro - S. Ferrando - C. Groppo - T. Hirajima - F. Rolfo Rolfo - F. Hirajima - C. Groppo T. Ferrando Angiboust - G. Balestro S. Lombardo - S. Castelli - R. Compagnoni B. D. rocks are reported from only two localities: the continental crust of Penninic rocks are the most widespread. They occur in most of the Sesia Zone and Monte Emilius rocks are the most widespread. They occur in of Sesia Zone and lawsonite blueschist- facies and lawsonite blueschist- DOI: 10.3301/GFT.2014.03 Zone and in the Briançonnais Zone. In this area the carpholite-bearing assemblages are frequently found in and in the Briançonnais Zone. Zone rocks of appropriate bulk chemical composition (Goffé, 1984). isograds of the HP metamorphism are really tectonic contacts between nappes, which experienced different isograds the LP metamorphism postdates main nappe emplacement peak metamorphic conditions. On the contrary, cut across the tectonic contacts between nappes. and its isograds i.e. coesite-bearing eclogite-, quartz-bearing All facies typical of the HP to UHP metamorphism are observed, and lawsonite blueschist-facies. eclogite-, epidote blueschist- Coesite-eclogite facies of the Dent Blanche nappe system, in most of the internal Piemonte Zone, and in the Internal Crystalline of the Dent Blanche nappe system, in most internal Piemonte Zone, and Valosio. Dora-Maira Paradiso, Gran Massifs of Monte Rosa, Epidote blueschist- Brossasco-Isasca Unit, southern Dora-Maira Massif (Chopin, 1984) and the sedimentary cover of the Massif (Chopin, 1984) and the sedimentary cover Unit, southern Dora-Maira Brossasco-Isasca Val at Lago di Cignana, Upper Valtournenche, Zone metamorphic ophiolites of the Piemonte Zermatt-Saas Unit, recent petrological data from both 1989, 1991, 1998). As to the Brossasco-Isasca (Reinecke, d’Aosta 2007a) suggest that 2007; Groppo et al., samples (Castelli et al., experiments (Hermann, 2003) and natural diamond-eclogite facies conditions were attained at about 750°C and 4.0

o n h n z b t z t t t r A T C T

Q

t

e

/ l + B Bt coronitic p

+ + Qtz coronitic

a

o t t m n r b l B c B o I A i g m y l o p Crust-mantle interactions during subduction of oceanic & continental crust g s f h D. Castelli - R. Compagnoni - B. Lombardo - S. Angiboust - G. Balestro - S. Ferrando - C. Groppo - T. Hirajima - F. Rolfo Rolfo - F. Hirajima - C. Groppo T. Ferrando Angiboust - G. Balestro S. Lombardo - S. Castelli - R. Compagnoni B. D. P a K

n h + o c

r i y a r o - c n K i

o T t r

r +

o ] + G c o

e s

t t f Z d o d

R R e K J

C

+ n [

+ o + )

t z e t - r B o Phg (after Bt) Phg (after Bt)

y l G C h r ( c

o i high-Cel dactylitic Ms + [Coe] r o continuous Grt corona + -

p → g d Grt + dactylitic Qtz corona J M O) 2 asymmetrically zoned Grt corona Bt is locally preserved as a textural relic, but its Mg-rich chemical composition indicates a as a textural is locally preserved Phg + dactylitic Qtz corona (after Kfs) (+H ] e s a h p

