An Investigation of Passive Antibody and Its Effects on Porcine Epidemic Diarrhea Virus Infection Korakrit Poonsuk Iowa State University

Total Page:16

File Type:pdf, Size:1020Kb

An Investigation of Passive Antibody and Its Effects on Porcine Epidemic Diarrhea Virus Infection Korakrit Poonsuk Iowa State University Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2017 An investigation of passive antibody and its effects on porcine epidemic diarrhea virus infection Korakrit Poonsuk Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Allergy and Immunology Commons, Immunology and Infectious Disease Commons, Medical Immunology Commons, Veterinary Medicine Commons, and the Virology Commons Recommended Citation Poonsuk, Korakrit, "An investigation of passive antibody and its effects on porcine epidemic diarrhea virus infection" (2017). Graduate Theses and Dissertations. 16104. https://lib.dr.iastate.edu/etd/16104 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. An investigation of passive antibody and its effects on porcine epidemic diarrhea virus infection by Korakrit Poonsuk A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Veterinary Microbiology (Preventive Medicine) Program of Study Committee: Jeffrey J. Zimmerman, Major Professor Rodger G. Main Jianqiang Zhang Chong Wang Darin Madson The student author and the program of study committee are solely responsible for the content of this dissertation. The Graduate College will ensure this dissertation is globally accessible and will not permit alterations after a degree is conferred. Iowa State University Ames, Iowa 2017 Copyright © Korakrit Poonsuk, 2017. All rights reserved. ii DEDICATION To my parents Dr. Kriengsak and Arunee Poonsuk To my major professor Professor Dr. Jeffrey J. Zimmerman iii TABLE OF CONTENTS ABSTRACT ........................................................................................................................ vi CHAPTER 1. GENERAL INTRODUCTION ....................................................................... 1 References ........................................................................................................................... 2 CHAPTER 2. HISTORICAL AND CONTEMPORARY ASPECTS OF MATERNAL IMMUNITY IN SWINE .................................................................................. 3 Abstract ............................................................................................................................... 3 Introduction ......................................................................................................................... 4 The recognition of maternal immunity ............................................................................... 4 Why are piglets born agammaglobulinemic? ..................................................................... 8 Anatomy and physiology of lactation ............................................................................... 11 Swine mammary gland anatomy ................................................................................. 11 Mammogenesis ........................................................................................................... 11 Lactogenesis ................................................................................................................ 14 Immunological functions of mammary secretions ............................................................ 16 Cellular components in swine mammary secretion .................................................... 16 Antibodies in swine mammary secretions .................................................................. 19 Transport of antibody into mammary secretions ........................................................ 20 Acquisition of maternal immunity by the neonatal piglet .......................................... 22 Maternal immunity and swine health: past, present, and future applications .................. 24 References ......................................................................................................................... 27 Table ................................................................................................................................. 46 Table 1. Pathogens against which maternal immunity can provide protection to piglets ......................................................................................................... 46 CHAPTER 3. DOES CIRCULATING ANTIBODY PLAY A ROLE IN THE PROTECTION OF PIGLETS AGAINST PORCINE EPIDEMIC DIARRHEA VIRUS? .................................................................................... 47 Abstract ............................................................................................................................. 47 Introduction ....................................................................................................................... 48 Materials and Methods ...................................................................................................... 50 Experimental design.................................................................................................... 50 Porcine epidemic diarrhea virus (PEDV) inoculum ................................................... 50 Animals and animal care ............................................................................................. 51 Implementation of the experiment .............................................................................. 52 Biological sample collection ....................................................................................... 54 Coronavirus reverse-transcriptase polymerase chain reactions (rRT-PCR) ............... 55 Analysis 59 iv Results ............................................................................................................................... 60 Discussion ......................................................................................................................... 62 Funding ............................................................................................................................. 66 References ......................................................................................................................... 66 Tables ................................................................................................................................ 73 Table 1. Allocation of piglets to treatments by litter a ............................................... 73 Table 2. Serum antibody levels among treatment groups by day post inoculation .. 74 Figures............................................................................................................................... 75 Figure 1. Anti-PEDV IgA in milk based on daily samplings and mean number of piglets per litter over time post inoculation. ............................................. 75 Figure 2. Treatment responses following inoculation of piglets with porcine epidemic diarrhea virus. ............................................................................. 76 CHAPTER 4. QUANTIFYING THE EFFECT OF LACTOGENIC ANTIBODY ON PORCINE EPIDEMIC DIARRHEA VIRUS INFECTION IN NEONATAL PIGLETS ................................................................................. 77 Abstract ............................................................................................................................. 77 Introduction ....................................................................................................................... 78 Materials and methods ...................................................................................................... 79 Experimental design.................................................................................................... 79 Animals and animal care ............................................................................................. 80 Porcine epidemic diarrhea virus (PEDV) inoculum ................................................... 81 PEDV inoculation ....................................................................................................... 82 Biological sample collection ....................................................................................... 82 Coronavirus reverse-transcriptase polymerase chain reactions (rRT-PCR) ............... 83 Coronavirus antibody assays....................................................................................... 85 Data analysis ............................................................................................................... 87 Results ............................................................................................................................... 88 Discussion ......................................................................................................................... 91 Declaration of conflicting interests ................................................................................... 96 Funding ............................................................................................................................. 97 References ......................................................................................................................... 97 Tables .............................................................................................................................
Recommended publications
  • The Journal of the International Federation of Clinical Chemistry and Laboratory Medicine in This Issue
    June 2021 ISSN 1650-3414 Volume 32 Number 2 Communications and Publications Division (CPD) of the IFCC Editor-in-chief: Prof. János Kappelmayer, MD, PhD Faculty of Medicine, University of Debrecen, Hungary e-mail: [email protected] The Journal of the International Federation of Clinical Chemistry and Laboratory Medicine In this issue Introducing the eJIFCC special issue on “POCT – making the point” Guest editor: Sergio Bernardini 116 Controlling reliability, interoperability and security of mobile health solutions Damien Gruson 118 Best laboratory practices regarding POCT in different settings (hospital and outside the hospital) Adil I. Khan 124 POCT accreditation ISO 15189 and ISO 22870: making the point Paloma Oliver, Pilar Fernandez-Calle, Antonio Buno 131 Utilizing point-of-care testing to optimize patient care James H. Nichols 140 POCT: an inherently ideal tool in pediatric laboratory medicine Siobhan Wilson, Mary Kathryn Bohn, Khosrow Adeli 145 Point of care testing of serum electrolytes and lactate in sick children Aashima Dabas, Shipra Agrawal, Vernika Tyagi, Shikha Sharma, Vandana Rastogi, Urmila Jhamb, Pradeep Kumar Dabla 158 Training and competency strategies for point-of-care testing Sedef Yenice 167 Leading POCT networks: operating POCT programs across multiple sites involving vast geographical areas and rural communities Edward W. Randell, Vinita Thakur 179 Connectivity strategies in managing a POCT service Rajiv Erasmus, Sumedha Sahni, Rania El-Sharkawy 190 POCT in developing countries Prasenjit Mitra, Praveen Sharma 195 In this issue How could POCT be a useful tool for migrant and refugee health? Sergio Bernardini, Massimo Pieri, Marco Ciotti 200 Direct to consumer laboratory testing (DTCT) – opportunities and concerns Matthias Orth 209 Clinical assessment of the DiaSorin LIAISON SARS-CoV-2 Ag chemiluminescence immunoassay Gian Luca Salvagno, Gianluca Gianfilippi, Giacomo Fiorio, Laura Pighi, Simone De Nitto, Brandon M.
    [Show full text]
  • THE IMMUNE SYSTEM Blood Cells Cells of the Immune System
    THE IMMUNE SYSTEM Blood Cells Cells of the Immune System White Blood Cells • Phagocytes - Neutrophils - Macrophages • Lymphocytes Phagocytes • Produced throughout life by the bone marrow. • Scavengers – remove dead cells and microorganisms. Neutrophils • 60% of WBCs • ‘Patrol tissues’ as they squeeze out of the capillaries. • Large numbers are released during infections • Short lived – die after digesting bacteria • Dead neutrophils make up a large proportion of puss. Macrophages • Larger than neutrophils. • Found in the organs, not the blood. • Made in bone marrow as monocytes, called macrophages once they reach organs. • Long lived • Initiate immune responses as they display antigens from the pathogens to the lymphocytes. Macrophages Phagocytosis Phagocytosis • If cells are under attack they release histamine. • Histamine plus chemicals from pathogens mean neutrophils are attracted to the site of attack. • Pathogens are attached to antibodies and neutrophils have antibody receptors. • Enodcytosis of neutrophil membrane phagocytic vacuole. • Lysosomes attach to phagocytic vacuole pathogen digested by proteases Lymphocytes • Produce antibodies • B-cells mature in bone marrow then concentrate in lymph nodes and spleen • T-cells mature in thymus • B and T cells mature then circulate in the blood and lymph • Circulation ensures they come into contact with pathogens and each other B -Lymphocytes • There are c.10 million different B- lymphocytes, each of which make a different antibody. • The huge variety is caused by genes coding for abs changing slightly during development. • There are a small group of clones of each type of B-lymphocyte B -Lymphocytes • At the clone stage antibodies do not leave the B- cells. • The abs are embedded in the plasma membrane of the cell and are called antibody receptors.