h ] z l t c t i P B r Kfs Q [ - Bt / Pl ) Bt / Kfs Bt / Qtz e F Ap, Zrn, Tur ( - Grt (xenocryst) i T [ Igneous minerals Alpine UHP peak metamorphism Alpine retrogression DOI: 10.3301/GFT.2014.03 metamorphic equilibration (Biino & Compagnoni, 1992; Bruno et al., 2001). Usually, biotite is 2001). Usually, (Biino & Compagnoni, 1992; Bruno et al., metamorphic equilibration pseudomorphically replaced by a high-celadonite Ti-rich phengite + rutile and surrounded continuous the contact with original igneous plagioclase site, coronitic garnet is garnet corona (Fig. 21c, d). At with pyrope- and almandine-rich composition on the biotite side grossular-rich asymmetrically zoned composition on the plagioclase side. recrystallizations. The original igneous assemblage consisted of quartz, plagioclase, K-feldspar, biotite and recrystallizations. The original igneous assemblage consisted of quartz, plagioclase, K-feldspar, the for K-feldspar, Except are locally observed. accessory apatite, tourmaline and zircon. Garnet xenocrysts 2). were completely replaced by Alpine metamorphic phases (Table igneous minerals The igneous biotite geological field trips 2014 - 6(1.3) itinerary 53 tz, n is r peak na and Igneous DM1086. (c) Hand specimen of metagranite: the Hand specimen of metagranite: (a) Fine-grained granoblastic aggregate of quartz, statically granoblastic Fine-grained (b) Crust-mantle interactions during subduction of oceanic & continental crust D. Castelli - R. Compagnoni - B. Lombardo - S. Angiboust - G. Balestro - S. Ferrando - C. Groppo - T. Hirajima - F. Rolfo Rolfo - F. Hirajima - C. Groppo T. Ferrando Angiboust - G. Balestro S. Lombardo - S. Castelli - R. Compagnoni B. D. Igneous biotite included in K-feldspar, pseudomorphically replaced by a single phengite crystal and surrounded thin garnet Igneous biotite included in K-feldspar, (d) Fig. 21 – Stop 2.1: Metagranite recrystallized under UHP conditions. See also Table 2. under UHP conditions. See also Table recrystallized Fig. 21 – Stop 2.1: Metagranite coesite, developed after primary euhedral igneous quartz. Sample DM 60. XPL. Modified from Compagnoni et al. (2004). after primary euhedral coesite, developed only evidence of the UHP metamorphic overprint is a very rough foliation and the sugary appearance of the original igneous quar rough foliation and the sugary appearance is a very only evidence of the UHP metamorphic overprint from former coesite. The coi from inversion polygonal aggregate of metamorphic quartz, derived now consisting of a granoblastic microstructures of the metagranites. 20 mm across. (b-d) Representative of coesite which replaced the igneous quartz during UHP metamorphism. Sample DM 496. XPL. from inversion derived biotite replaced by a Mg-richer + phengite. The biotite/phengite domain is surrounded first continuous garnet coro dactylitic intergrowth of phengite and quartz. Sample fine-grained which consists of a very a second corona against K-feldspar, PPL. corona and a dactylitic phengite + quartz intergrowth. In the upper right, a granoblastic polygonal quartz aggregate from forme corona and a dactylitic phengite + quartz intergrowth. In the upper right, granoblastic DOI: 10.3301/GFT.2014.03 geological field trips 2014 - 6(1.3) itinerary 54 Ca- 90 Crust-mantle interactions during subduction of oceanic & continental crust D. Castelli - R. Compagnoni - B. Lombardo - S. Angiboust - G. Balestro - S. Ferrando - C. Groppo - T. Hirajima - F. Rolfo Rolfo - F. Hirajima - C. Groppo T. Ferrando Angiboust - G. Balestro S. Lombardo - S. Castelli - R. Compagnoni B. D. , up to 3 cm long, are preserved. They include pseudomorphs after plagioclase, , up to 3 cm long, are preserved. is pseudomorphically replaced at the UHP metamorphic peak by jadeite (up to Jd is always replaced by a polygonal granoblastic aggregate (Fig. 21b, d), interpreted as aggregate (Fig. 21b, replaced by a polygonal granoblastic is always ) (Bruno et al., 2002) + zoisite + coesite (now quartz) + kyanite + K-feldspar (Fig. 21c). Because of the + K-feldspar + coesite (now quartz) kyanite 2002) + zoisite ) (Bruno et al., 10 DOI: 10.3301/GFT.2014.03 general pervasive greenschist-facies overprint, jadeite is mostly retrogressed to albite + white mica. Fresh overprint, greenschist-facies pervasive general only in the pseudomorphs after igneous plagioclase, armoured within jadeite is usually preserved instead of zoisite, idioblastic garnet is developed, Within such pseudomorphs, a small grossular-rich K-feldspar. close to the biotite site. of igneous K-feldspar Relics Esk derived from coesite inversion (Biino & Compagnoni, 1992; Compagnoni et al., 1995). (Biino & Compagnoni, 1992; Compagnoni et al., from coesite inversion derived 2 (Biino & in Table is summarized in the metagranite recognized The polyphase metamorphic evolution 2003b). 1995; Compagnoni & Rolfo, Compagnoni, 1992; Compagnoni et al., biotite and quartz (Fig. 21d). Along deformation bands or around mineral inclusions, K-feldspar recrystallizes inclusions, K-feldspar biotite and quartz (Fig. 21d). Along deformation bands or around mineral a second reaction rim aggregates. Around the biotite included in K-feldspar, to polygonal granoblastic (dactylitic) quartz and highly surrounds the garnet corona, which consists of an intergrowth vermicular (Fig. K-feldspar celadonitic phengite growing from the garnet corona towards 21c, d). The igneous quartz The igneous plagioclase STOP 2.2: Metagranites with xenoliths of paraschists and metabasics: relict intrusive contact between Permian granitoids and the country metamorphic basement North of Case Bastoneri, left side Vallone di Gilba (Coord: 44°35’01’’ N, 7°20’27’’ E, elev. 885 m a.s.l.) basement (now the polymetamorphic contact between the Variscan intrusive A poorly deformed pre-Alpine The blocks consist (now the monometamorphic complex) is preserved. granitoids complex) and the Permian of banded which includes numberless xenoliths K-feldspars, with cm-sized metagranite of a porphyritic are composed of both metapelites and metabasics, which locally metamorphic rocks (Fig. 22). The xenoliths and are finely dismembered, fabric, mineralogy a pre-intrusion folded foliation. Where the xenoliths preserve mode of the igneous rock were modified: this suggests that a significant assimilation country metamorphic rocks by the intruding magma did occur. geological field trips 2014 - 6(1.3) itinerary 55 (d) (a) Detail of the porphyritic structure of the metagranite. Detail of the porphyritic (b) Contact metamorphosed xenoliths of the country Variscan Contact metamorphosed xenoliths Fig. 22 – Stop 2.2: Metagranites with xenoliths of paraschists. of paraschists. with xenoliths Fig. 22 – Stop 2.2: Metagranites Detail of a xenolith of a banded metapelite. Detail of a xenolith (c) Note metagranite. porphyritic included in the late-Variscan paraschists metamorphic foliation. a clear Variscan preserve that the xenoliths Relict intrusive contact between Permian granitoids and the country granitoids contact between Permian intrusive Relict in a block near Case preserved metamorphic basement (paragneiss), Bastoneri. Crust-mantle interactions during subduction of oceanic & continental crust D. Castelli - R. Compagnoni - B. Lombardo - S. Angiboust - G. Balestro - S. Ferrando - C. Groppo - T. Hirajima - F. Rolfo Rolfo - F. Hirajima - C. Groppo T. Ferrando Angiboust - G. Balestro S. Lombardo - S. Castelli - R. Compagnoni B. D. DOI: 10.3301/GFT.2014.03 Metagranitoids consisted of metagranite The massive plagioclase, biotite, quartz, poikilitic euhedral phenocrysts (Fig. 22b), late K-feldspar interstitial quartz, and accessory apatite, tourmaline. Close to the zircon and rare (see below), biotite-rich metapelite xenoliths plagioclase and a rim enriched in euhedral minor quartz, usually occurs. The igneous exhibit the same pseudomorphous minerals and coronitic microstructures (Fig. 23a) (see described for the Brossasco metagranite Stop 2.1). Xenoliths of UHP a variety display The xenoliths and mineral metamorphic fabrics, grain-sizes in spite of the assemblages. However, Alpine recrystallization, in many extensive and ghost coronitic samples relict minerals and pseudomorphous microstructures still which are useful to infer the pre-Alpine occur, and