    [Show full text]
  • 1995) Borrelia Burgdorferi-Specific T Lymphocytes Induce Severe Destructive Lyme Arthritis
    LTT (Lymphozyten-Proliferationstest, „Lymphozyten-Transformationstest“) Interferon Gamma Test, ELISpot (T-Cell Spot), dem Lymphozytentransformationstest bei Borreliose und bei anderen Infektionskrankheiten Im Lymphozyten-Proliferationstest, auch Lymphozyten-Transformationstest genannt (LTT), wird die Proliferationskapazität von Lymphozyten dargestellt. Der Test dient der Bewertung des Immunstatus oder der Diagnose einer speziellen Sensibilisierung. In the Lymphocyte proliferation assay, also known as lymphocyte transformation test (LTT), the proliferation capacity of lymphocytes is shown. The test is used to evaluate the immune status or the diagnosis of specific sensitization of an object. Im Interferon Gamma Test, dem ELISPOT (Enzyme-Linked ImmunoSpot), auch T- Cellspot genannt, wird durch die Bestimmung der Zytokin – Produktion die Quantität und die Qualität einer T – Zell - Immunantwort zeitnah dokumentiert. In the Interferone Gamma Test, ELISPOT (Enzyme-Linked ImmunoSpot), also called T-Cell spot, represented by the determination of cytokine – Production, the quantity and quality of T - cell - immune response in a timely manner is documented. Lim LC, England DM, DuChateau BK, Glowacki NJ, Schell RF (1995) Borrelia burgdorferi-specific T lymphocytes induce severe destructive Lyme arthritis. Infect. Immun. 63, 1400-1408. Dwyer JM et al. (1979) Behavior of human immunoregulatory cells in culture. L Variables requiring consideration for clinical studies. Clin Exp Immunol 38, 499-513 Johnson C, Dwyer JM (1981) Quantitation of spontaneous suppressor cell activity in human cord blood lymphocytes and their behavior in culture (abstract). Fed Proc 40, 1075 Czerkinsky C, Nilsson L, Nygren H, Ouchterlony O, Tarkowski A (1983) A solid-phase enzyme- linked immunospot (ELISPOT) assay for enumeration of specific antibody-secreting cells.J Immunol Methods 65 (1–2), 109–121.
    [Show full text]
  • The Relationship Between Maternal Postpartum Psychological State and Breast Milk Secretory Immunoglobulin a Level
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Tsukuba Repository The Relationship Between Maternal Postpartum Psychological State and Breast Milk Secretory Immunoglobulin A Level 著者 Kawano Atsuko, Emori Yoko journal or Journal of the American Psychiatric Nurses publication title Association volume 21 number 1 page range 23-30 year 2015-01 権利 Authors URL http://hdl.handle.net/2241/00124572 doi: 10.1177/1078390314566882 The relationship between maternal postpartum psychological state and breast milk secretory immunoglobulin A level. Kawano A, Emori Y. J Am Psychiatr Nurses Assoc. 2015 Jan-Feb;21(1):23-30. doi: 10.1177/1078390314566882. Epub 2015 Jan 14. PMID:25589451 Abstract BACKGROUND: Maternal psychological state may influence the passive transfer of immune factors (e.g., immunoglobulin) via the mother’s breast milk. OBJECTIVE: The aim of this study was to determine whether a correlation exists between mothers’ postpartum psychological state and their breast milk secretory immunoglobulin A (SIgA) levels. STUDY DESIGN: Eighty-one mothers who delivered at an urban general hospital were included in our analysis. Two weeks after delivery, we measured their breast milk SIgA levels and simultaneously documented their psychological state using the Profile of Mood States (POMS), General Health Questionnaire (GHQ), and State-Trait Anxiety Inventory (STAI) scales. RESULTS: Breast milk SIgA levels were negatively correlated with negative POMS states (tension-anxiety, depression-dejection, anger-hostility, fatigue, and confusion). A negative correlation was also observed between SIgA levels and GHQ mental health (r = −.625, P = .000), and a similar negative correlation was observed with STAI trait and state anxieties.