evolution. mineralogy is similar to that The inferred evolution the relict lithologies of all over recognized polymetamorphic complex (Compagnoni & 1995; 1991; Compagnoni et al., Hirajima, 2003b). Compagnoni & Rolfo, geological field trips 2014 - 6(1.3) itinerary 56 a (d) are rix of Contact metamorphosed Variscan (b) Crust-mantle interactions during subduction of oceanic & continental crust D. Castelli - R. Compagnoni - B. Lombardo - S. Angiboust - G. Balestro - S. Ferrando - C. Groppo - T. Hirajima - F. Rolfo Rolfo - F. Hirajima - C. Groppo T. Ferrando Angiboust - G. Balestro S. Lombardo - S. Castelli - R. Compagnoni B. D. Relict Variscan paraschist showing kyanite pseudomorphs after contact metamorphic showing kyanite paraschist Variscan Relict (c) Metagranitoid collected near to the contact with country metamorphic basement (“granitoid Metagranitoid (a) Fig. 23 – Stop 2.2: Representative microstructures of the metagranite and of the contact metamorphosed Variscan amphibolite- and of the contact metamorphosed Variscan microstructures of the metagranite Fig. 23 – Stop 2.2: Representative fine-grained aggregate of Alpine garnet + kyanite. Sample DM495. PPL. Modified from Compagnoni et al. (2004). aggregate of Alpine garnet + kyanite. fine-grained marginal facies”). Euhedral crystals of former igneous plagioclase (now a fine-grained aggregate of jadeite+zoisite±kyanite), crystals of former igneous plagioclase (now a fine-grained marginal facies”). Euhedral and biotite (partly replaced by phengite) are set in a mat aggregate of kyanite+garnet±biotite), cordierite (now a fine-grained from coesite. Sample DM 1116. PPL. from inversion polygonal quartz derived granoblastic aggregate, sillimanite, pseudomorphically replaced by a UHP kyanite Bundles of regional Variscan amphibolite-facies paraschist. UHP contact metamorphic cordierite, now mainly consisting of fine-grained from late-Variscan embedded in a dark matrix derived garnet aggregates. Sample DM493. PPL. mica pseudomorphs after contact metamorphic cordierite. Sample DM1143. PPL. andalusite, and garnet+kyanite+white contact metamorphic cordierite, now replaced by garnet partly replaced by late-Variscan Metapelite showing a corroded Variscan facies paraschist (see Tables 1, 2). (see Tables facies paraschist DOI: 10.3301/GFT.2014.03 geological field trips 2014 - 6(1.3) itinerary 57 Crust-mantle interactions during subduction of oceanic & continental crust D. Castelli - R. Compagnoni - B. Lombardo - S. Angiboust - G. Balestro - S. Ferrando - C. Groppo - T. Hirajima - F. Rolfo Rolfo - F. Hirajima - C. Groppo T. Ferrando Angiboust - G. Balestro S. Lombardo - S. Castelli - R. Compagnoni B. D. DOI: 10.3301/GFT.2014.03 Most xenoliths are banded metapelites (Fig. 22c, d) which consist of layers rich in fine-grained randomly rich in fine-grained are banded metapelites (Fig. 22c, d) which consist of layers Most xenoliths including: oriented phengite alternating with layers aggregates pseudomorphous after prismatic sillimanite (Fig. 23b); - kyanite - coronitic garnet with local “sagenitic” rutile inclusions after biotite; garnet surrounded by thin coronas of Alpine garnet; porphyroblastic - pre-Alpine after primary ilmenite; - rutile aggregates rimmed with a garnet corona, most likely crystals after pre-Alpine products) with small zoisite (or its albite-bearing retrogressive - jadeite-rich pyroxene plagioclase; quartz aggregates after coesite; - polygonal granoblastic contact metamorphic, after pre-Alpine, - aggregates of small garnets with minor phengite, most likely cordierite (Fig. 23c, d). a grain-size during the Alpine peak metamorphic event, recrystallized In the samples more pervasively textures: the rock is, the pre-Alpine obliterates occurs, which progressively coarsening of the UHP minerals quartz and with accessory rutile and local Na-pyroxene, to a phengite-garnet granofels therefore, converted zoisite. and phengite- bearing eclogites with abundant to quartz- are metabasics, entirely converted Minor xenoliths partly replaced relics are large titanite grains, pre-Alpine accessory rutile. In the eclogite, only recognized by a rutile ± omphacite intergrowth. In the garnet, common occurrence of “sagenitic” suggests its biotite. from pre-Alpine derivation STOP 2.3: Typical whiteschist with pyrope megablasts Case Ramello, Martiniana (Valle Po) (Coord: 44°36’54’’ N, 7°22’00’’ E, elev. 860 m a.s.l.) This is the type locality where Chopin (1984) first described occurrence of regional metamorphic coesite in continental crust rocks. The BIU whiteschist occurs the orthogneiss of monometamorphic complex as or boudins from a few centimetres to ca. 20 m in thickness and metres hundreds of layers by a few decimetres to in length. The contact between the whiteschist and hosting orthogneiss is marked metres of a phengite-rich, banded gneiss locally preserving relics the igneous K-feldspar several phenocrysts. geological field trips 2014 - 6(1.3) itinerary 58 (b) Zoned ellenbergerite in association with kyanite, Zoned (d) Pyrope megablast, ca. 20 cm across. Note that pyrope is (a) Crust-mantle interactions during subduction of oceanic & continental crust D. Castelli - R. Compagnoni - B. Lombardo - S. Angiboust - G. Balestro - S. Ferrando - C. Groppo - T. Hirajima - F. Rolfo Rolfo - F. Hirajima - C. Groppo T. Ferrando Angiboust - G. Balestro S. Lombardo - S. Castelli - R. Compagnoni B. D. Radial kyanite aggregate in pyrope. Sample DM450. XPL. kyanite Radial (c) Fig. 24 – Stop 3: Whiteschists with pyrope megablasts. phengite, and rutile armoured in a pyrope megablast. Sample DM450. PPL. Modified from Compagnoni et al. (2004). Relics of coesite included in a small pyrope porphyroblast and partially converted to quartz along rims and fractures. Radial to quartz along rims and fractures. and partially converted of coesite included in a small pyrope porphyroblast Relics in the hosting pyrope. Sample are developed increase during the coesite to quartz inversion, consequent to volume fractures, DM507. PPL. crowded of inclusions of kyanite, rutile, etc. (b-d) Representative microstructures of the pyrope-bearing whiteschists. rutile, etc. (b-d) Representative crowded of inclusions kyanite, DOI: 10.3301/GFT.2014.03 geological field trips 2014 - 6(1.3) itinerary 59 ) constitutes the core of megablasts and ) occurs as rare irregular and corroded relics ) occurs as rare 16-26 Whiteschist consists of pyropes, usually habit, included in a exhibiting a trapezohedron from coesite, foliated matrix of quartz inverted that is high-celadonite phengite (polytype 3T, type under more stable than monoclinic poly- HP-UHP conditions; Amisano Canesi et al., talc 2000, 2005), kyanite, et al., 1994; Ferraris and accessory rutile, zircon monazite. On two the basis of modal amount minerals, (1) Prp- kinds of whiteschist can be recognized: rich whiteschist mainly consisting of pyrope megablasts (from 10 to 20 cm in diameter; Fig. (from 2 to 10 24a and Fig. 25) or porphyroblasts cm in diameter; Fig. 25) with minor amount of talc, phengite and quartz; (2) Qtz-rich kyanite, whiteschist that consists of quartz, kyanite, phengite, pyrope neoblasts (<2 cm in diameter; 2009). et al., Fig. 25) and talc (Ferrando of the Up to more than 50 per cent in volume pyrope blasts are commonly crowded with 3), some of which are inclusions (Table mineral not found in the matrix (Chopin, 1984; Schertl 1991; Hermann, 2003). et al., of pyrope four generations Near Case Ramello, are recognisable by microstructural relationships, chemical composition and 58-70 Alm Alm 69-81 25-37 Crust-mantle interactions during subduction of oceanic & continental crust e e m ] n t e i 7 i u ] t r ) t i 3 i d 4 r ) a h n t 4 d p s u e r p n g o a e D. Castelli - R. Compagnoni - B. Lombardo - S. Angiboust - G. Balestro - S. Ferrando - C. Groppo - T. Hirajima - F. Rolfo Rolfo - F. Hirajima - C. Groppo T. Ferrando Angiboust - G. Balestro S. Lombardo - S. Castelli - R. Compagnoni B. D. c s ] ] 28 8 |O|(SiO 3 ) O 4 8 |((P,As,S)O 3 |Si 10 |(OH) |(SiO |CO 3 6 12 |O [BO 4 4 [(OH) 6 [(OH) Al 2 Al (OH) 14 2 2 ) ] [(OH) 4 □ 18 New minerals Al 3 (Mg,Ti) Al[PO 6 2 (Mg,Fe, e 2 Ca Mg n H i l (OH,F) e 4 Ubiquitous primary inclusions a t i (Mg,Ti)(Al,Mg) r m PO e e r y t 2 t i i u p t (Mg,Li) e o o a t d n