    [Show full text]
  • Ampath Medical Surveillance Guidelines Metal Chemicals
    AMPATH MEDICAL SURVEILLANCE GUIDELINES METAL CHEMICALS TABLE OF CONTENTS Introduction 3 Definitions 4 Biological monitoring 7 Biological effect monitoring 15 Health program 15 Food handler’s health program 16 Driver’s health program 16 Substance abuse in the workplace 17 Alcohol in the workplace 17 Target organs for alcohol abuse 21 Drugs in the workplace 22 Ampath drugs of abuse screening and confirmatory tests on urine 23 Conditions under which a pathologist will testify in court 23 Chain of custody 24 Hazardous chemical regulations 25 Designing and implementing a program of medical surveillance 25 Assessment of potential exposure 25 Table 3 substances 26 Available tests 27 Test interpretation 31 Ampath Quality Assurance 33 Designing exposure profiles 34 Work related hazardous chemical exposure 36 Chemical exposure: DNA adducts 37 Target organs for chemical exposure 39 Chemical exposure profiles 40 Aniline 40 Acetone 41 Benzene 42 Carbon disulphide 43 Carbon monoxide 44 Cyanide 45 Ethyl benzene 46 NN-dimethylformamide 47 Furfural 48 N-hexane 49 © Ampath Medical Surveillance Guideline 1 Isocyanate 50 Methanol 51 Methyl chloroform 52 Methyl ethyl ketone 53 Methyl isobutyl ketone 54 Nitrobenzene 55 Organophosphorous cholinesterase inhibitors 56 Paraquat 57 Parathion 58 Pentachlorophenol 59 Perchloroethylene 60 Phenol 61 Polycyclic aromatic hydrocarbon(PAH) 62 Styrene 64 Toluene 65 Trichloroethylene 67 Xylene 68 Metals 69 Diagnosis and investigation of occupational exposure to metals; a general review 69 Target organs for metal exposure
    [Show full text]
  • Ampath Desk Reference: Guide to Laboratory Tests
    Ampath Guide to Lab Tests front cover final repro outlines 15 March 2016.
    [Show full text]
  • Abstracts of Poster Presentations
    Abstracts of Poster Presentations To view the full program, please visit the Congress website www.kenes.com/aps Downloaded from lup.sagepub.com at University Library Utrecht on March 17, 2015 loth ktertSic (Qn nsanAtiopuipdAMibocEes PFates 584 ANTIPHOSPHOLIPID ANTIBODIES IN PATIENTS WITH DEVELOPMENT OF ANTIPHOSDPHOLIPID-ANTIBODIES AND INTOLERANCE TO METALS IN THE ORAL CAVITY FACrOR V-INHIBITOR AFTER CIPROFLOXACIN IN TWO CASES H. Kucerova', J. Prochazkovat, I. Janatkova2, J. Bartova', T. Fucikova2 W.Miesbachl, J. Vogte, D. Peez3, B. Buehler', G. Asmelashl', 'Institute ofDental Research, 1st Medical Faculty, 2Institute ofClinical 1. Scharrerl Imnmunology andAllergology, General Faculty Hospital, Prague, 'J W.Goethe-University, Frankfurt, 25t. Vincenz Hospital, Mainz, Czech Republic 3Justus Liebig University, Frankfurt, Germany Dental alloys are not a physiological part of the organism. Metals can cause The development of factor V-inhibitor is very rare, especially in the production of autoantibodies in sensitive individuals as well as other combination with the antiphospholipid (aPL)-antibodies. The present paper undesired side effects. The aim of this presentation is to evaluate the describes two patients with factor V-inhibitor and aPL-antibodies after presence of antiphospholipid antibodies in sera of patients with oral trcatment with ciprofloxacin. Lupus anticoagulants (LA) were assayed discomfort and the occurrence of pathological galvanic currents in the oral according to the criteria of SSC of the ISTH, ACL by an ELISA, factor V- cavity. The patients were diagnosed by measurement of galvanic features inhibitor by the Bethesda method. with the device Odontologic accompanied by the modified method ofblastic Q.Oe.atirti 74 years old was treated with ciprofloxacin for a postoperative transfonnation for metals (Melisa) and by the anamnestic data.
    [Show full text]
  • The Development of the Virus Concept As Reflected in Corpora of Studies on Individual Pathogens* 5
    Medical History, 1979, 23: 1-28. THE DEVELOPMENT OF THE VIRUS CONCEPT AS REFLECTED IN CORPORA OF STUDIES ON INDIVIDUAL PATHOGENS* 5. SMALLPOX AND THE EVOLUTION OF IDEAS ON ACUTE (VIRAL) INFECTIONS by LISE WILKINSON** IN 1806, Thomas Jefferson was in his second term of office as the third President of the United States. From his neo-classical mansion ofMonticello in Virginia, Jefferson wrote on 14 May a letter to Edward Jenner, congratulating him on his discovery of vaccination which Jefferson helped to promote in the United States. After comparing Jenner's discovery favourably with William Harvey's discovery of the circulation of the blood, Jefferson continued in somewhat purple prose: "You have erased from the calendar of human afflictions one of its greatest. Yours is the comfortable reflec- tion that mankind can never forget that you have lived; future nations will know by history only that the loathsome small-pox has existed, and by you has been extir- pated ... .".I The optimism voiced by Jefferson proved to be highly premature. In the last decade, the vast resources of the World Health Organization have been brought to bear on the problem of world-wide eradication of variola; even so, the last pockets of infection have proved more persistent than expected, and optimistic estimates far more recent than Jefferson's remain so far unfulfilled.2 On the other hand, in the absence of an animal carrier of the virus of smallpox, complete eradica- tion may be obtained with the help of vaccination, while bubonic plague, carried by a number of rodents, remains endemic over large areas of the globe, including North America.
    [Show full text]
  • Current Trends in Research on Human Milk Exchange for Infant Feeding
    Current trends in research on human milk exchange for infant feeding By: Aunchalee E. L. Palmquist, Maryanne T. Perrin, Diana Cassar-Uhl, Karleen D. Gribble, Angela B. Bond, and Tanya Cassidy Palmquist AEL, Perrin MT, Cassar-Uhl D, Gribble KD, Bond AB, Cassidy T. Current Trends in Research on Human Milk Exchange for Infant Feeding. Journal of Human Lactation. 2019;35(3):453-477. doi:10.1177/0890334419850820 Made available courtesy of SAGE publications: https://doi.org/10.1177/0890334419850820 ***© 2019 The Authors. Reprinted with permission. No further reproduction is authorized without written permission from SAGE. This version of the document is not the version of record. *** Abstract: Breastfeeding is critical for the healthy growth and development of infants. A diverse range of infant-feeding methods are used around the world today. Many methods involve feeding infants with expressed human milk obtained through human milk exchange. Human milk exchange includes human milk banking, human milk sharing, and markets in which human milk may be purchased or sold by individuals or commercial entities. In this review, we examine peer- reviewed scholarly literature pertaining to human milk exchange in the social sciences and basic human milk sciences. We also examine current position and policy statements for human milk sharing. Our review highlights areas in need of future research. This review is a valuable resource for healthcare professionals and others who provide evidence-based care to families about infant feeding. Keywords: human milk | human milk expression | infant-feeding patterns | lactation | milk banking | breastfeeding Article: Key Messages • Breastfeeding is critical for the healthy growth and development of infants, but it is not always possible or desired.
    [Show full text]
  • Greenbook Chapter 1
    Chapter 1: Immunity and how vaccines work December 2018 1 Immunity and how vaccines work vaccines work Introduction Immunity and how Immunity is the ability of the human body to protect itself from infectious disease. The defence mechanisms of the body are complex and include innate (non-specific, non-adaptive) mechanisms and acquired (specific, adaptive) systems. Innate or non-specific immunity is present from birth and includes physical barriers (e.g. intact skin and mucous membranes), chemical barriers (e.g. gastric acid, digestive enzymes and bacteriostatic fatty acids of the skin), phagocytic cells and the complement system. Acquired immunity is generally specific to a single organism or to a group of closely related organisms. There are two basic mechanisms for acquiring immunity – active and passive. Active immunity Active immunity is protection that is produced by an individual’s own immune system and is usually long-lasting. Such immunity generally involves cellular responses, serum antibodies or a combination acting against one or more antigens on the infecting organism. Active immunity can be acquired by natural disease or by vaccination. Vaccines generally provide immunity similar to that provided by the natural infection, but without the risk from the disease or its complications. Active immunity can be divided into antibody- mediated and cell-mediated components. Antibody-mediated immunity Antibody-mediated responses are produced by B lymphocytes (or B cells), and their direct descendants, known as plasma cells. When a B cell encounters an antigen that it recognises, the B cell is stimulated to proliferate and produce large numbers of lymphocytes secreting an antibody to this antigen.