p a c e j a i s t i r v a a r d magnesiochloritoid wagnerite Mg Tab. 3 – Review of mineral inclusions in pyrope blasts from BIU of mineral 3 – Review Tab. whiteschists. Less common primary inclusions Probable retrograde minerals DOI: 10.3301/GFT.2014.03 Bearthite Ellenbergerite Phosphoellenbergerite Magnesiodumortierite Magnesiostaurolite kyanite >> rutile > zircon, monazite, phengite, talc, clinochlore, paragonite, glaucophane phlogopite (usually retrogressed to K-deficient or vermiculite), coesite Data from Chopin (1984), Schreyer (1985), Chopin (1986), Chopin & Klaska et al. Data from Chopin (1984), Schreyer (1985), et al. (1995), Simon al (1997), & (1986, 1991, 1994), Schertl et al. (1991), Compagnoni Chopin (2001). Chopin et al. (1993) Chopin et al. (1986) Brunet et al. (1998) Chopin et al. (1995), Ferraris (1995) Chopin et al. (2003) at the core of porphyroblasts (Fig. 25) and includes staurolite, chloritoid, kyanite, chlorite and paragonite (Fig. 25) and includes staurolite, chloritoid, kyanite, at the core of porphyroblasts (Compagnoni & Prp 2001). Prograde Hirajima, I (Prp mineral inclusions (Ferrando et al., 200). Prp et al., inclusions (Ferrando mineral 0 (Prp geological field trips 2014 - 6(1.3) itinerary 60 ) 1-16 Alm 82-98 ) constitutes the 4-11 Alm 86-67 constitutes the inner rim of megablasts and porphyroblasts and the core of neoblasts (Fig. 25), and it contains inclusions of coesite phengite, (Fig. 24b), kyanite, rutile, zircon, monazite and rare Mg-chlorite and talc, but never Prp III phlogopite. Early retrograde (Prp in Prp I are rarely observed, and observed, in Prp I are rarely only within porphyroblasts. Prp II (Prp Peak outer rim (Fig. 25) and usually it is pseudomorphically replaced by and phengite, biotite, talc, kyanite chlorite. It includes phengite, rutile and zircon. kyanite, Similar pyrope-bearing whiteschist been and/or quartzite have other reported from several localities within the BIU (e.g. in In addition to the Gilba Valley). inclusions described for prograde an locality, the Case Ramello almost pure magnesiochloritoid (up to 97 mole % end-member) Crust-mantle interactions during subduction of oceanic & continental crust D. Castelli - R. Compagnoni - B. Lombardo - S. Angiboust - G. Balestro - S. Ferrando - C. Groppo - T. Hirajima - F. Rolfo Rolfo - F. Hirajima - C. Groppo T. Ferrando Angiboust - G. Balestro S. Lombardo - S. Castelli - R. Compagnoni B. D. Fig. 25 - Simplified sketch (modified from Ferrando et al., 2009) showing the et al., (modified from Ferrando Fig. 25 - Simplified sketch (c) neoblast. Mineral abbreviations after Fettes & Desmons (2007). abbreviations after Fettes (c) neoblast. Mineral four generations of pyrope recognized in the UHP whiteschists near Case Ramello, of pyrope recognized four generations inclusions: (a) megablast, (b) porphyroblast, and mineral their chemical zoning DOI: 10.3301/GFT.2014.03 porphyroblasts (Fig. 25) and includes kyanite (Fig. 20c) (locally oriented), talc, phlogopite (usually (Fig. 25) and includes kyanite porphyroblasts 1986; Chopin & Langer, ellenbergerite (Fig. 24d) (Chopin, 1986; Chopin et al., retrogressed to vermiculite), phengite. Coesite/quartz 1988), Mg-chlorite, Mg-dumortierite, rutile, zircon, apatite and monazite, but never geological field trips 2014 - 6(1.3) itinerary 61 Crust-mantle interactions during subduction of oceanic & continental crust D. Castelli - R. Compagnoni - B. Lombardo - S. Angiboust - G. Balestro - S. Ferrando - C. Groppo - T. Hirajima - F. Rolfo Rolfo - F. Hirajima - C. Groppo T. Ferrando Angiboust - G. Balestro S. Lombardo - S. Castelli - R. Compagnoni B. D. and the virtual absence of Ca Na. 2 DOI: 10.3301/GFT.2014.03 was reported as prograde inclusion within pyrope by Simon et al. (1997). Rare corundum, enstatite, inclusion within pyrope by Simon et al. (1997). Rare reported as prograde was most likely been also described by Simon & Chopin (2001) to fill pyrope cracks sapphirine, and gedrite, have during early decompression. developed Origin of the whiteschist: metasomatism from ultramafics ratio, by an extremely high Mg/Fe The chemical composition of whiteschist is unusual because characterized high SiO Chopin (1984) considered the BIU whiteschists similar to “the highly magnesian, metaevaporitic whiteschists” Chopin (1984) considered the BIU whiteschists similar to “the highly magnesian, metaevaporitic been sedimentary and the (1977) and, then, its origin should have described and reviewed by Schreyer a metasomatic Nevertheless, been “a mixture of quartz, Mg-chlorite and illite”. probable protolith should have by many has been demostrated within the (meta)granitoid along ductile shear zones origin by fluid infiltration 2001; Schertl & Schreyer, 1997; Compagnoni & Hirajima, 1993; Gebauer et al., Sharp et al., authors (e.g., 2009). et al., 2009; Grevel et al., 2008; Ferrando the chemical composition of BIU whiteschist and its field relationships with host orthogneiss Moreover, 2012 for a review). are similar to those of other Mg-metasomatic rocks occurring in the Alps (see Ferrando, massifs (Chopin, Paradiso micaschists” occurring in the orthogneiss of Gran example, the “silvery For 1981; Chopin & Moniè, 1984) are considered by Compagnoni Lombardo (1974) as the HP metasomatic to the because of their close field association and systematic transition product of sheared granites surrounding orthogneiss. to timing of metasomatism and origin the metasomatic fluid. Sharp et al. From protolith, the debate moved (1993) and Sharp & Barnes (2004) interpreted the whiteschists as metasomatic rocks that originated by metasomatism influx of fluids from the subducting oceanic lithosphere. Gebauer et al. (1997) proposed a low P–T in the BIU whiteschists of rifting of the Piemonte-Liguria Basin. The discovery occurred during the Permo-Triassic pyrope- garnets with almandine-rich core—interpreted as relic of a former pelitic xenolith—and superzoned rare (2001) to propose that the metasomatic process occurred in presence rich rim allows Compagnoni & Hirajima Alpine metamorphism, close to the UHP climax. fluid phase during prograde of a hydrous a model for et al. (2009) constrained Ferrando In a recent petrological, geochemical and fluid inclusion study, the metasomatic formation of whiteschists and their subsequent UHP history (Fig. 26). An original post- metamorphic basement, undergoes an Alpine of the country Variscan including xenoliths granitoid, Variscan geological field trips 2014 - 6(1.3) itinerary 62 Crust-mantle interactions during subduction of oceanic & continental crust D. Castelli - R. Compagnoni - B. Lombardo - S. Angiboust - G. Balestro - S. Ferrando - C. Groppo - T. Hirajima - F. Rolfo Rolfo - F. Hirajima - C. Groppo T. Ferrando Angiboust - G. Balestro S. Lombardo - S. Castelli - R. Compagnoni B. D. Fig. 26 - Origin and evolution of the BIU Fig. 26 - Origin and evolution dehydration reactions involving talc and phlogopite. reactions involving dehydration whiteschists up to UHP peak (modified from Ferrando of garnet are 2009). The different generations et al., most Fig. 25). An original post-Variscan, shown (cf. including a paraschist granitoid, Permian, likely metamorphic of the country Variscan xenolith HP to UHP basement, undergoes an Alpine prograde stage A, an almandine-rich garnet metamorphism. At stages B and C, the At grows in the xenolith. high-Mg of high-salinity, along shear zones infiltration of antigorite in from dehydration fluids, generated subducting serpentinites, metasomatised the the to generate orthogneiss and the xenoliths the same time, metamorphic whiteschist. At and talc, muscovite reactions – involving dehydration Mg-chlorite – also occurred within the whiteschists. At assemblage that formed in the peak mineral stage D, the presence of an alumino-silicate aqueous solution originated by likely enriched in LILE, Th and U, DOI: 10.3301/GFT.2014.03 prograde metamorphism (P=1.6 GPa and metamorphism (P=1.6 GPa prograde T<600 °C) with the growth of almandine-rich A first garnet (Prp 0) in the xenoliths. occurred at metasomatic event prograde and 560–590°C, due to the 1.7–2.1 GPa influx of external fluids originated from the promoted the increase in Mg and antigorite breakdown in subducting oceanic serpentinites: this event a whiteschist composition. During the following prograde decrease of alkalies and Ca in the orthogneiss toward 590