    [Show full text]
  • I M M U N O L O G Y Core Notes
    II MM MM UU NN OO LL OO GG YY CCOORREE NNOOTTEESS MEDICAL IMMUNOLOGY 544 FALL 2011 Dr. George A. Gutman SCHOOL OF MEDICINE UNIVERSITY OF CALIFORNIA, IRVINE (Copyright) 2011 Regents of the University of California TABLE OF CONTENTS CHAPTER 1 INTRODUCTION...................................................................................... 3 CHAPTER 2 ANTIGEN/ANTIBODY INTERACTIONS ..............................................9 CHAPTER 3 ANTIBODY STRUCTURE I..................................................................17 CHAPTER 4 ANTIBODY STRUCTURE II.................................................................23 CHAPTER 5 COMPLEMENT...................................................................................... 33 CHAPTER 6 ANTIBODY GENETICS, ISOTYPES, ALLOTYPES, IDIOTYPES.....45 CHAPTER 7 CELLULAR BASIS OF ANTIBODY DIVERSITY: CLONAL SELECTION..................................................................53 CHAPTER 8 GENETIC BASIS OF ANTIBODY DIVERSITY...................................61 CHAPTER 9 IMMUNOGLOBULIN BIOSYNTHESIS ...............................................69 CHAPTER 10 BLOOD GROUPS: ABO AND Rh .........................................................77 CHAPTER 11 CELL-MEDIATED IMMUNITY AND MHC ........................................83 CHAPTER 12 CELL INTERACTIONS IN CELL MEDIATED IMMUNITY ..............91 CHAPTER 13 T-CELL/B-CELL COOPERATION IN HUMORAL IMMUNITY......105 CHAPTER 14 CELL SURFACE MARKERS OF T-CELLS, B-CELLS AND MACROPHAGES...............................................................111
    [Show full text]
  • XXI Fungal Genetics Conference Abstracts
    Fungal Genetics Reports Volume 48 Article 17 XXI Fungal Genetics Conference Abstracts Fungal Genetics Conference Follow this and additional works at: https://newprairiepress.org/fgr This work is licensed under a Creative Commons Attribution-Share Alike 4.0 License. Recommended Citation Fungal Genetics Conference. (2001) "XXI Fungal Genetics Conference Abstracts," Fungal Genetics Reports: Vol. 48, Article 17. https://doi.org/10.4148/1941-4765.1182 This Supplementary Material is brought to you for free and open access by New Prairie Press. It has been accepted for inclusion in Fungal Genetics Reports by an authorized administrator of New Prairie Press. For more information, please contact [email protected]. XXI Fungal Genetics Conference Abstracts Abstract XXI Fungal Genetics Conference Abstracts This supplementary material is available in Fungal Genetics Reports: https://newprairiepress.org/fgr/vol48/iss1/17 : XXI Fungal Genetics Conference Abstracts XXI Fungal Genetics Conference Abstracts Plenary sessions Cell Biology (1-87) Population and Evolutionary Biology (88-124) Genomics and Proteomics (125-179) Industrial Biology and Biotechnology (180-214) Host-Parasite Interactions (215-295) Gene Regulation (296-385) Developmental Biology (386-457) Biochemistry and Secondary Metabolism(458-492) Unclassified(493-502) Index to Abstracts Abstracts may be cited as "Fungal Genetics Newsletter 48S:abstract number" Plenary Abstracts COMPARATIVE AND FUNCTIONAL GENOMICS FUNGAL-HOST INTERACTIONS CELL BIOLOGY GENOME STRUCTURE AND MAINTENANCE COMPARATIVE AND FUNCTIONAL GENOMICS Genome reconstruction and gene expression for the rice blast fungus, Magnaporthe grisea. Ralph A. Dean. Fungal Genomics Laboratory, NC State University, Raleigh NC 27695 Rice blast disease, caused by Magnaporthe grisea, is one of the most devastating threats to food security worldwide.
    [Show full text]