f i e l d

t r i p s

2 0 1 4

-

6 ( 1 . 3 )

65 m e m o r a n d u m

DOI: 10.3301/GFT.2014.03 geological field trips 2014 - 6(1.3) references 66 - e Crust-mantle interactions during subduction of oceanic & continental crust D. Castelli - R. Compagnoni - B. Lombardo - S. Angiboust - G. Balestro - S. Ferrando - C. Groppo - T. Hirajima - F. Rolfo Rolfo - F. Hirajima - C. Groppo T. Ferrando Angiboust - G. Balestro S. Lombardo - S. Castelli - R. Compagnoni B. D. depth earthquakes? Geology, 40, 707-710. Geology, depth earthquakes? 30, 37-61. metam. Geol., implications on subduction dynamics. J. 358, 238-248. Processes: Insights from Thermo-mechanical Numerical Modelling. Earth Planet. Sci. Lett., 111, 57–70. Geol., Alps): view from below the coesite-bearing unit. J. (Western 634-654. 38, 559-562. metamorphism. Geology, and (ultra)high-pressure zones 20, 859-871. metam. Geol., J. geothermometer. 72, 347-363. Mitt., petrogr. Alps. Schweiz. mineral. Western Massif, Maira pressure metamorphism, 182-205, Cambridge X. (Eds.), Ultrahigh In: Coleman R.G. & Wang from western Alps of Italy. Press, Cambridge. University exhumation of HP and UHP rocks in the western Alps. Bull. Soc. Géol. , 172, 617-636. exhumation of HP and UHP rocks in the western Alps. Bull. Soc. Géol. France, 92, 53-79. and mechanisms. Earth Sci. Rev., 6, 489-496. Mineral., J. conditions of formation. Eur. subduction channel? Lithos, 120, 453-474. 21, 171-180. Nova, Terra 70-80 km) continuous slice of oceanic lithosphere detached from a subduction zone? Lithos, 127, 222-238. shear zones. DOI: 10.3301/GFT.2014.03 Angiboust S., Langdon R., Agard P., Waters D. & Chopin C. (2012a) - Eclogitization of the Monviso ophiolite (W. Alps) and ophiolite (W. & Chopin C. (2012a) - Eclogitization of the Monviso D. Waters Agard P., Langdon R., Angiboust S., (2012c) - Effect of Fluid Circulation on Subduction Interface Tectonic P. & Yamato Agard P. E., Burov S., Wolf Angiboust S., pressure massif ultra-high R. (2003) - Thrusting and extension in the southern Dora-Maira Chopin C. & Le Bayon D., Avigad (2011). Geological map of the upper Pellice G. & Lombardo B. Fioraso Balestro G., Alps). J. (Italian Western Valley Maps, 2011, Alps). J. massif (Western (2013) - Geological map of the Monviso G. & Lombardo B. Fioraso Balestro G., Maps, 9, 623-634. margins to orogens: The link between ocean-continent transition & Manatschal G. (2010) - From passive D. Rubatto M., Beltrando of carbonaceous material in metasediments: a new spectra (2002) - Raman J.N. Chopin C. & Rouzaud Goffe B., Beyssac O., southern Dora pressure metamorphism of the Brossasco coronite metagranite, Biino G. & Compagnoni R. (1992) - Very-high (1995) - The role of the serpentinite melange in unroofing UHPM rocks: an example A.S. & Jayko Moore D.E. M.C., Blake Agard P., Yamato P., Jolivet L. & Burov E. (2009) - Exhumation of oceanic blueschists and eclogites in subduction zones: Timing E. (2009) - Exhumation of oceanic blueschists and eclogites in subduction zones: L. & Burov Jolivet P., Yamato Agard P., crystal structure and and phengite-3T: (1994) - Muscovite- S.V. G. & Soboleva Ivaldi G., Ferraris Chiari G., Amisano Canesi A., oceanic crust along th of eclogitized to detaching large volumes budget: The key (2010) - Initial water & Agard P. Angiboust S. ophiolite: the largest (60-km wide) and deepest (c. (2009) - The Zermatt-Saas L. & Beyssac O. Jolivet Agard P., Angiboust S., (2011) - Subduction interface processes recorded by eclogite-facies & Huet B. P. Yamato H., Raimbourg Agard P., Angiboust S., H. (2012b) - Eclogite breccias in a subducted ophiolite: record of intermediate & Raimbourg P. Yamato Agard P., Angiboust S., References of the Schistes Lustrés complex: implications for evolution (2001) - Tectonometamorphic L. & Goffé B. Jolivet Agard P., geological field trips 2014 - 6(1.3) references 67 , ) fluid 2 Crust-mantle interactions during subduction of oceanic & continental crust D. Castelli - R. Compagnoni - B. Lombardo - S. Angiboust - G. Balestro - S. Ferrando - C. Groppo - T. Hirajima - F. Rolfo Rolfo - F. Hirajima - C. Groppo T. Ferrando Angiboust - G. Balestro S. Lombardo - S. Castelli - R. Compagnoni B. D. charge transfer between face-sharing octahedra: polarized absorption spectra and absorption spectra polarized between face-sharing octahedra: charge transfer 4+ -Ti 2+ 628-650. 86, 107-118. Petrol., Mineral. Contrib. Mem. 164, 31-42. & Brown E.H. (Eds.): Blueschists and related eclogites. Geol. Soc. Am., B.W. Alps. In: Evans the Western crystal chemistry of ellenbergerite. Bull. Minéral., 111, 17-27. crystal chemistry of ellenbergerite. Bull. Minéral., 87, 388-398. Petrol., Mineral. Contrib. study. radiometric Alps: petrologic and 40Ar-39Ar petrological constraints to their thermo-mechanical evolution. Eclogae geol. Helv., 89, 345-367. Eclogae geol. Helv., to their thermo-mechanical evolution. petrological constraints 131, 54-70. Petrol., Mineral. phosphoellenbergerite: petrological implications. Contrib. study and western Italian Alps: a petrographic Massif, Unit, Dora-Maira from the Brossasco-Isasca metagranodiorite 19, 33–43. metam. Geol., equilibrium thermodynamic modelling. J. 142, 515–519. Petrol., Mineral. Alps. Contrib. Western Massif, Dora-Maira metagranodiorite, 50, 1405-1442. Petrology, J. Hydration. Subduction Zone 90, 821-835. lithosphere. Am. Mineral., Saas ophiolite: High-pressure metamorphism of subducted Tethys and implication for the early Earth atmosphere. Geochim. Cosmochim. Acta, 75, 7502-7521. in subduction zones fluxes western Alps). Ofioliti, 32, 1-14. of the X(CO in the diamond stability field and evaluation western Alps): evidence for Alpine equilibration Massif, evolution. J. metam. Geol., 25, 587–603. metam. Geol., J. evolution. Alps). Ofioliti, 27, 81-90. 77. 1986. Abs. with Program, Stanford, CA, 13-18 July, DOI: 10.3301/GFT.2014.03 Chopin C. (1984) - Coesite and pure pyrope in high-grade blueschists of the Western Alps: a first record and some consequences. blueschists of the Western Chopin C. (1984) - Coesite and pure pyrope in high-grade in pyrope-coesite-quarzite from Chopin C. (1986) - Phase relationships of ellenbergerite, a new high-pressure Mg-Al-Ti-silicate Chopin C. & Monié P. (1984) - A unique magnesiochloritoid-bearing high-pressure assemblage from the Monte Rosa, Western (1984) - A unique magnesiochloritoid-bearing high-pressure assemblage from the Monte Rosa, Chopin C. & Monié P. 41, 765-780. western Alps. Int. Geol. Rev., massif, Maira (1999) - The UHP unit in the Dora Chopin C. & Schertl H.-P. 22 Petrol., Alps. J. pelitic blueschists of the Western a widespread assemblage in high-grade Chopin C. (1981) - Talc-phengite, Brunet F., Chopin C. & Seifert F. (1998) - Phase relations in the MgO-P2O5-H2O system and stability of Chopin C. & Seifert F. Brunet F., pressure coronitic and pseudomorphous reactions in a M. (2001) - The ultra-high Compagnoni R. & Rubbo Bruno M., pressure molecule from an ultrahigh M. (2002) - Jadeite with Ca-Eskola & Rubbo T. Hirajima Compagnoni R., Bruno M., of Alps: a Record Ophiolite, Western R. (2009) - The Eclogite-facies Allalin Gabbro of the Zermatt-Saas Bucher K. & Grapes R. (2005) - Blueschists, eclogites, and decompression assemblages of the Zermatt- De Capitani C. & Grapes Y., Fazis Bucher K., of modern nitrogen (2011) - Nitrogen isotopes in ophiolitic metagabbros: A re-evaluation & Philippot P. P. Cartigny V., Busigny – (2007) - The plagiogranite & Lombardo B. Castelli D. metamorphic ophiolite, (Monviso gabbro association of Verné FeTi-oxide Unit (Dora-Maira Groppo C. & Compagnoni R. (2007) - Impure marbles from the UHP Brossasco-Isasca F., Rolfo Castelli D., Borghi A., Compagnoni R. & Sandrone R. (1996) - Composite P-T paths in the internal penninic massifs of western Alps: Compagnoni R. & Sandrone (1996) - Composite P-T Borghi A., Castelli D., Rostagno C. & Lombardo B. (2002) - Jd-Qtz-bearing metaplagiogranite from the Monviso meta-ophiolite (Western from the Monviso metaplagiogranite (2002) - Jd-Qtz-bearing C. & Lombardo B. Rostagno Castelli D., 14th IMA Meet., minerals. Chopin C. & Klaska R. (1986) - Metamorphism of continental crust at mantle depths: new rock-forming Chopin C. & Langer K. (1988) - Fe geological field trips 2014 - 6(1.3) references 68 . ps. Crust-mantle interactions during subduction of oceanic & continental crust D. Castelli - R. Compagnoni - B. Lombardo - S. Angiboust - G. Balestro - S. Ferrando - C. Groppo - T. Hirajima - F. Rolfo Rolfo - F. Hirajima - C. Groppo T. Ferrando Angiboust - G. Balestro S. Lombardo - S. Castelli - R. Compagnoni B. D. Geol. Surv. Norway, Report n° 2003.055, 37-38. Special Abstracts Issue of the West Norway Eclogite Field Symposium, 21-28 Eclogite Field Symposium, Norway Issue of the West n° 2003.055, 37-38. Special Abstracts Report Norway, Geol. Surv. June, Selje, Norway. 5, 13-49. Notes in Mineralogy, metamorphism. E.M.U. Ultrahigh-pressure Press, Cambridge. pressure metamorphism, 206–243, Cambridge Univ. X. (Eds.): Ultrahigh & Wang 24, 333-343. Mineral., J. Eur. C. (Eds.), Groppelli G. G. & Venturini Alps). In: Pasquarè Massif (Western in the southern Dora-Maira metamorphic overprint Trans. R. Soc. London, A321, 183-197. Trans. 74. 1994. Abs. Vol., Pisa, 4-8 Sept., Alps. 16th IMA Meet., Western Massif, Dora-Maira 73, 1-9. Mitt., petrogr. Alps. Schweiz. mineral. of the Western pressure terranes rocks (western Alps): II. Crystal chemistry and petrological from very-high-pressure Magnesiodumortierite: a new mineral 7, 525–535. Mineral., J. significance. Eur. 15, 167-176. Mineral., J. petrogenetic and crystal-chemical update. Eur. 3, 263-291. Mineral., J. Eur. 92, 316-321. Petrol., Mineral. Contrib. structure based on face-sharing octahedra. 16, 447-455. Geol., 32, 699-714. Petrol., Soc. It. Miner. basalti a pillow nel Massiccio del M. Viso (Alpi Occidentali). Rend. 3, 84. Abs., Terra Strasbourg, Alps. 6th EUG Meet., Western western Alps, and the origin of whiteschists. Lithos, 57, 219-236. DOI: 10.3301/GFT.2014.03 Compagnoni R. & Rolfo F. (2003b) - Ultrahigh-pressure units in the Western Alps. In: Carswell D.A. & Compagnoni R. (Eds.): Alps. In: Carswell D.A. units in the Western (2003b) - Ultrahigh-pressure F. Compagnoni R. & Rolfo metamorphic rocks in the western Alps. In: Coleman R.G. & Chopin C. (1995) - Ultra-high-pressure T. Hirajima Compagnoni R., meta-ophiolite, western Alps: occurrence and genesis. (2012) - Jadeitite from the Monviso Castelli D. F., Rolfo Compagnoni R., by “HP” to “UHP” R. (2004) - Mapping of Alpine rocks characterized & Turello T. Hirajima Groppo C., F., Rolfo Compagnoni R., Chopin C., Amisano Canesi A., Brunet F. & Simon G. (1994) - Uncommon rock-forming minerals in a very-high-pressure terrane, in a very-high-pressure minerals & Simon G. (1994) - Uncommon rock-forming Brunet F. Amisano Canesi A., Chopin C., from high- & Tillmanns E. (1993) - Bearthite, Ca2Al[PO4]2(OH), a new mineral Medenbach O. Gebert W., Brunet F., Chopin C., M. (1995) - C. & Davis Davidson Compagnoni R., W., Schreyer Schertl H.P., G., Ivaldi G., Ferraris Chopin C., description with a Ungaretti L. & Oberti R. (2003) - Magnesiostaurolite and zincostaurolite: mineral Goffé B., Chopin C., Alps Western massif, Maira Dora Henry C. & Michard A. (1991) - Geology and petrology of the coesite-bearing terrain, Chopin C., with a novel (1986) - Ellenbergerite, a new high pressure Mg-Al-(Ti,Zr)-silicate & Dron D. Medenbach O. Klaska R., Chopin C., metam. Ophiolite. J. eclogite facies metamorphism in the Monviso (1998) - Early Tertiary Barnicoat A.C. & Inger S. Cliff R.A., L. (1976) –Compagnoni R. & Fiora magmatico e gabbri con layering una sequenza ofiolitica metamorfica di ultramafiti, Sopra Massif, Complex, southern Dora-Maira (1991) - Geology and petrology of the Brossasco-Isasca T. Compagnoni R. & Hirajima massif, unit, Dora-Maira garnets in the coesite-bearing Brossasco-Isasca (2001) - Superzoned T. Compagnoni R. & Hirajima 30, 223-237. Soc. It. Min. Petrol., eclogites. Rend. Paradiso (1974) - The Alpine age of the Gran Compagnoni R. & Lombardo B. Al meta-ophiolite, Western (2003a) - First finding of jadeitite in the serpentinite melange Monviso F. Compagnoni R. & Rolfo Chopin C. (1987) - Very-high-pressure metamorphism in the Western Alps: implications for subduction of continental crust. Phil. metamorphism in the Western Chopin C. (1987) - Very-high-pressure geological field trips 2014 - 6(1.3) references 69 s e es the hesis Crust-mantle interactions during subduction of oceanic & continental crust D. Castelli - R. Compagnoni - B. Lombardo - S. Angiboust - G. Balestro - S. Ferrando - C. Groppo - T. Hirajima - F. Rolfo Rolfo - F. Hirajima - C. Groppo T. Ferrando Angiboust - G. Balestro S. Lombardo - S. Castelli - R. Compagnoni B. D. coesite-bearing “pyrope quartzite” and related rocks of the Dora-Maira Massif, Western Alps. Eur. J. Mineral., 21, 1213-1224. Mineral., J. Alps. Eur. Western Massif, coesite-bearing “pyrope quartzite” and related rocks of the Dora-Maira 51, 2489-2514. Petrology, J. gabbro. reactions during subduction of oceanic FeTi-oxide and redox dehydration of the “Schistes lustrés” metamorphic complex of the Western Alps. Geol. Soc. Am. Bull., 104, 127-139. Alps. Geol. Soc. Am. Bull., of the “Schistes lustrés” metamorphic complex Western 47, 1439–1465. Petrol., Italy): implications for dating white mica. J. Massif, Maira Unit (Dora from the UHP Brossasco-Isasca of the Alpine high-pressure metamorphism. Nature, 387, 586-589. 24, 423-436. 27, 739-756. metam. Geol., Alps). J. Massif (Italian Western whiteschists from the southern Dora-Maira 85, 1195-1201. and some petrological implications. Am. Mineral., and AEM study, HRTEM 17, 453-464. Mineral., J. marble: petrologic significance of armoured Si-rich domains. Eur. from a UHP Dora-Maira 7, 167–174. Mineral., J. I, crystal structure. Eur. Part Alps. Lithos, 41, 5–24. Western Massif, Maira exhumation in the Dora rapid 21, 6-1–6-19. numerical simulation. Tectonics, 28, 461-479. tectono-métamorphique régionale. Mem. Soc. Geol. It., (Ass. Ed.): Mapping Geology in Italy, APAT- Dipartimento Difesa del Suolo – APAT- (Ass. Ed.): Mapping Geology in Italy, 2004 (2006), Servizio Geologico d’Italia, Roma Firenze. Map 34, 287-294, Printed by S.EL.CA., Alps). J. Maps, 8, 465-472. 76, 79-89. Mineral., Italian western Alps. Per. DOI: 10.3301/GFT.2014.03 Groppo C. & Castelli D. (2010) - Prograde P-T evolution of a lawsonite eclogite from the Monviso Meta-ophiolite (Western Alps): Meta-ophiolite (Western of a lawsonite eclogite from the Monviso evolution P-T (2010) - Prograde Groppo C. & Castelli D. in facies della terminazione nord-occidentale dell’Unità Brossasco-Isasca Groppo C. (2002) - Studio geologico-petrografico Di Vincenzo G., Tonarini S., Lombardo B., Castelli D. & Ottolini L. (2006) - Comparison of 40Ar–39Ar and Rb–Sr data on phengite and Rb–Sr & Ottolini L. (2006) - Comparison of 40Ar–39Ar Castelli D. Lombardo B., S., Tonarini G., Di Vincenzo (1997) - The Lu-Hf dating of garnets and the ag & Albarède F. Lardeaux J.-M. Télouk P., Luais B., J., Blichert-Toft Duchêne S., Nova, from the Alps: genesis and possible tectonic scenarios. Terra (2012) - Mg-metasomatism of metagranitoids S. Ferrando M, & Compagnoni R. (2009) - Metasomatism of continental crust during subduction: the UHP Petrelli M.L., Frezzotti S., Ferrando phengite: R. (2000) - Nano to microscale decompression products in ultrahigh-pressure Chopin C. & Wessicken C., Ferraris in phengite of micro- and nano-scale zonation characterization (2005) - SEM/TEM-AEM & Lombardo B. Castelli D. C., Ferraris Alps): rocks (Western from very-high-pressure G. & Chopin C. (1995) - Magnesiodumortierite: a new mineral Ivaldi G., Ferraris Press, 244p. Cambridge Univ. (Eds.) (2007) - Metamorphic rocks. A Classification and Glossary of Terms. & Desmons J. D. Fettes metamorphism and evidence for very (1997) - 35 Ma old ultrahigh-pressure W. Brix M. & Schreyer Schertl H.-P., Gebauer D., A.L. (2002) - Exhumation of high-pressure metamorphic rocks in a subduction channel & Perchuk Stöckhert B. T.V., Gerya briançonnaise des Alpes Ligures: un témoin de l’histoir (1984) - Le faciès à carpholite-chloritoïde dans la couverture Goffé B. in (2009) - REE distribution, mobilization and fractionation & Willner A.P. Schertl H.-P. K.-D., Grevel W., Schreyer C., Grevel Compagnoni R., Rolfo F., Groppo C., Hirajima T. & Turello R. (2012) - Geologic map of the UHP Brossasco-Isasca Unit (Western R. (2012) - Geologic map of the UHP Brossasco-Isasca & Turello T. Hirajima Groppo C., F., Rolfo Compagnoni R., meta-ophiolite, Piemonte Zone, jadeitite in the Monviso (2007) - Massive & Salusso F. F. Manavella F., Rolfo Compagnoni R., 51, 155-176. Mem. Sci. Geol., (1999) - The Austroalpine- nappe stack and the puzzle of Alpine Tethys. Dal Piaz G.V. Marthaler M. & Sartori (1992) - From oceanic closure to continental collision: A synt Lagabrielle Y., S., Fudral Deville E., geological field trips 2014 - 6(1.3) references 70 ). st p. o- on ps, the 322. Crust-mantle interactions during subduction of oceanic & continental crust D. Castelli - R. Compagnoni - B. Lombardo - S. Angiboust - G. Balestro - S. Ferrando - C. Groppo - T. Hirajima - F. Rolfo Rolfo - F. Hirajima - C. Groppo T. Ferrando Angiboust - G. Balestro S. Lombardo - S. Castelli - R. Compagnoni B. D. Isasca Complex, Dora-Maira Massif, Italian Western Alps. J. metam. Geol., 9, 19-34. metam. Geol., Alps. J. Italian Western Massif, Isasca Complex, Dora-Maira 153, Petrol., Miner. nappe, western Alps. Contrib. during Eocene eclogite-facies metamorphism: evidence from the Monte Rosa 139-157. Ofioliti, 12, 479-502. ophiolitic complex (Italian western Alps): a record of subduction-collision cycle? Monviso Italy). Mineral. Mag., 51, 681-687. Mag., Italy). Mineral. Ph.D. Thesis, Univ. Paris VI, 284 p. Paris Thesis, Univ. Ph.D. 15, 965-981. Struct. Geol., J. Alps, Italy. Western massif, from Dora-Maira 327, 225-238. oceanic crust. Tectonophysics, Lithos, 92, 399–417. in subduction zones. pressure rocks: implications for element transfer Paris sur la pétrologie des roches de croûte océanique subductée et sédiments associés. Thèse d’Etat, Univ. nouvelles VI, 532 p. through a serpentinite subduction channel. In: Beltrando M., Lister G., Ganne J. & Boullier A. (Eds.): Evolution of the western & Boullier A. (Eds.): Evolution Ganne J. Lister G., M., through a serpentinite subduction channel. In: Beltrando 16, 17 Electronic Ed., Virtual Explorer, J. tectonics and geochronology. geology, Alps: insights from metamorphism, structural eclogitica a coesite, Massiccio Dora-Maira (Alpi Occidentali). M.Sc. Thesis, Univ. Torino, Italy, 175 p. Italy, Torino, (Alpi Occidentali). M.Sc. Thesis, Univ. eclogitica a coesite, Massiccio Dora-Maira for a Alps): New petrological constraints Western Massif, unit (Dora-Maira Brossasco-Isasca from the ultrahigh-pressure B.R.,portion of the decompressional path. In: Hacker metamorphism: (Eds.): Ultrahigh-pressure & Liou J.G. McClelland W.C. 403, 127-138. Special Paper, Deep continental subduction. Geol. Soc. Am., 76, 155-168. Mineral., western Alps). Per. Massif, Isasca Unit (Dora-Maira 49, 142-168. eclogite. Int. Geol. Rev., as inferred from a phengite-amphibole Massif, Maira DOI: 10.3301/GFT.2014.03 Lapen T., Johnson C.M., Baumgartner L.P., Dal Piaz G.V., Skora S. & Beard B.L. (2007) - Coupling of oceanic and continental cru & Beard B.L. S. Skora Dal Piaz G.V., Baumgartner L.P., Johnson C.M., Lapen T., Lagabrielle Y. & Cannat M. (1990) - Alpine Jurassic ophiolites resemble the modern central Atlantic basement. Geology, 18, 319- basement. Geology, Atlantic ophiolites resemble the modern central & Cannat M. (1990) - Alpine Jurassic Lagabrielle Y. & Boudeulle M. (1987) - Deformational and metamorphic history at the Lago Superiore area of Nisio P. Lardeaux J.-M., (2006) - A crustal-scale cross-section of Béthoux N. & Masson F. Guillot S., A., Paul P., Tricart S., Schwartz Lardeaux J.-M., Kienast J.-R., Lombardo B., Biino G. & Pinardon J.L. (1991) - Petrology of very-high-pressure eclogitic rocks from the Brossasc of very-high-pressure (1991) - Petrology Biino G. & Pinardon J.L. Lombardo B., Kienast J.-R., Henry C., Michard A. & Chopin C. (1990) - Geometry and structural evolution of ultra-high-pressure and high-pressure rocks of ultra-high-pressure evolution Michard A. & Chopin C. (1990) - Geometry and structural Henry C., Lithos, 70, 163–182. massif. (2003) - Experimental evidence for diamond-facies metamorphism in the Dora-Maira Hermann J. for subduction and exhumation of & Scambelluri M. (2000) - The importance of serpentinite mylonites Muntener O. Hermann J., melts in high-pressure and ultra-high (2006) - Aqueous fluids and hydrous A.V. Hack A. & Korsakov Spandler C., Hermann J., (éclogites et schistes bleus): données (1983) - Le métamorphisme de haute pression et basse température Kienast J.-R. (Cottian Al Mg-chloritoid, a first record in high pressure metagabbros from Monviso (1987) - Cr-rich & Messiga B. Kienast J.-R. Henry C. (1990) - L’unité à coésite du Massif Dora-Maira dans son cadre pétrologique et structurale (Alpes occidentales, Italie dans son cadre pétrologique et structurale à coésite du Massif Dora-Maira Henry C. (1990) - L’unité Groppo C., Castelli D. & Compagnoni R. (2006) - Late chloritoid-staurolite assemblage in a garnet-kyanite-bearing metapelite & Compagnoni R. (2006) - Late chloritoid-staurolite assemblage in a garnet-kyanite-bearing Castelli D. Groppo C., relics in a spinel-bearing dolomite marble from the UHP Brossasco- Pre-Alpine (2007b) - HT, F. & Rolfo Castelli D. Groppo C., Unit, Dora- & Compagnoni R. (2007a) - Exhumation history of the UHPM Brossasco-Isasca Castelli D. Lombardo B., Groppo C., Alps), a secti ophiolitic massif (Western (2004) - The Monviso A. & Lardeaux J.-M. Auzende Hattori K., S., Schwartz Guillot S., geological field trips 2014 - 6(1.3) references 71 ). 05. acers nsport Ar. C. R. Acad. Sc. Paris, Séries 2, 309, 245-251. C. R. Acad. Sc. Paris, Ar. 39 Ar- 40 Crust-mantle interactions during subduction of oceanic & continental crust D. Castelli - R. Compagnoni - B. Lombardo - S. Angiboust - G. Balestro - S. Ferrando - C. Groppo - T. Hirajima - F. Rolfo Rolfo - F. Hirajima - C. Groppo T. Ferrando Angiboust - G. Balestro S. Lombardo - S. Castelli - R. Compagnoni B. D. Ar dating in coesite-bearing and associated units of the Dora Maira Massif, western Alps. Massif, Maira Ar dating in coesite-bearing and associated units of the Dora 39 Ar/ 40 Symposium, 332-340, Geol. Survey Dept., Nicosia, Cyprus. Dept., 332-340, Geol. Survey Symposium, of local fluid migration during high-pressure metamorphism. Earth Planet. Sci. Lett., 114, 431-448. during high-pressure metamorphism. Earth Planet. Sci. Lett., of local fluid migration 153 p. C. Bernard, Lyon, Thesis, Univ. (Alpes Italiennes Occidentales). Ph.D. tectonométamorphique du Monviso 304, 355-360. de la croûte océanique lors l’orogenèse alpine. C. R. Acad. Sci. Paris, Viso: conséquences de la fragmentation Alps. Lithos, 52, 197–214. Western Massif, bearing unit of the southern Dora-Maira Lithos, 23, 179-200. history and the mechanism scale of mass transfer. north Italy) as indicators of strain south-western Alps combining geophysical and geological imagery. Terra Nova, 18, 412–422. Nova, Terra and geological imagery. Alps combining geophysical south-western 7, 371-394. 34, 253-3 Petrol., Soc. It. Mineral. (Alpi Occidentali). Rend. preliminari sulle ofioliti metamorfiche del Monviso Osservazioni Implications for the evolution of the Piedmont-Liguria Tethys in the Western Alps. Ofioliti, 27, 109-117. in the Western Tethys of the Piedmont-Liguria Implications for the evolution 80, 53–62. Mitt., petrogr. Alps. Schweiz. mineral. Western 17, 287-299. metam. Geol., Alps, Italy). J. ophiolites (Western 221, 173–193. Tectonophysics, unit, western Alps, Italy. Press, Cambridge. 132-158, Cambridge Univ. Pressure Metamorphism., (Eds.): Ultrahigh Session T27.03(58 Florence, Abstract, 32nd Int. Geol. Congr., valleys. Alps: an example from the Varaita–Maira Internal Western Eur. J. Mineral., 3, 239–262. Mineral., J. Eur. (Alpes Occidentales) par la méthode ophiolitique du Monviso DOI: 10.3301/GFT.2014.03 MONVISO (1980) - The Monviso ophiolite complex. In: Panayotou A. (Ed.), Proceedings of the International Ophiolite ophiolite complex. In: Panayotou MONVISO (1980) - The Monviso isotopic compositions (H-O-C) in eclogitic rocks as tr (1993) - Fluid inclusion and mineral & Pineau F. Philippot P. Nadeau S., Nisio P. (1985) - Les domaines d’antiphase des omphacites et la pétrologie éclogites: contribution a l’étude de l’évolution Nisio P. des éclogites dans le massif du tectonométamorphiques contrastées & Boudeulle M. (1987) - Évolutions Lardeaux J.-M. Nisio P., thermobarometry of eclogites from the coesite- (2000) - Garnet-omphacite-phengite W. & Schreyer Schertl H.P. Nowlan E.U., Alps, Western (Monviso, changes in eclogite-facies shear zones (1989) - Chemical-microstructural & Kienast J.R. Philippot P. Implications for fluid composition and tra brines in eclogitic veins: element-rich (1991) - Trace J. & Selverstone Philippot P. Lombardo B. & Pognante U. (1982) - Tectonic implications in the evolution of the Western Alps ophiolite metagabbros. Ofioliti, of the Western implications in the evolution (1982) - Tectonic U. & Pognante Lombardo B. & Lanza R. (1978) - Piccardo G.B. L., Fiora C., Mével Kienast J.-R., Messiga B., Compagnoni R., R., Nervo Lombardo B., Lombardo B., Rubatto D. & Castelli D. (2002) - Ion microprobe U-Pb dating of zircon from a Monviso metaplagiogranite: (2002) - Ion microprobe U-Pb dating of zircon from a Monviso & Castelli D. D. Rubatto Lombardo B., massif, unit of the southern Dora-Maira (2000) - Garnet in pelitic schists from a quartz-eclogite T. Matsumoto N. & Hirajima 120, 223–253. (1995) - The composition of the Earth. Chem. Geol., & Sun S.-S. McDonough W.F. magnesiochloritoid eclogites from the Monviso R. (1999) - Cr-rich & Tribuzio Riccardi M.P. G., Rebay Kienast J.R., Messiga B., coesite-bearing Maira extension in the exhumation of Dora Chopin C. & Henry (1993) - Compression versus Michard A., X. Henry C. & Chopin (1995) - Structures in UHPM rocks: A case study from the Alps. In: Coleman R.G. Wang Michard A., of ophiolite units in the evolution & Michard A. (2004) - Tectonometamorphic Lombardo B. Gattiglio M., Borghi A., Mondino F., & Chopin C. (1991) - Monié P. Monié P. & Philippot P. (1989) - Mise en évidence de l’âge Eocene Moyen du métamorphisme de haute-pression dans la nappe (1989) - Mise en évidence de l’âge Eocene Moyen & Philippot P. Monié P. geological field trips 2014 - 6(1.3) references 72 e ra or Crust-mantle interactions during subduction of oceanic & continental crust D. Castelli - R. Compagnoni - B. Lombardo - S. Angiboust - G. Balestro - S. Ferrando - C. Groppo - T. Hirajima - F. Rolfo Rolfo - F. Hirajima - C. Groppo T. Ferrando Angiboust - G. Balestro S. Lombardo - S. Castelli - R. Compagnoni B. D. massif, Western Alps): implications for element recycling during subduction. Contrib. Mineral. Petrol., 121, 29-44. Petrol., Mineral. during subduction. Contrib. Alps): implications for element recycling Western massif, 70, 147-192. Mineral., inference from petrology and geochemistry of the Ligurian Ophiolites. Per. 1, 20. Abstract, Würzburg, Terra 3rd Int. Eclogite Conf., 3, 7-17. Mineral., J. Alps. Eur. Western zone, western Alps. Lithos, 42, 147-189. Zone, Cignana, Zermatt-Saas Geochim. Cosmochim. Acta, 67, 2173–2187. Zr and Hf budget in subduction zones. Berlin. geology in the Alps. 315-323, Sprinter-Verlag, Mesozoic 20, 791–809. Mineral., J. Alps. Eur. Western Massif, 108, 1-21. Petrol., Mineral. Contrib. chemistry and PT-path. mineral Alps: detailed petrography, Western of the evolution G. (Eds.): Reconstruction and Cretaceous. In: Lister G. & Rosenbaum surrounding areas during the Jurassic 8, 145-160. Electronic Ed., Virtual Explorer, orogen. J. of the Alpine-Himalayan 43, 127-144. evidence. Tectonophysics, petrographic 63, 227-261. Mineral., metapelites. Fortschr. during subduction. Contrib. Mineral. Petrol., 106, 417–430. Petrol., Mineral. during subduction. Contrib. 14, 1059–1077. Struct. Geol., J. of subduction zones. of the oceanic crust in deeper level 269 p. Montpellier, Thesis, Univ. la collision alpine. Ph.D. cinématiques durant occidentales): contraintes recycling during subduction. Chem. Geol., 108, 93-112. during subduction. Chem. Geol., recycling DOI: 10.3301/GFT.2014.03 Piccardo G.B., Rampone E., Romairone A., Scambelluri M., Tribuzio R. & Beretta C. (2001) - Evolution of the Ligurian Tethys: R. & Beretta C. (2001) - Evolution Tribuzio Scambelluri M., A., Romairone E., Rampone Piccardo G.B., Alps. high P/T meta-morphism of piemontite-bearing assemblages from Greece and the Western (1989) - Progressive T. Reinecke pressure metamorphism and uplift of coesite-bearing metasediments from the Zermatt-Saas (1991) - Very-high T. Reinecke metamorphism and exhumation of oceanic sediments at Lago di high- to ultrahigh-pressure (1998) - Prograde T. Reinecke 29, 3–6. (2001) - Exhumation as fast subduction? Geology, & Hermann J. D. Rubatto Alps): Implications f Western (2003) - Zircon formation during fluid circulation in eclogites (Monviso, & Hermann J. D. Rubatto (Eds.): Pre- & Neubauer F. J.F. Raumer In: von Massif. (1993) - The Dora-Maira Sacchi R. & Vialon P. Cadoppi P., Sandrone R., (2008) - Geochemistry of coesite-bearing ‘‘pyrope quartzite’’ W. & Schreyer Schertl H.-P. and related rocks from the Dora-Maira Massif, Dora-Maira & Chopin C. (1991) - The pyrope-coesite rocks and their country at Parigi, W. Schreyer Schertl H.-P., region and to the tectonic history of Mediterranean Schettino A. & Scotese C. (2002) - Global kinematic constraints regimes based on experimental, field, and (1977) - Whiteschists: their compositions and pressure-temperature W. Schreyer assemblages in and mineral (1985) - Metamorphism of crustal rocks at mantle depths: High-pressure minerals W. Schreyer & Chopin C. (1987) - Continental crust subducted to mantle depths near 100 km: implications for Massonne H.-J. W., Schreyer Philippot P. & van Roermund H.L.M. (1992) – Roermund & van Philippot P. Deformation processes in eclogitic rocks: evidence for the rheological delamination geometry in eclogitic rocks. Geodinamica Acta, 1, seal vein (1987) - Crack Philippot P. 171-181. Alpes d’une croûte océanique subductée (Le Monviso, (1988) - Déformation et éclogitisation progressives Philippot P. on volatil in mafic eclogites and coesite-bearing metasediments - constraints (1993) - Fluid-melt rock interaction Philippot P. Philippot P., Chevallier P., Chopin C. & Dubessy J. (1995) - Fluid composition and evolution in coesite-bearing rocks (Dora-Mai (1995) - Fluid composition and evolution Chopin C. & Dubessy J. P., Chevallier Philippot P., geological field trips 2014 - 6(1.3) references 73 e is, aira ble, Crust-mantle interactions during subduction of oceanic & continental crust D. Castelli - R. Compagnoni - B. Lombardo - S. Angiboust - G. Balestro - S. Ferrando - C. Groppo - T. Hirajima - F. Rolfo Rolfo - F. Hirajima - C. Groppo T. Ferrando Angiboust - G. Balestro S. Lombardo - S. Castelli - R. Compagnoni B. D. Univ. Torino, 237 p. Torino, Univ. des Sciences de Grenoble, Memoir 4, 293 p. de Géologie la Faculté du Laboratoire Travaux Insights from Alpine Corsica. Lithos, 124, 273-290. in deeply subducted terranes: zones Inherited Ocean-Continent Transition metam. of subducting slabs. J. blueschist: phase equilibria modeling of Alpine Corsica metabasalts and petrological evolution 29, 583-600. Geol., magma and fluid genesis in collision zones. In Mysen O. (Ed.): Magmatic processes: physicochemical principles. Geochem. (Ed.): Magmatic processes: physicochemical In Mysen O. magma and fluid genesis in collision zones. 1, 155–163. Spec. Publ., Soc., du Monviso (Alpes occidentales, Italie). Geodinamica Acta, Spec. Issue: Jean-Michel Caron (1946-1997), 13, 169-188. du Monviso 226, 243–254. Earth Planet. Sci. Lett., zones. 114, 1–12. Petrol., Mineral. western Alps. Contrib. Massif, Maira whiteschists, Dora 140, 422–440. Petrol., Mineral. western Alps. Contrib. massif, Maira Alps. Lithos, 41, 37–57. Western 52, 1207-1236. Petrology, J. Alps: Implications for Fluid Flow in Subduction Zones. ophiolite, Western 17, 102-110. Nova, numerical simulation. Terra Geochim. Cosmochim. Acta, 53, 1391–1400. Alps Italy. Western massif, Maira 108, 22–33. Petrol., Mineral. metamorphism? Contrib. what is the age of ultrahigh-pressure Alps Italy—II: Western massif, DOI: 10.3301/GFT.2014.03 Vialon P. (1966) - Etude géologique du Massif Cristallin Dora-Maira, Alpes cottiennes internes, Italie. PhD Thesis, Univ. Greno Alpes cottiennes internes, Italie. PhD Thesis, Univ. (1966) - Etude géologique du Massif Cristallin Dora-Maira, Vialon P. & Compagnoni R. (2011a) - Beyssac O. E, Groppo C., Tondella Giuntoli F, J., Malavieille M., Beltrando A., Vitale Brovarone (2011b) - Coexistence of lawsonite-eclogite and J. Malavieille Compagnoni R., G., Hetenyi Groppo C., A., Vitale Brovarone Schwartz S., Lardeaux J.-M., Guillot S. & Tricart P. (2000) - Diversité du métamorphisme éclogitique dans le massif ophiolitiqu (2000) - Diversité P. & Tricart Guillot S. Lardeaux J.-M., S., Schwartz Sharp Z.D. & Barnes J.D. (2004) - Water-soluble chlorides in massive seafloor serpentinites: a source of chloride in subduction chlorides in massive (2004) - Water-soluble & Barnes J.D. Sharp Z.D. (1993) - Stable isotope geochemistry and phase equilibria of coesite-bearing J.C. & Hunziker Essene E.J. Sharp Z.D., pyrope megablasts, Dora- assemblages in ultrahigh-pressure Simon G. & Chopin C. (2001) - Enstatite-sapphirine crack-related Massif, pyrope, Dora-Maira magnesiochloritoid in prograde-zoned (1997) - Near-end-member Chopin C. & Schenk V. Simon G., Meta- in the Monviso (2011) - Internal and External Fluid Sources for Eclogite-facies Veins D. & Rubatto T. Pettke Spandler C., 25, 439-450. metam. Geol., Groppo C. & Compagnoni R. (2007) - When epitaxy controls garnet growth. J. Spiess R., continental margins: a (2005) - Pre-collisional HP metamorphism and nappe tectonics at active T.V. & Gerya B. Stöckert of deeply subducted crustal rocks from the Dora isotopic behaviour (1989) - Pb–Sr–Nd & Schertl H.-P. W. Schreyer Tilton G.R., M of deeply subducted crustal rocks from the Dora isotopic behaviour (1991) - Pb–Sr–Nd & Schertl H.-P. W. Schreyer Tilton G.R., M.Sc. Thes Varaita). e Brossasco (Valle Po) Martiniana (Valle dell’area tra R. (1993) - Studio geologico e petrografico Turello